Holonomic Poisson manifolds

Brent Pym

🐯 McGill

Based on joint works with

Travis Schedler [arXiv] [DOI] Mykola Matviichuk & Travis Schedler [in prep.] $\ensuremath{\text{Holonomicity:}}$ nondegeneracy condition for Poisson structures, based on $\ensuremath{\mathcal{D}}\xspace$ -modules

- Generalization of symplectic geometry (c.f. b-, log-, ...)
- Covers many natural examples
- Often makes deformation theory tractable
- Inspired by work of Etingof–Schedler on Poisson traces, Kaledin and Namikawa on symplectic singularities

Setting and motivation

X complex manifold

 $\wedge^{\bullet}\mathcal{T}_X = \mathsf{sheaf} \mathsf{ of holomorphic polyvector fields}$

Holomorphic Poisson structure:

$$\pi\in \Gamma(X,\wedge^2\mathcal{T}_X)=H^0(\wedge^2\mathcal{T}_X) \qquad \qquad [\pi,\pi]=0\in H^0(\wedge^3\mathcal{T}_X)$$

$$\pi = \sum_{ij} \pi^{ij}(z) \partial_{z_i} \wedge \partial_{z_j}$$
 (no \overline{z} appearing)

Classification problem (hopeless): what are the possible pairs (X, π) ?

moduli space
$$\mathcal{M}_{\mathsf{Pois}} := \frac{\{(X, \pi) \text{ compact}\}}{\sim}$$

irreducible decomposition $\mathcal{M}_{\mathsf{Pois}} = \bigcup_{i} \mathcal{M}_{\mathsf{Pois},i}$

More tractable: describe neighbourhood of $[(X,\pi)] \in \mathcal{M}_{\mathsf{Pois}}$

Deformations are governed by Poisson cohomology

$$\mathcal{O}_X \xrightarrow{d_\pi} \mathcal{T}_X \xrightarrow{d_\pi} \wedge^2 \mathcal{T}_X \longrightarrow \cdots \qquad d_\pi = [\pi, -]$$

Local picture: deform germ $(X, \pi)_p$ $\pi \rightsquigarrow \pi_t = \pi + t\eta + \cdots \qquad \eta \in \wedge^2 \mathcal{T}_{X,p}$ $[\pi_t, \pi_t] = [\pi, \pi] + 2t[\pi, \eta] + \cdots$ $= 2td_{\pi}\eta + \cdots$

Trivial deformations:

$$\pi_t = \phi_t^* \pi \implies \eta = \mathscr{L}_{\xi} \pi = \mathsf{d}_{\pi} \xi$$

 $\frac{\{\text{1st-order defs}\}}{\sim} \cong \underbrace{\mathcal{H}^2_p(\wedge^\bullet \mathcal{T}_X, \mathsf{d}_\pi)}_{\text{stalk cohomology}}$

Global picture: deform (X, π) , including (generalized) complex structure of X

Local defs on opens U_i , glue by isomorphisms on $U_i \cap U_i$

$$\frac{\{\text{1st-order defs}\}}{\sim} \cong \underbrace{\mathcal{H}^2(\wedge^{\bullet}\mathcal{T}_X, \mathsf{d}_\pi)}_{\text{hypercohomology}}$$

Use any model (Čech, Dolbeault, ...)

Local or global: cohomology only depends on $(\wedge^{\bullet}\mathcal{T}_X, d_{\pi}) \in D(X)$

Higher order defs: Schouten bracket on $\wedge^{\bullet} \mathcal{T}_X \implies L_{\infty}$ structure on cohomology \implies nonlinear obstruction map $H^2 \rightarrow H^3$

Extreme cases

Case (X, π) **nondegenerate (symplectic):** Darboux coordinates

$$\pi = \sum_i \partial_{q^i} \wedge \partial_{
ho_i} \qquad \qquad \omega := \pi^{-1} = \sum_i dp_i \wedge dq^i$$

Nondegeneracy is an open condition \implies defs. are locally trivial

$$(\wedge^{\bullet}\mathcal{T}_X, \mathsf{d}_{\pi}) \cong (\Omega^{\bullet}_X, \mathsf{d}) \cong \underbrace{\mathbb{C}_X}_{\text{abelian!}}$$
 in $D(X)$

$$\mathcal{H}^2(\wedge \mathcal{T}_X,\mathsf{d}_\pi)=0 \qquad H^2(\wedge \mathcal{T}_X,\mathsf{d}_\pi)\cong H^2(X;\mathbb{C})$$

Higher-order deformations: unobstructed (cf. Bogomolov, Tian-Todorov)

Case (X, π) **trivial** $(\pi = 0)$: all Poisson germs give local deformations

$$\mathsf{d}_{\pi} = 0 \qquad \Longrightarrow \qquad \mathcal{H}^{\bullet} = \wedge^{\bullet} \mathcal{T}_{X} \qquad \Longrightarrow \qquad \mathsf{dim}_{\mathbb{C}} \, \mathcal{H}^{\bullet} = \infty$$

Higher-order deformations: highly obstructed

dim X = 2: Poisson surfaces (Goto)

 $\pi \in \wedge^{2} \mathcal{T}_{X} = \det \mathcal{T}_{X} = \mathcal{K}_{X}^{-1} \qquad \text{anticanonical line bundle} \\ \frac{\partial X}{\partial X} := Zeros(\pi) \subset X \text{ curve} \qquad X^{\circ} = X \setminus \partial X \text{ symplectic} \\ \text{singular locus } \partial^{2} X \subset \partial X \text{ (assume quasi-homogeneous for simplicity)} \end{cases}$

$$(\wedge^{\bullet}\mathcal{T}_{X}, \mathsf{d}_{\pi}) \cong Rj_{*}\mathbb{C}_{X^{\circ}} \oplus i_{*}K_{X}^{-1}|_{\partial^{2}X}[-2]$$
$$H^{\bullet}(\wedge^{\bullet}\mathcal{T}_{X}, \mathsf{d}_{\pi}) \cong H^{\bullet}(X^{\circ}; \mathbb{C}) \oplus \underbrace{H^{0}(\partial^{2}X, K_{X}^{-1}|_{\partial^{2}X})}_{\text{degree } 2}$$

Obstructions vanish!

Question: when are stalks of \mathcal{H}^{\bullet} finite-dimensional?

Holonomicity

Question: when are stalks of \mathcal{H}^{\bullet} finite-dimensional? **Answer:** use D-modules

$$\mathcal{D}_X = \text{diff. ops. on } \mathcal{O}_X, \text{filtered by order}$$

gr $\mathcal{D}_X \cong Sym(\mathcal{T}_X) \cong \text{poly. functions on } T^*X$

Complex of right \mathcal{D}_X -modules:

$$\wedge^{\bullet} \mathcal{T}_{X} \otimes \mathcal{D}_{X} = \left\{ \begin{array}{l} \mathsf{d}_{\pi} \bigcirc \wedge^{\bullet} \mathcal{T}_{X} \prec \stackrel{\text{diff. ops.}}{\longleftarrow} \mathcal{O}_{X} \odot \mathcal{D}_{X} \end{array} \right\}$$
$$gr(\wedge^{\bullet} \mathcal{T}_{X} \otimes \mathcal{D}_{X}) \in QCoh(T^{*}X)$$
$$\underset{support}{\overset{}{\underbrace{}}} \underbrace{Char(X,\pi)}_{\mathsf{characteristic variety}} \subset T^{*}X$$

Definition

 (X,π) is **holonomic** if $Char(X,\pi) \subset T^*X$ is Lagrangian.

Consequences of holonomicity

Definition

 (X,π) is holonomic if $Char(X,\pi) \subset T^*X$ is Lagrangian.

Immediate consequences holonomicity:

- via Kashiwara constructibility: dim $\mathcal{H}^{\bullet} < \infty$.
- via Kashiwara + Roos: $\wedge^{\bullet} \mathcal{T}_X[\dim X]$ is a perverse sheaf

$$egin{aligned} X &= \sqcup_lpha X_lpha & X_lpha ext{ locally closed } & Char(X,\pi) = igcup \overline{N^*X_lpha} \ & \mathcal{H}^ullet ext{ locally constant on } X_lpha & ext{ codim}(ext{supp}(\mathcal{H}^k)) \geq k \end{aligned}$$

Proposition

Holonomicity is:

A local condition: depends only on germs transverse to sympl. leaves
 An open condition in proper families: M_{HolPois} ⊂ M_{Pois} Zariski open.

How to determine $Char(X, \pi)$?

Lemma

$$Char(X,\pi) \subset \bigcup_{L \text{ symp. leaf}} N^*L \subset T^*X$$

Sketch of proof.

- **(**) Hamiltonian flows act homotopically trivially on $\wedge^{\bullet}\mathcal{T}_X$
- Thus Hamiltonian vector fields (viewed as functions on *T***X*) vanish on *Char*(*X*, π)
- Sero set of all such functions = $\bigcup_L N^*L$

Corollary

Every symplectic manifold is holonomic, with $Char(X, \pi) = \{0\} \subset T^*X$.

How to determine $Char(X, \pi)$? Redux

$$Char(X,\pi) \subset \bigcup_{L \text{ symp. leaf}} N^*L \subset T^*X$$

Definition

A symplectic leaf $L \subset X$ is **characteristic** if $N^*L \subset Char(X, \pi)$

Theorem (P.–Schedler)

- I symp. leaf L is characteristic ⇐⇒ modular vector field tangent to L
- ② (X, π) is holonomic at p ∈ X ⇒ # {characteristic L | p ∈ \overline{L} } < ∞ (Conjecturally, ⇔)</p>
- ${f 0}$ finitely many modular orbits of sympl. leaves \implies holonomic
- 0 holonomic away from codimension two \iff log symplectic

Definition (Goto)

 (X, π) is **log symplectic** if \exists open dense symplectic $X^{\circ} = X$, and symplectic form has first-order poles on anticanonical $\partial X = X \setminus X^{\circ}$

Examples

Surfaces: dim X = 2.

$$\partial^2 X \subset \partial X \subset X \supset X^\circ$$

Characteristic leaves: X° , points of $\partial^2 X$ Holonomic $\iff \dim \partial^2 X = 0 \iff \partial X$ reduced \iff log symplectic **Hilbert schemes** of surface X: in progress w/ Matviichuk & Schedler

$$\underbrace{Sym^n(X) := X^n/S_n}_{} \qquad \leftarrow$$

singular Poisson variety

Hilbert scheme, smooth Poisson [Bottacin, Mukai], defs: [Hitchin, Ran]

 $Hilb^{n}(X)$ holonomic $\iff \partial X$ smooth $Hilb^{2}(X)$ holonomic $\iff \partial^{2}X$ always of type A_{k}

Feigin–Odesskii: "elliptic" Poisson structures $q_{d,r}(E,\zeta)$ on \mathbb{P}^{d-1}

 $\mathsf{P}.\mathsf{-Schedler:} \qquad d \; \mathsf{odd}, r = 1 \implies \mathsf{holonomic} \rightsquigarrow \mathsf{irred. cpts. of} \; \mathcal{M}_\mathsf{Pois}$

Case study: normal crossings [Ran], [MPS, in prep] 13

Assume (X, π, ω) log symplectic, ∂X simple normal crossings:

- all irreducible components $\partial_i X \subset X$ are smooth
- all intersections ∂_{i1}X ∩ · · · ∩ ∂_{ij}X are transverse (components called strata, automatically Poisson)

Stable local normal form along strata $S^{\circ} \subset S \subset X$:

$$\omega \sim \sum_i \mathrm{d} p_i \wedge rac{\mathrm{d} q_i}{q_i} + \sum_{i < j} B_{ij} rac{\mathrm{d} q_i}{q_i} \wedge rac{\mathrm{d} q_j}{q_j}$$

 $B_{ij} := rac{1}{(2\pi\sqrt{-1})^2} \int_{\Sigma_{ij}} \omega \in \mathbb{C}$ $\Sigma_{ij} := ext{torus wrapping } \partial_i X \cap \partial_j X ext{ near } S^\circ$

From which follows:

- $\operatorname{corank}(\pi|_{S^\circ}) = \operatorname{corank}(B_{ij})$
- leaves in S° are characteristic $\iff (1,\ldots,1)\in \mathsf{img}(B_{ij})$

Normal crossings Poisson cohomology

Vector fields tangent to ∂X :

 $\mathcal{T}_X(-\log \partial X) \subset \mathcal{T}_X$

Exterior powers \implies filtration by "weight" compatible with d_{π}:

$$\wedge^{\bullet}\mathcal{T}_{X}(-\log \partial X) = W_{0} \subset W_{1} \subset \cdots \subset W_{\dim X} = \wedge^{\bullet}\mathcal{T}_{X}$$

$$W_j/W_{j-1} \cong \bigoplus_{\operatorname{codim} S=j} i_{S*} \underbrace{\wedge^{\bullet} \mathcal{T}_S(-\log \partial S) \otimes \det \mathcal{N}_S}_{=:\mathcal{C}^{\bullet}_S} [-j]$$

Theorem (Matviichuk–P.–Schedler)

If (X, π) log symplectic with ∂X normal crossings

- **(** (X,π) holonomic $\iff \#$ char leaves locally finite
- When holonomic, each $\mathcal{L}_{S^{\circ}} := \mathcal{H}^0(\mathcal{C}_S|_{S^{\circ}})$ is either trivial, or a rank one local system on S° , and we have an isomorphism in D(X):

$$\operatorname{gr}^W(\wedge^{ullet}\mathcal{T}_X, \operatorname{d}_\pi) \cong igoplus_{S^\circ \ characteristic}} Rj^{nr}_* \mathcal{L}_{S^\circ}[-\operatorname{codim} S]$$

Consequences for moduli space

Corollary

If (X, π) holonomic normal crossings (away from codim 4), then

$$H^{2}(\wedge^{\bullet}\mathcal{T}_{X},\mathsf{d}_{\pi}) \cong H^{2}(X^{\circ};\mathbb{C}) \oplus \bigoplus_{S^{\circ} \text{ codim } 2 \text{ char}} H^{0}(Rj^{nr}_{*}\mathcal{L}_{S^{\circ}})$$

dim $H^2 = b_2(X^\circ) + \#$ "smoothable" codim-two strata

Theorem (Matviichuk–P.–Schedler)

In nice cases (e.g. toric), deformations governed by explicit formal dgLa nbhd of $(X, \pi) \in \mathcal{M}_{\mathsf{Pois}} \cong \frac{\text{union of linear subspaces in } H^2(\wedge^{\bullet}\mathcal{T}_X)}{\text{linear action of } (\mathbb{C}^*)^k \rtimes \text{finite}}$

Example: projective space

$$X = \mathbb{P}^{2n} = \{ [x_0 : \cdots : x_{2n}] \} \qquad \partial_i X = \{ x_i = 0 \} \qquad \omega = \sum B_{ij} \frac{\mathrm{d}x_i}{x_i} \wedge \frac{\mathrm{d}x_j}{x_j}$$

When is $S_{ij} := \partial_i X \cap \partial_j X$ smoothable?

$$\begin{array}{ll} \text{generically symplectic:} & B_{ij} \neq 0 \\ & H^0(Rj_*^{nr}\mathcal{L}_{\mathcal{S}_{ij}^{\circ}}) \neq 0 \colon & \frac{B_{jk} + B_{ki}}{B_{ij}} \in \mathbb{Z}_{\geq 0} \ \ \forall k \neq i,j \end{array}$$

Theorem (Matviichuk–P.–Schedler + computer)

 \mathcal{M}_{Pois} has ~40 irreducible components corresponding to holonomic Poisson structures on \mathbb{P}^4 admitting normal crossings degenerations.

