
Solutions of Assignment 4

Basic Algebra I

October 7, 2004

Solution of the problem 1. For S to be a subring of R, it is enough to verify
that:

(i) S it is closed under addition and multiplication. For addition it is almost
obvious that S is closed. And for the multiplication, just note that:(

a b
0 d

) (
a′ b′

0 d′

)
=

(
? ?
0 ?

)
∈ S.

(ii) 0R ∈ S, which is clear:
(
0 0
0 0

)
∈ S.

(iii) If X =
(

a b
0 d

)
∈ S, then −X ∈ S, which is again clear.

Therefore, we conclud that S is a subring of R.

Solution of the problem 2. The only non-almost clear thing to check is being
closed under multiplication:(

a ?
0 a

) (
a′ ?
0 a′

)
=

(
aa′ ?
0 aa′

)
∈ S.

Thus, S is a subring of R.

Solution of the problem 3. If S is a subring of Q, then according to the
definition given in class, 1 ∈ S, so S contains all the elements

1, 2 = 1 + 1, 3 = 1 + 1 + 1, · · · ,

hence it is infinite.
Remark Even according to the definition given in Hungerford’s book, which
does not require a subring have the same identity element as the whole ring, a
slightly modified version of the above holds:

Every non-trivial ”subring” S of Q (i.e., S 6= {0}) is infinite.
For the proof, choose any non-zero element of S and repeat the above argument.

Solution of the problem 4. In notations:

S = {(a, 0A) : a ∈ A}.
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That S is a ring with the zero element 0S = (0A, 0A) and the identity element
1S = (1A, 0A) needs just very simple verifications, left to students. Now let’s
define the following map:

g : A → S, g(a) = (a, 0A).

By the definition, g is an isomorphism of rings if:
(i) It is injective (or one-to-one);
(ii) It is surjective (or onto);
(iii) g(a + a′) = g(a) + g(a′) and g(aa′) = g(a)g(a′) for all a, a′ ∈ S.

Let’s see why (i),(ii) and (iii) are true.

(i) g is injective, because if g(a) = g(a′) then (a, 0A) = (a′, 0A), and
therefore a = a′.

(ii) Trivial!

(iii) Quite routine:

g(a + a′) = (a + a′, 0A) = (a, 0A) + (a′, 0A) = g(a) + g(a′),

and
g(aa′) = (aa′, 0A) = (a, 0A)(a′, 0A) = g(a)g(a′).

And finally, S is not a subring of R, because they don’t have the same identity
elements: 1S = (1A, 0A) 6= (1A, 1A) = 1R.

Solution of the problem 5. Assume that ax = ay, where x, y ∈ R. Since we
are in a ring, we can rewrite the equality as a(x − y) = 0, and now since a is
not a zero divisor, we conclude that x− y = 0 or x = y.

Solution of the problem 6. First of all note that

R = {a + b
√

2 : a, b ∈ Q}

with the usual binary operations of real numbers is a ring (check this!). Now
we consider the following function:

φ : R −→ R, φ(a + b
√

2) = a− b
√

2.

(i) To see why φ is injective, suppose that φ(a + b
√

2) = φ(c + d
√

2). So
a− b

√
2 = c− d

√
2 or

(b− d)
√

2 = a− c.

Now if b− d 6= 0, then we would deduce that

√
2 =

a− c

b− d
∈ Q,
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which is absurd. This shows that b = d, and therefore a = c, i.e, a + b
√

2 =
c + d

√
2.

(ii) To show that φ is surjective, just note that

φ(a− b
√

2) = a + b
√

2 !

(iii) And finally, to prove that φ respects addition and multiplication, write
α = a + b

√
2, β = c + d

√
2 and notice that

φ(α + β) = φ
(
(a + c) + (b + d)

√
2
)

= (a + c)− (b + d)
√

2

= (a− b
√

2) + (c− d
√

2)
= φ(α) + φ(β),

and

φ(αβ) = φ
(
(a + b

√
2)(c + d

√
2)

)
= φ

(
(ac + 2bd) + (ad + bc)

√
2
)

= (ac + 2bd)− (ad + bc)
√

2

= (a− b
√

2)(c− d
√

2)
= φ(α)φ(β).

Therefore φ is an isomorphism.

Solution of the problem 7. Recall that 1R denotes the identity element of
the ring R. If f : Z → R wants to be a ring homomorphism, by the very
definition, we must have f(1) = 1R. Therefore

f(2) = f(1 + 1) = f(1) + f(1) = 1R + 1R.

Likewise, we must have

f(3) = f(2 + 1) = f(2) + f(1) = 1R + 1R + 1R.

A very simple inductive argument will reveal that for any natural number n, we
must have

f(n) = 1R + · · ·+ 1R︸ ︷︷ ︸
n times

. (?)

Once again, if f wants to be a ring homomorphism, by a theorem proved in
class, we must have f(0) = 0R (here 0R stands for the zero element of R) and

f(−n) = −f(n) = −(1R + · · ·+ 1R︸ ︷︷ ︸
n times

) (??).
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All these show that if f is a ring homomorphism from the ring of integers Z to an
arbitrary ring R with the identity element 1R, the crucial condition f(1) = 1R

will determine f uniquely. In other words, if there exists a ring homomorphism
from Z to R, then it has to be unique. The fact that if we actually define f by
using (?) and (??), then it will be a ring homomorphism, is an easy exercise,
left to the reader!

Solution of the problem 8. There are two non-trivial things to check:
(i) Multiplication in R[i] is associative. To see this, write αi = (ai, bi) for

i = 1, 2, 3. From one hand we have

(α1α2)α3 = (a1a2 − b1b2, a1b2 + a2b1)(a3, b3)
= ((a1a2 − b1b2)a3 − (a1b2 + a2b1)b3, (a1a2 − b1b2)b3 + (a1b2 + a2b1)a3)
= (a1a2a3 − b1b2a3 − a1b2b3 − a2b1b3, a1a2b3 − b1b2b3 + a1b2a3 + a2b1a3).

And on the other hand

α1(α2α3) = (a1, b1) (a2a3 − b2b3, a2b3 + a3b2)
= (a1(a2a3 − b2b3)− b1(a2b3 + a3b2), a1(a2b3 + a3b2) + b1(a2a3 − b2b3))
= (a1a2a3 − b1b2a3 − a1b2b3 − a2b1b3, a1a2b3 − b1b2b3 + a1b2a3 + a2b1a3).

Therefore, (α1α2)α3 = α1(α2α3).

(ii) Distribution law holds. To show this, note that on one hand

α1(α2 + α3) = (a1, b1)(a2 + a3, b2 + b3)
= (a1(a2 + a3)− b1(b2 + b3), a1(b2 + b3) + b1(a2 + a3))
= (a1a2 + a1a3 − b1b2 − b1b3, a1b2 + a1b3 + b1a2 + b1a3)

On the other hand one can also check that

α1α2 + α1α3 = (a1a2 + a1a3 − b1b2 − b1b3, a1b2 + a1b3 + b1a2 + b1a3).

Thus α1(α2 + α3) = α1α2 + α1α3 and we are done.

Solution of the problem 9. To prove that

S = {(r, o) : r ∈ R}

is a subring of R[i], it is enough to see that

(r1, 0) + (r2, 0) = (r1 + r2, 0) ∈ S,

(r1, 0)(r2, 0) = (r1r2 − 0, r10 + r20) = (r1r2, 0) ∈ S,

and that they have the same identity element: 1S = 1R[i] = (1R, 0R).
Now let us define the following map

f : R −→ S, f(r) = (r, 0).
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It is fairly straightforward to check that f is an isomorphism between R and S,
left to you.(look at the solutions for problems 4 and 6.)

And for the last part, put i := (0, 1R). Now since f is an isomorphism
between R and its image in R[i] under f , we can identify any element r ∈ R
with its image (r, 0) in R[i]. Now notice that under this identification

i2 = (0, 1)(0, 1) = (−1, 0) = −1.

Solution of the problem 10. Under the identification as above, any element
(x, y) of R[i] can be viewed as a complex number:

(x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + iy.

Note that in R[i], the letter i stands for the element (0, 1), whereas in x + iy,
the same letter stands for the usual imaginary number

√
−1. To make all these

precise, we define the map

f : R[i] −→ C, f(x, y) = x + iy.

Once again this is just the matter of a simple verification that f provides an
isomorphism between the ring R[i] (as defined in the previous problem) and the
field of complex numbers C. CHECK THIS!

Solution of the problem 11. We define the right map and verify that it
respects multiplication and you check the rest. Namely, check that it is bijective,
it sends 1C[i] to 1C×C, and it also respects addition.

Define

f : C[i] −→ C× C, f(α, β) = (α +
√
−1β, α−

√
−1β).

For any two pairs (α, β) and (α′, β′) in C[i], we have

f(α, β)f(α′, β′) = (α +
√
−1β, α−

√
−1β)(α′ +

√
−1β′, α′ −

√
−1β′)

=
(
(αα′ − ββ′) +

√
−1(αβ′ + α′β), (αα′ − ββ′)−

√
−1(αβ′ + α′β)

)
= f(αα′ − ββ′, αβ′ + α′β)
= f((α, β)(α′, β′))

Now it’s your turn!

Solution of the problem 12. All we have to do is to show that every non-zero
element a ∈ R has an inverse in R. To this end, consider the following map

f : R −→ R, f(r) = ar.

We claim that f is one-to-one:

f(r) = f(s) ⇒ ar = as ⇒ r = s.

(Remember, we are in an integral domain, so the cancellation law holds.) Since
R is assumed to be finite, then every one-to-one map from R to itself is onto.
This implies that 1 is in the range of f , i.e., there exists an element b ∈ R such
that f(b) = ab = 1, so a has inverse and we are done.
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