POISSON MODULES AND DEGENERACY LOCI

Brent Pym (bpym@math.toronto.edu), based on the preprint [4]

1. Overview

We examine the degeneracy loci of holomorphic Poisson structures—the subvarieties where the rank of the Poisson tensor drops. We discuss:

- Bondal's conjecture regarding degeneracy loci on Fano manifolds
- The singularities of degeneracy loci
- The "residues" of Poisson structures

Throughout, X is a connected complex manifold, $\omega_{\mathsf{X}} = \Omega_{\mathsf{X}}^{top}$ is the canonical sheaf (the holomorphic volume forms), $\mathscr{X}^{k}_{\mathsf{X}}$ is the sheaf of holomorphic k-derivations on X and

 $\sigma \in \Gamma(\mathsf{X}, \mathscr{X}^2_{\mathsf{X}})$

4. Main result: evidence for Bondal's conjecture

Theorem. Let X be a connected Fano manifold of dimension 2n. Then every component of $D_{2n-2}(\sigma)$ has dimension $\geq 2n-1$, and $\mathsf{D}_{2n-4}(\sigma)$ has at least one component of dimension $\geq 2n - 3$.

Corollary. Bondal's conjecture is true for Fano manifolds of dimension four.

Right: An outline of the proof of the theorem for Poisson structures that are generically symplectic. In this case, $D_{2n-2}(\sigma)$ is a hypersurface—the zero locus of the anti-canonical section σ^n . This poster discusses steps 4A and 4B.

is a holomorphic Poisson structure.

2. Degeneracy loci

For $k \in \mathbb{Z}_{>0}$, the $2k^{th}$ degeneracy locus of σ is the analytic subvariety

> $\mathsf{D}_{2k}(\sigma) = \{ x \in \mathsf{X} \mid \operatorname{rank}(\sigma|_x) \le 2k \}$ $= \operatorname{\mathsf{Zeros}}\left(\sigma^{\wedge (k+1)}\right),$

which is the union of all symplectic leaves of (complex) dimension $\leq 2k$.

3. Bondal's conjecture

A *Fano manifold* is a compact complex manifold X with $c_1(X) > 0$ (eg., projective space \mathbb{P}^d).

Conjecture (Bondal [2]). If X is Fano, then $\mathsf{D}_{2k}(\sigma)$ has a component of dimension $\geq 2k+1$ for all $k < \frac{1}{2} \dim X$.

Above: A cross-section of the generically symplectic Poisson structure $q_{5,1}$ on \mathbb{P}^4 defined by Feigin and Odesskii [3]. The black curves represent the 2D symplectic leaves. Their closures intersect at the singular locus of the degeneracy hypersurface, which is an elliptic curve in \mathbb{P}^4 .

4A. The singular locus

0

 $\sigma_{
abla}^n$

 $\otimes \omega_{\mathsf{X}}$

 $\sigma_{\nabla}^{\sharp} \otimes 1$

 $\sigma_{
abla}^n$

 \mathcal{O}_{X}

 \mathcal{O}_{W}

0

Degeneracy loci are highly singular:

 $\mathsf{D}_{2k-2}(\sigma) \subset \mathsf{D}_{2k}(\sigma)_{sing}$

whenever $\mathsf{D}_{2k}(\sigma) \neq \mathsf{X}$. To prove the main theorem, we use the following facts about the singular locus of a degeneracy hypersurface:

Theorem. Suppose dim X = 2nand σ is generically symplectic. Let $W = \mathsf{D}_{2n-2}(\sigma)_{sing}. \text{ If } \mathsf{W} \neq \varnothing, \text{ then } \mathcal{A}_{\omega_{\mathsf{X}}}^{\vee}$

 $\dim \mathsf{W} \ge 2n - 3.$

 $\mathcal{A}_{\omega_{\mathsf{X}}}\otimes\omega_{\mathsf{X}}$ If dim W = 2n - 3, then \mathcal{O}_W has a locally-free resolution obtained from the natural Poisson structure

 $\sigma_{\nabla} \in \Gamma \left(\mathsf{X}, \mathsf{\Lambda}^{2} \mathcal{A}_{\omega_{\mathsf{X}}} \right)$

Theorem (Beauville [1], Polishchuk [6]). If X is Fano and $M = \max \operatorname{rank}(\sigma)$, then $\mathsf{D}_{M-2}(\sigma)$ has a component of dimension $\geq M-1$. Hence, Bondal's conjecture is true for Fano threefolds.

References

- [1] A. Beauville, Holomorphic symplectic geom*etry:* a problem list, 1002.4321.
- [2] A. I. Bondal, Non-commutative deformations and Poisson brackets on projective spaces, Max-Planck-Institute Preprint (1993), no. 93-67.
- [3] B. L. Feigin and A. V. Odesskii, *Sklyanin's* elliptic algebras, Funktsional. Anal. i Prilozhen. 23 (1989), no. 3, 45–54, 96.
- [4] M. Gualtieri and B. Pym, Poisson modules and degeneracy loci, 1203.4293.

Below: Projection of the 2D symplectic leaves of $q_{5,1}$ to \mathbb{P}^3 gives the Poisson structure $q_{4,1}$, which vanishes on an elliptic curve (red).

on the Atiyah algebroid of the canonical sheaf (see right).

Corollary. If dim W = 2n - 3, then W is a Gorenstein scheme with dualizing sheaf $\omega_{\mathbf{X}}^{-1}|_{\mathbf{W}}$ and fundamental class $[W] = c_1(X)c_2(X) - c_3(X)$.

4B. Modular residues

Since the modular vector field Z of σ is defined modulo Hamiltonian vector fields, $Z \wedge \sigma^k$ is welldefined wherever $\operatorname{rank}(\sigma) \leq 2k$. Since Z is tangent to every degeneracy locus, we may define the *modular residue*

 $\operatorname{Res}_{mod}^{k}(\sigma) = Z \wedge \sigma^{k}|_{\mathsf{D}_{2k}(\sigma)}$ $\in \Gamma\left(\mathsf{D}_{2k}(\sigma), \mathscr{X}^{2k+1}_{\mathsf{D}_{2k}(\sigma)}\right).$

This residue is often nonzero, suggesting that there may be a local reason for the prediction dim $D_{2k}(\sigma) \ge 2k + 1$ of Bondal's conjecture.

[5] S. Holzer and O. Labs, SURFEX 0.90, University of Mainz, Tech. report, University Saarbrücken, of 2008,www.surfex.AlgebraicSurface.net.

[6] A. Polishchuk, Algebraic geometry of Poisson brackets, J. Math. Sci. (N. Y.) 84 (1997), no. 5, 1413–1444. Algebraic geometry, 7.

Acknowledgements

This research was supported by an NSERC Canada Graduate Scholarship (Doctoral). 3D graphics were produced using SURFEX [5].

Theorem. The modular residue is given by

$$\operatorname{Res}_{mod}^{k}(\sigma) = \frac{-1}{k+1}\operatorname{Tr}(D\sigma^{k+1})$$

where $D\sigma^{k+1}$ is the derivative of σ^{k+1} along $\mathsf{D}_{2k}(\sigma), \text{ and } \mathrm{Tr}: \Omega^1_{\mathsf{X}} \otimes \mathscr{X}^{2k+2}_{\mathsf{X}} \to \mathscr{X}^{2k+1}_{\mathsf{X}} \text{ is the}$ contraction.

Notice that if dim X = 2n and σ is generically symplectic, then $W = D_{2n-2}(\sigma)_{sing}$ is the zero locus of $D\sigma^n$. Therefore, $Z \wedge \sigma^{n-1}|_{\mathsf{W}} = 0$ and Z is tangent to the (2n-2)-dimensional leaves of W. Hence, $\omega_X|_W$ has a flat connection along the leaves, and Bott's vanishing theorem applies.