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Précis 2

Holonomicity: nondegeneracy condition for Poisson structures, based on
D-modules

Generalization of symplectic geometry (c.f. b-, log-, ...)

Covers many natural examples

Often makes deformation theory tractable

Inspired by work of Etingof–Schedler on Poisson traces, Kaledin and
Namikawa on symplectic singularities



Setting and motivation 3

X complex manifold

∧•TX = sheaf of holomorphic polyvector fields

Holomorphic Poisson structure:

π ∈ Γ(X ,∧2TX ) = H0(∧2TX ) [π, π] = 0 ∈ H0(∧3TX )

π =
∑
ij

πij(z)∂zi ∧ ∂zj (no z appearing)

Classification problem (hopeless): what are the possible pairs (X , π)?

moduli space MPois :=
{(X , π) compact}

∼

irreducible decomposition MPois =
⋃
i

MPois,i

More tractable: describe neighbourhood of [(X , π)] ∈MPois



Deformations are governed by Poisson cohomology 4

OX
dπ // TX

dπ // ∧2TX // · · · dπ = [π,−]

Local picture: deform germ (X , π)p

π  πt = π+tη+· · · η ∈ ∧2TX ,p
[πt , πt ] = [π, π] + 2t[π, η] + · · ·

= 2tdπη + · · ·

Trivial deformations:

πt = φ∗tπ =⇒ η = Lξπ = dπξ

{1st-order defs}
∼

∼= H2
p(∧•TX , dπ)︸ ︷︷ ︸

stalk cohomology

Global picture: deform (X , π), in-
cluding (generalized) complex struc-
ture of X

Local defs on opens Ui , glue by iso-
morphisms on Ui ∩ Uj

{1st-order defs}
∼

∼= H2(∧•TX , dπ)︸ ︷︷ ︸
hypercohomology

Use any model (Čech, Dolbeault, ...)

Local or global: cohomology only depends on (∧•TX , dπ) ∈ D(X )

Higher order defs: Schouten bracket on ∧•TX =⇒ L∞ structure on
cohomology =⇒ nonlinear obstruction map H2 → H3



Extreme cases 5

Case (X , π) nondegenerate (symplectic): Darboux coordinates

π =
∑
i

∂qi ∧ ∂pi ω := π−1 =
∑
i

dpi ∧ dqi

Nondegeneracy is an open condition =⇒ defs. are locally trivial

(∧•TX , dπ) ∼= (Ω•X , d) ∼= CX︸︷︷︸
abelian!

in D(X )

H2(∧TX , dπ) = 0 H2(∧TX , dπ) ∼= H2(X ;C)

Higher-order deformations: unobstructed (cf. Bogomolov, Tian–Todorov)

Case (X , π) trivial (π = 0): all Poisson germs give local deformations

dπ = 0 =⇒ H• = ∧•TX =⇒ dimCH• =∞

Higher-order deformations: highly obstructed



dimX = 2: Poisson surfaces (Goto) 6

π ∈ ∧2TX = det TX = K−1
X anticanonical line bundle

∂X := Zeros(π) ⊂ X curve X ◦ = X \ ∂X symplectic

singular locus ∂2X ⊂ ∂X (assume quasi-homogeneous for simplicity)

π = ∂q ∧ ∂p
H0 = C

π = y∂y ∧ ∂z
H0 ∼= C
H1 ∼= C · ∂z

π = f (u, v)∂u ∧ ∂v
H0 ∼= C,H1 ∼= H1(Bε ∩ X ◦)

H2 = H2(Bε ∩ X ◦) + smoothings

(∧•TX , dπ) ∼= Rj∗CX◦ ⊕ i∗K
−1
X |∂2X [−2]

H•(∧•TX , dπ) ∼= H•(X ◦;C)⊕ H0(∂2X ,K−1
X |∂2X )︸ ︷︷ ︸

degree 2

Obstructions vanish!



Finite-dimensionality of deformation spaces 7

Global: dim H2 <∞ automatic for X compact

=
⇒

Local: dimH≤2 <∞ finitely many gluing params.

=
⇒

Local derived: dimH• <∞

Question: when are stalks of H• finite-dimensional?



Holonomicity 8

Question: when are stalks of H• finite-dimensional?
Answer: use D-modules

DX = diff. ops. on OX , filtered by order

grDX
∼= Sym(TX ) ∼= poly. functions on T ∗X

Complex of right DX -modules:

∧•TX ⊗DX =

{
dπ

� ∧• TX OX 	 DX
diff. ops.oo

}
gr(∧•TX ⊗DX ) ∈ QCoh(T ∗X )

Char(X , π)︸ ︷︷ ︸
characteristic variety

⊂ T ∗X

support

Definition

(X , π) is holonomic if Char(X , π) ⊂ T ∗X is Lagrangian.



Consequences of holonomicity 9

Definition

(X , π) is holonomic if Char(X , π) ⊂ T ∗X is Lagrangian.

Immediate consequences holonomicity:

via Kashiwara constructibility: dimH• <∞.

via Kashiwara + Roos: ∧•TX [dim X ] is a perverse sheaf

X = tαXα Xα locally closed Char(X , π) =
⋃

N∗Xα

H• locally constant on Xα codim(supp(Hk)) ≥ k

Proposition

Holonomicity is:

1 A local condition: depends only on germs transverse to sympl. leaves

2 An open condition in proper families: MHolPois ⊂MPois Zariski open.



How to determine Char(X , π)? 10

Lemma

Char(X , π) ⊂
⋃

L symp. leaf

N∗L ⊂ T ∗X

Sketch of proof.

1 Hamiltonian flows act homotopically trivially on ∧•TX
2 Thus Hamiltonian vector fields (viewed as functions on T ∗X ) vanish

on Char(X , π)

3 Zero set of all such functions =
⋃

L N∗L

Corollary

Every symplectic manifold is holonomic, with Char(X , π) = {0} ⊂ T ∗X .



How to determine Char(X , π)? Redux 11

Char(X , π) ⊂
⋃

L symp. leaf

N∗L ⊂ T ∗X

Definition

A symplectic leaf L ⊂ X is characteristic if N∗L ⊂ Char(X , π)

Theorem (P.–Schedler)

1 symp. leaf L is characteristic ⇐⇒ modular vector field tangent to L

2 (X , π) is holonomic at p ∈ X =⇒ #
{

characteristic L
∣∣ p ∈ L

}
<∞

(Conjecturally, ⇐⇒ )

3 finitely many modular orbits of sympl. leaves =⇒ holonomic

4 holonomic away from codimension two ⇐⇒ log symplectic

Definition (Goto)

(X , π) is log symplectic if ∃ open dense symplectic X ◦ = X , and
symplectic form has first-order poles on anticanonical ∂X = X \ X ◦



Examples 12

Surfaces: dim X = 2.

∂2X ⊂ ∂X ⊂ X ⊃ X ◦

Characteristic leaves: X ◦, points of ∂2X

×

Holonomic ⇐⇒ dim ∂2X = 0 ⇐⇒ ∂X reduced ⇐⇒ log symplectic

Hilbert schemes of surface X : in progress w/ Matviichuk & Schedler

Symn(X ) := X n/Sn︸ ︷︷ ︸
singular Poisson variety

←− Hilbn(X )︸ ︷︷ ︸
Hilbert scheme, smooth Poisson

[Bottacin, Mukai], defs: [Hitchin, Ran]

Hilbn(X ) holonomic ⇐= ∂X smooth

Hilb2(X ) holonomic ⇐⇒ ∂2X always of type Ak

Feigin–Odesskii: “elliptic” Poisson structures qd ,r (E , ζ) on Pd−1

P.–Schedler: d odd, r = 1 =⇒ holonomic irred. cpts. of MPois



Case study: normal crossings [Ran], [MPS, in prep] 13

Assume (X , π, ω) log symplectic, ∂X simple normal crossings:

all irreducible components ∂iX ⊂ X are smooth

all intersections ∂i1X ∩ · · · ∩ ∂ij X are transverse
(components called strata, automatically Poisson)

Stable local normal form along strata S◦ ⊂ S ⊂ X :

ω ∼
∑
i

dpi ∧
dqi

qi
+
∑
i<j

Bij
dqi

qi
∧

dqj

qj

Bij := 1
(2π
√
−1)2

∫
Σij

ω ∈ C Σij := torus wrapping ∂iX∩∂jX near S◦

From which follows:

corank(π|S◦) = corank(Bij)

leaves in S◦ are characteristic ⇐⇒ (1, . . . , 1) ∈ img(Bij)



Normal crossings Poisson cohomology 14

Vector fields tangent to ∂X :

TX (− log ∂X ) ⊂ TX
Exterior powers =⇒ filtration by “weight” compatible with dπ:

∧•TX (− log ∂X ) = W0 ⊂W1 ⊂ · · · ⊂WdimX = ∧•TX

Wj/Wj−1
∼=

⊕
codimS=j

iS∗ ∧•TS(− log ∂S)⊗ detNS︸ ︷︷ ︸
=:C•S

[−j ]

Theorem (Matviichuk–P.–Schedler)

If (X , π) log symplectic with ∂X normal crossings

1 (X , π) holonomic ⇐⇒ # char leaves locally finite

2 when holonomic, each LS◦ := H0(CS |S◦) is either trivial, or a rank
one local system on S◦, and we have an isomorphism in D(X ):

grW (∧•TX , dπ) ∼=
⊕

S◦ characteristic

Rjnr∗ LS◦ [−codim S ]



Consequences for moduli space 15

Corollary

If (X , π) holonomic normal crossings (away from codim 4), then

H2(∧•TX , dπ) ∼= H2(X ◦;C)⊕
⊕

S◦ codim 2 char

H0(Rjnr∗ LS◦)

dim H2 = b2(X ◦) + # “smoothable” codim-two strata

[ω] ∈ P(H2(X ◦;C)) =

Theorem (Matviichuk–P.–Schedler)

In nice cases (e.g. toric), deformations governed by explicit formal dgLa

nbhd of (X , π) ∈MPois
∼=

union of linear subspaces in H2(∧•TX )

linear action of (C∗)k o finite



Example: projective space 16

X = P2n = {[x0 : · · · : x2n]} ∂iX = {xi = 0} ω =
∑

Bij
dxi
xi
∧

dxj
xj

When is Sij := ∂iX ∩ ∂jX smoothable?

generically symplectic: Bij 6= 0

H0(Rjnr∗ LS◦
ij

) 6= 0:
Bjk + Bki

Bij
∈ Z≥0 ∀k 6= i , j

Theorem (Matviichuk–P.–Schedler + computer)

MPois has ∼40 irreducible components corresponding to holonomic
Poisson structures on P4 admitting normal crossings degenerations.

q5,1 q5,2 new new new

THANK YOU!


