Solutions of Assignment 10
Basic Algebra I

November 25, 2004

Solution of the problem 1. Let |a| = m, |bab~!| = n. Since
(bab™ )™ = (bab~')(bab™')--- (bab™ 1)
= ba™b !
= b1b7!
= ]_7
we have n < m. Conversely, since
a® = b 'ba"b'b
= b H(bab™")"b
= b'1b
= 1,

we have m < n. Thus m = n.

Solution of the problem 2. Recall A non-empty subset H of a group G is
a subgroup iff it satisfies the following property:

Vhi,he € H = hihy' € H. (%)

Now back to our problem, we check that H = H; N Hy satisfies (x): Take
hi,he € H. So, hy,hs € Hy; hy,ho € Hy. Since both H; and Hs are assumed
to be subgroups of G, then (%) tells us that

hihy' € Hy, hihy' € Ho.
Therefore hihy ' € H.
For the union, we shall prove the following:
H, U Hy is a subgroup of G iff either Hy C Hy or Hy C Hy.

Proof Sufficiency is clear. So, suppose that H; U Hs is a subgroup of G, and, on
the contrary, assume that Hy ¢ Hs and that Hy ¢ H;. These in return imply
that

dhy € Hq,s.t. h1 ¢H2; dho € Hy, s.t. hg%Hl.



Since h1he € H1 U Hy (why?), then we would have either hihe € Hy or hihg €
H,, and both are impossible (why?). Done.

Solution of the problem 3. Let |a| = m. By Lagrange’s theorem, m | n. So,
a" = (a™)m =1m = 1.
For the second part, if a =0 (mod p), then it is evident that
pla(@™t—1)=a? —a.

Andifa#0 (mod p), then a € Z, and since Z is a group of order p—1, by
what we proved above, a?~! =1 (in 7)), so

pla(@?t—1)=d —a.

Solution of the problem 4. We verify that Z(S) satisfies (%) in the solution
of problem 2: Let a,b € Z(S). So, as = sa, bs = sb for s € S. First note that
sb™' =b"lbsb™! = b lsbb~! = b~ !s. Therefore

(ab™ Vs =ab 's =asb™' =sab™! = s(ab™!),
hence ab=t € Z(S).

Solution of the problem 5. Define ¢ : G1 — Ga, ¢(x) = In(z). ¢ is clearly
bijective. Also note that

P(zy) = In(zy) = In(z) + In(y) = é(z) + &(y).

So, ¢ is homomorphism, hence an isomorphism.

Solution of the problem 6. Let |a] =m, |f(a)| = n. Since f is a homomor-
phism, we have

f(a’)m = f(am) = f(1G1> =1a,.
So, n < m. If f is also injective, we have

f(a’n) = f(a’)n = 1G2 = f(1G1)

So, a™ = 1¢g,, since f is injective. Thus m < n and we are done.

Solution of the problem 7. Note that:
(i) G is closed under multiplication (check this);
(ii) G contains the identity element 1 (clear);
(iii) G contains the inverse of all its elements:

() ==L (F) 7 =Fi, ()7 =F (k)7 =Fk



Hence G is a (sub)group of the multiplicative group of non-zero elements of H.

For the second part, enough to see that the dihedral group D, has two
elements of order 4, namely r; and r3, whereas in the group G above, there are
six elements of order 4, namely +i, +j, + k. So, G % Dy.

Extra Credit

Solution of the problem 9. Let V' = Z, x Zy = {(0,0), (1,0),(0,1),(1,1)} =
{0,€1,e2,e3}, where 0 = (0,0),e; = (1,0),e2 = (0,1),e3 = (1,1). We will view
V as a vector space of dimension 2 over the field Z,. Fix the basis {e1,es} for

V. Now each matrix ;
a
€ GLy(Z
(c d) 2(Z2)

may be viewed as a bijective linear transformation from V into itself (by mul-
ab

tiplication from left to e;’s). Each ( d) permutes eq, es, e3. For example
c

(- ()6) - () -
(- (DO - ) o
(- (- ) -

123
So, (} 1) can be corresponded to the permutation o = (1 3 2>'

In general, we can define a well-defined map, ¢ say, from the group GL2(Zs)

into the group Ss:
ab 1 2 3
— =
cd) 7T \o()o(2)0(3))’

ab .
(c d)ei =erq) (1<i<3).

¥ is clearly an injective group homomorphism (check this). On the other
hand, since |S3| = |GL2(Z2)| = 6, we conclude that 4 is also onto, hence an
isomorphism.

where

Solution of the problem 10. Let G be a group, and let a,b € G. b is said to
be conjugate to a if b = gag~! for some g € G. Notice that

(i) Every a is conjugate to itself: a = lal™!;
(ii) If b is conjugate to a, then « is also conjugate to b:

1 -1,

b=gag " =a=g""b(g" ")



(iii) If b is conjugate to a, and if ¢ is conjugate to b, then c is also conjugate
to a:

b=giagy ", c=gabgs " = ¢ = (gag1)a(gagr) ™"

So, conjugacy is an equivalence relation in G. Denote the conjugacy class of

a € G by dJal:
clla) := {gag™ : g€ G}.

Now suppose that N > G, i.e., N is a normal subgroup of G. Given any
a € N, it is obvious that cl[a] C N (why?). Thus N is the disjoint union of the
conjugacy classes of its elements. Conversely, if a subgroup of G is a union of
some conjugacy classes in G, that subgroup is clearly normal. So, one way to
find all normal subgroups of G is to look at those unions of conjugacy classes
in G which constitute a subgroup.

To determine the conjugacy classes in the symmetric group S, we will ex-
ploit the following useful fact:

Permutations «, 5 € S, are conjugate iff the have the same cyclic struc-
ture, i.e., iff their complete factorization into disjoint cycles have the same
number of r-cycles for each r.

Example Let
a=(231)(45)(6);
B=(562)31)4);
v=(231)(456).
«a and (§ are conjugate, since they have the same cyclic structure. In fact the

1234
3456 does what we want: a1 = 3 (check this). In
256314

complete contrast, a and «y are not conjugate, because they don’t have the same
cyclic structure.

permutation 6 = (

Using the above fact, now listing the set of all conjugacy classes in Sy is an
easy(!) task:
={(H}

)

Cy ={(12),(1 ) (14),(23),(24),34)};
Cs3={(123),(132),(124),(142),(134),(143),(234),(243)}
Ci={(1234),(1243),(1324),(1342),(1423),(1432)};
Cs ={(12)(34),(13)(24),(14)(23)}.

Examining all the possibilities, one can find all the normal subgroups of Sj:

34
34
{1}201; V=CiUCs; Ay, =C1UC3UCs5; S4=C1UCUC3UC,UC(Cs.

As for S5, the following is the complete list of all conjugacy classes:

()]s el[(1 2)]; el[(1 2 3)};¢l[(1 2 3 4)];



cl(12345)]; c(12)(34)]; (12 3)(45).

And finally, one can find all normal subgroups of S5. Here you are:
{1}; As; Ss.

Conclusion Ay is the only proper non-trivial normal subgroup of Ss. In fact,
this holds for any n # 4.



