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This thesis is devoted to the study of holomorphic Poisson structures and Lie algebroids,

and their relationship with differential equations, singularity theory and noncommutative

algebra.

After reviewing and developing the basic theory of Lie algebroids in the framework of

complex analytic and algebraic geometry, we focus on Lie algebroids over complex curves

and their application to the study of meromorphic connections. We give concrete construc-

tions of the corresponding Lie groupoids, using blowups and the uniformization theorem.

These groupoids are complex surfaces that serve as the natural domains of definition for the

fundamental solutions of ordinary differential equations with singularities. We explore the

relationship between the convergent Taylor expansions of these fundamental solutions and

the divergent asymptotic series that arise when one attempts to solve an ordinary differential

equation at an irregular singular point.

We then turn our attention to Poisson geometry. After discussing the basic structure

of Poisson brackets and Poisson modules on analytic spaces, we study the geometry of the

degeneracy loci—where the dimension of the symplectic leaves drops. We explain that Pois-

son structures have natural residues along their degeneracy loci, analogous to the Poincaré

residue of a meromorphic volume form. We discuss the local structure of degeneracy loci

that have small codimensions, and place strong constraints on the singularities of the degen-

eracy hypersurfaces of log symplectic manifolds. We use these results to give new evidence

for a conjecture of Bondal.

Finally, we discuss the problem of quantization in noncommutative projective geometry.

Using Cerveau and Lins Neto’s classification of degree-two foliations of projective space,

ii



we give normal forms for unimodular quadratic Poisson structures in four dimensions, and

describe the quantizations of these Poisson structures to noncommutative graded algebras.

As a result, we obtain a (conjecturally complete) list of families of quantum deformations

of projective three-space. Among these algebras is an “exceptional” one, associated with a

twisted cubic curve. This algebra has a number of remarkable properties: for example, it

supports a family of bimodules that serve as quantum analogues of the classical Schwarzen-

berger bundles.
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Chapter 1

Introduction

1.1 Motivation

This thesis is motivated by three specific problems that, at first glance, seem to have little

to do with one another:

Question 1.1.1. Do divergent asymptotic series expansions, such as

1

z

∫ ∞
0

e−t/z

1 + t
dt ∼

∞∑
n=0

(−1)nn!zn

have some intrinsic geometric meaning?

Conjecture 1.1.2 (Bondal [19]). If σ is a holomorphic Poisson structure on a Fano mani-

fold X, and if 2k < dim X, then the locus in X defined by the symplectic leaves of dimension

no greater than 2k is a subvariety of dimension at least 2k + 1.

Problem 1.1.3. Classify the Artin–Schelter regular algebras [4, 6] of global dimension four.

Our viewpoint in this thesis is that these seemingly disparate issues are linked by a

common theme: the presence of a geometric structure known as a holomorphic Lie algebroid.

Thus, by developing an understanding of Lie algebroids, we can shed some light on all of

these questions. Therefore, this thesis is devoted to the study of Poisson structures and Lie

algebroids in the complex analytic setting, and in particular their connection with differential

equations, algebraic geometry, singularity theory, and noncommutative algebra.

To address Question 1.1.1 regarding asymptotic expansions, we discuss Lie algebroids

on complex curves and their global counterparts, Lie groupoids. The latter spaces serve as

the natural domains for the parallel transport of meromorphic connections (i.e., ordinary

differential equations with singularities). We show that they give a canonical, geometric

1



Chapter 1. Introduction 2

way to obtain holomorphic functions from certain divergent series, such as
∑∞
n=0(−1)nn!zn,

that arise when one attempts to solve a differential equation at an irregular singular point.

For Conjecture 6.1.1, we develop the complex analytic geometry of Poisson structures

and their modules, in which various Lie algebroids play an important role. By combining

these methods with more classical techniques from algebraic geometry, we are able to study

the local and global structure of the degeneracy loci—where the dimension of the symplectic

leaves drops. This approach allows us to prove, for example, that Bondal’s conjecture is

true for Fano manifolds of dimension four.

We also explore in some detail the geometry of Poisson structures on projective space. We

recall the classification [34, 101, 117] of Poisson structures on P3 and use our understanding

of the geometry to describe the quantizations. As a result, we give a conjectural classification

of the noncommutative deformations of P3—an important subset of the larger classification

sought in Problem 1.1.3.

Throughout the thesis, we find that the language of algebraic geometry—particularly

coherent sheaves—can be extremely useful in describing the geometry of Poisson structures

and Lie algebroids. While we focus in this thesis on the complex analytic situation, wherein

we can take the greatest advantage of these methods, the author believes that the ideas can

also be useful in the C∞ world.

To make this philosophy more concrete, we will now consider a simple and well-known

example from Poisson geometry that already displays many of these interesting complexities.

We shall return to this example at many points in the thesis. On the one hand, we shall

take advantage of its familiarity to illustrate the definitions and methods we develop. On

the other, we shall explore some aspects of its geometry that may be less routine. Owing to

its central role in the thesis, we shall refer to it throughout the text as The Example.

1.2 The Example

For the moment, we assume that the reader has some basic familiarity with Poisson struc-

tures and Lie algebroids. The formal definitions will be reviewed in later chapters.

Let x, y and z be linear coordinates on C3 (or R3), and consider the Poisson structure

with elementary brackets

{x, y} = 2y

{x, z} = −2z

{y, z} = x,
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i.e., the standard Lie–Poisson structure on the dual of the sl(2) Lie algebra. Let

σ = x∂y ∧ ∂z + 2y∂x ∧ ∂y − 2z∂x ∧ ∂z

be the corresponding bivector field.

The two-dimensional symplectic leaves of this Poisson structure (the surface to which σ

is tangent) are illustrated in Figure 1.1). They are the level sets of the Casimir function

f = x2 + 4yz.

For c ∈ C \ {0}, the level set f−1(c) is smooth, giving a holomorphic symplectic manifold.

However, 0 is not a regular value. Instead, the preimage Y = f−1(0) is the famous nilpotent

cone, which plays an important role in representation theory. Thus, it is a very interesting

space, but it is not a manifold; rather, it has a singularity at the origin in C3. This singular

point is special from the point of view of Poisson geometry: it is the only zero-dimensional

symplectic leaf. Notice that, although Y is not a manifold, it is a perfectly good algebraic

variety and its ring of functions inherits a Poisson structure that vanishes at the singular

point. In this sense, it is a Poisson subspace of C3. Thus, although we started our discussion

with a holomorphic Poisson structure on a smooth manifold, we were very quickly led to a

singular space that forms an important and interesting feature of the geometry.

Figure 1.1: Some symplectic leaves of the Poisson structure σ on the dual of the sl(2) Lie
algebra. The special singular variety Y—the nilpotent cone—is shown in red.

.

Suppose now that we wish to describe the holomorphic vector fields that are tangent

to all of the two-dimensional symplectic leaves. Any such vector field Z must satisfy the
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equation σ ∧ Z = 0. In other words, the kernel of the vector bundle map

φσ : TC3 → Λ3TC3

Z 7→ σ ∧ Z

should be thought of as the “tangent bundle” to the two-dimensional symplectic leaves. But

there is a problem: the Poisson structure vanishes at the origin, and so the dimension of the

kernel of φσ jumps at this point. Hence, this “tangent bundle” is not actually a bundle at

all.

In contrast, if we consider the corresponding map φσ : TC3 → Λ3TC3 on the sheaves of

sections, we may form the sheaf-theoretic kernel

F = Ker(φσ) ⊂ TC3 .

Thus, F is the sheaf whose sections are exactly those vector fields that are tangent to all

of the two-dimensional leaves. These sections remain tangent to the leaves when added

together or multiplied by arbitrary holomorphic functions and so F is naturally a module

over the sheaf of holomorphic functions. One may verify that this module is generated by

the Hamiltonian vector fields Xx = 2y∂y − 2z∂z, Xy = x∂z − 2y∂x and Xz = 2z∂x − x∂y.

In other words, every vector field on C3 that is tangent to all of the two-dimensional leaves

can be written as a linear combination

Z = f1Xx + f2Xy + f3Xz

where f1, f2 and f3 are holomorphic functions.

Away from the origin, the vector fields Xx, Xy and Xz span a rank-two integrable

subbundle of the tangent bundle, and thus they are linearly dependent. Correspondingly,

the sheaf F|C3\{0} is a locally free module of rank two over the sheaf of holomorphic functions

on C3 \ {0}. However, at the origin, this sheaf is no longer locally free; rather, the stalk F0

is a rank-three module, meaning that in a neighbourhood of 0, it is not possible to express

a general section of F as a linear combination of only two of the three vector fields Xx, Xy

and Xz. To describe all of the vector fields tangent to the two-dimensional leaves, all three

of these generators are truly required. Furthermore, we see that the Lie bracket of vector

fields gives a bracket [·, ·] : F × F → F and the natural inclusion F ↪→ TX of sheaves is

obviously compatible with this bracket. In other words, F is an example of a “Lie algebroid”

that is not a vector bundle and its structure encodes some interesting information about

the geometry of the symplectic leaves in a neighbourhood of the origin.
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1.3 Guiding principles

The inevitable conclusion of our discussion of The Example so far is that, even if we set

out to understand Lie algebroids that are vector bundles on manifolds, we soon encounter

new objects that look like Lie algebroids, except that they are not vector bundles and they

live on spaces that are not smooth. Moreover, these objects tend to display some of the

most interesting features of the geometry. We emphasize that this discussion is still valid

if we replace C3 by R3 and holomorphic functions with C∞ ones, and thus sheaves and

singularities are equally present and interesting in the smooth category.

The author’s basic contention in this thesis is that these singular objects should be

admired for their beauty, embraced for their utility and—as much as possible—treated on

equal footing with their smooth counterparts. Thus, we shall expand our definitions to

include objects like F that behave like Lie algebroids, but are not vector bundles, and allow

them to live on singular spaces, like Y. By adopting this viewpoint, we are able to take

advantage of a host of useful tools from algebraic geometry and singularity theory. As a

result, we can obtain much stronger conclusions about holomorphic Lie algebroids than one

might traditionally expect to find in the smooth category.

However, most of the basic geometric ideas, such as the modular residues of Poisson

structures (defined in Section 5.5) and many of the examples we present (including the “free

divisors” in Section 2.3 as well as some constructions of Poisson structures) make equally

good sense in the C∞ or algebraic categories. Indeed, the reader interested in those cases

will find a number of proposed problems and conjectures throughout the text that are in-

tended to appeal to his or her tastes. Among them are Problem 2.8.1, which asks for a

natural generalization of the Crainic–Fernandes integrability theorem [42]; Problem 2.9.4

and Conjecture 2.9.6, related to the existence of certain special Lie groupoids on complex

algebraic varieties; Question 6.6.3 regarding a possible skew-symmetric version of free di-

visors; Conjecture 7.6.8 regarding the Poisson geometry of the secant varieties to elliptic

normal curves; and Problem 8.1.6 which puts forward an inherently geometric programme

for the classification of quadratic Poisson structures on R4. The author hopes that these

questions will be of interest and perhaps provide the reader with some inspiration for future

work.

As an antidote to the somewhat more abstract algebro-geometric language of sheaves

that is required in order to deal efficiently with singularities, the author has attempted

to include plenty of concrete examples, as well as several diagrams; he hopes that these

additions will help to clarify the geometric intuition.
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1.4 Summary of the thesis

The thesis is laid out as follows: Chapter 2 gives an overview of the basic definitions and

properties of holomorphic Lie algebroids, holomorphic Lie groupoids and their modules.

While most of this material is well known, the approach and emphasis are, perhaps, some-

what unorthodox. We formulate the theory in a more algebro-geometric manner, and include

a brief review of analytic spaces and coherent sheaves with the hope that it will make the

thesis more accessible to readers from other fields. We recall the notions of logarithmic vec-

tor fields and free divisors, which recur at various points in the thesis as both a useful tool

and a source of examples. We also mention some differences between the smooth, analytic

and algebraic settings.

Chapter 3 consists of new results obtained in joint work with Marco Gualtieri and Song-

hao Li [72]. We explore in detail the geometry of some very simple Lie algebroids on complex

curves (i.e., Riemann surfaces) and the corresponding Lie groupoids. We give several con-

crete descriptions of the groupoids using blowups and the uniformization theorem. The

main theme in this chapter is the relationship between these Lie-theoretic objects and a

classical topic in analysis: the study of ordinary differential equations with irregular sin-

gularities. The chapter culminates in a proof that the groupoids can be used to extract

analytic functions from the divergent series that arise in this context.

In Chapter 4, we begin our discussion of Poisson geometry, reviewing the basic definitions

of multiderivations, Poisson structures and Poisson subspaces familiar from the smooth

setting. We recall the basic properties of Poisson hypersurfaces and log symplectic manifolds;

and the relationship between the symplectic leaves and certain coherent Lie algebroids,

which explains why the Lie algebroid F from The Example fails to be a vector bundle.

Most of the material in this chapter is review, but we also introduce the useful notion of a

“strong Poisson subspace”—one that is preserved by all of the infinitesimal symmetries of

the Poisson structure.

Chapter 5 is devoted to the study of Poisson modules, the analogues in Poisson geome-

try of vector bundles with flat connections. After recalling the definition, we develop their

geometry in detail. We introduce a number of new concepts, including natural Higgs fields

that are associated with Poisson modules; “adapted” modules that are flat along the sym-

plectic leaves; Lie bialgebroids that are associated with Poisson line bundles; and residues

for Poisson line bundles, which are natural tensors supported on Poisson subspaces.

Chapter 6 discusses the properties of the degeneracy loci of Poisson structures and

Lie algebroids, and contrasts them with the classical theory of degeneracy loci of vector

bundle maps. This chapter contains several new results—most importantly, a description

of the singular locus of the degeneracy divisor on a log symplectic manifold, and a proof of

Bondal’s conjecture for Fano fourfolds. A number of the results and definitions described

in Chapter 4 through Chapter 6 appeared in the joint work [73] with Gualtieri, but they



Chapter 1. Introduction 7

have been substantially reorganized for this thesis, with the goal of a more leisurely and

comprehensive presentation.

For the rest of the thesis, we focus our attention on projective spaces. In Chapter 7

we recall the connection between quadratic Poisson structures and Poisson structures on

projective space. We then prove a comparison theorem, relating the cohomology of Poisson

line bundles on projective space with the cohomology of the corresponding quadratic Poisson

structures. We ask when a Poisson line bundle can be used to embed a projective Poisson

variety as a Poisson subspace in projective space and show that a Poisson structure on

projective space is completely determined by its linearization along any reduced Poisson

divisor of degree at least four. We construct an example of a generically symplectic Poisson

structure on P4 that is associated with a linear free divisor in C5, and show that it is equipped

with a natural Lagrangian fibration. We close the chapter with a study of the Poisson

structures of Feigin and Odesskii, where our results on degeneracy loci have implications for

the secant varieties elliptic normal curves.

Finally, in Chapter 8, we undertake a detailed study of Poisson structures on P3. Using

the remarkable classification results of [34, 101, 117], we give normal forms for the generic

unimodular quadratic Poisson structures on C4. After a brief review of quantization in

the context of graded algebras, we describe the deformation quantizations of these Poisson

structures. Among them is an algebra associated with a twisted cubic curve, which we

construct using a formula of Coll, Gerstenhaber and Giaquinto. As a result, we obtain a

conjecturally complete list of (suitably generic) deformations of P3 as a noncommutative

projective scheme.



Chapter 2

Lie algebroids in complex

geometry

This chapter contains an overview of Lie algebroids in the complex analytic setting, empha-

sizing the role is played by singular spaces and sheaves. We therefore begin with a brief

review of analytic spaces and coherent sheaves for the benefit of those readers who have less

experience with these concepts. Readers who are familiar with these notions are invited to

skip to Section 2.2

2.1 Preliminaries

2.1.1 Analytic spaces

We now recall the basic definitions and properties of a complex analytic spaces that we shall

need in this thesis, and illustrate them with several examples. Our aim is to be as concrete

as possible without going into technicalities, in order to make the reader comfortable with

the basic language that we will employ. We refer the reader to [67] for a thorough treatment.

The basic point is that when dealing with geometric structures on complex manifolds,

we are often interested in loci that are described as the zero sets of some collection of holo-

morphic functions; such objects are known as analytic subspaces. The formal definition is as

follows. Suppose that X is a complex manifold, and denote by OX its sheaf of holomorphic

functions. Thus OX assigns to every open set U ⊂ X the ring of holomorphic functions

on U. Similarly, a sheaf of ideals I ⊂ OX assigns to every open set U an ideal in OX(U)

in a way that is compatible with the restriction to smaller open sets. A sheaf of ideals

I ⊂ OX is a coherent sheaf of ideals if it is locally finitely generated—i.e., at every point

x ∈ X there exists a neighbourhood U of x and a finite number of holomorphic functions

8
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f1, . . . , fn ∈ OX(U) such that I(U) is the ideal generated by f1, . . . , fn in OX(U).

Associated with such a sheaf of ideals is its vanishing set Y = V(I) ⊂ X defined as

the closed subset of X on which every function in I vanishes. This subset comes equipped

with its own sheaf of rings, namely the quotient OY = OX/I. Since the quotient kills the

equations used to define Y, this sheaf of rings serves as a model for the sheaf of holomorphic

functions on Y. We therefore say that the pair (Y,OY) is an analytic subspace of X.

Definition 2.1.1. An analytic space is a pair (Y,OY) of a topological space Y and a

sheaf of rings OY that arises as the vanishing set of a coherent ideal sheaf on some complex

manifold X. A complex analytic space is smooth if Y ⊂ X is a complex submanifold and

the ideal I consists of all of the functions on X that vanish on this submanifold—in other

words, Y is smooth if it is a complex manifold in its own right. Otherwise, it is singular .

We will regularly abuse notation and refer to the pair (Y,OY) simply as Y. Notice that,

given a complex analytic space Y, we may also define a complex analytic subspace of Y as

the vanishing set of a coherent ideal sheaf I ⊂ OY; this definition makes sense since the

ideal defines the ideal I + IY in OX, where IY is the ideal of Y.

Example 2.1.2. The cone Y ⊂ C3 defined as the zero set of the function f = x2 + 4yz,

and considered in The Example, is an analytic subspace of C3. Having a singularity at the

origin, it is not a submanifold.

A function on Y is defined to be holomorphic if and only if it extends a holomorphic

function in a neighbourhood of Y. Any two such extensions must differ by a multiple of

f and hence we have an identification of the holomorphic functions on Y as the quotient

OY = OC3/fOC3 by the ideal generated by f in the sheaf of holomorphic functions on C3.

Moreover, Y has a privileged subspace: its singular locus. This subspace is the set

of critical points of f and is therefore defined by the vanishing of the components of the

derivative df = 2x dx + 4z dy + 4y dz. The corresponding ideal is the one generated by x,

y and z. We can view this as an ideal in OC3 or restrict these functions to Y to obtain

generators for the ideal (x|Y, y|Y, z|Y) ⊂ OY. Either way, the resulting subspace is the point

Ysing = {0} ∈ C3 with the ring

OC3/(x, y, z) ∼= OY/(x|Y, y|Y, z|Y) ∼= C

of constant functions on the point.

One important remark is in order: different ideals I ⊂ OX will produce different rings

OY = OX/I, but can nevertheless produce the same underlying topological space Y. The

quintessential example of this phenomenon is the case where X = C is the complex line and

Ik ⊂ OC is the ideal generated by the function zk, where z is a coordinate. The resulting

topological space Yk is simply the origin, but the ring OYk = OC/Ik depends on k. Its
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elements are expressions of the form

p = a0 + a1z + · · ·+ ak−1z
k−1

with a0, . . . , ak−1 ∈ C. They are multiplied like polynomials, except that we force zk = 0.

Thus, for k ≥ 2 the ring has nilpotent elements. Clearly, the resulting rings for different

values of k are not isomorphic. Thus, the analytic space captures not only the set of points

where the ideal vanishes, but also some information about transversal derivatives. For this

reason Yk is called the kth-order neighbourhood of the origin. Notice that there are natural

quotient maps OYk → OYk−1
corresponding to a chain of inclusions

(Y1,OY1
) ⊂ (Y2,OY2

) ⊂ (Y3,OY3
) ⊂ · · ·

of analytic spaces supported on the same topological space.

Definition 2.1.3. The analytic space Y is reduced if OY contains no nilpotent elements.

Notice that complex manifolds have no nilpotent elements in their sheaves of holomorphic

functions. Thus, smooth analytic spaces are necessarily reduced. However, the converse does

not hold. For example, consider C2 with coordinates x and y. The analytic subspace Y ⊂ C2

defined by the function xy ∈ OC2 is reduced, but it is the union of the two coordinate axes

and is therefore singular.

Every analytic space Y has a reduced subspace , which is the unique reduced analytic

subspace Yred ⊂ Y having the same underlying topological space. It is defined by the ideal

Inil ⊂ OY consisting of nilpotent elements—the so-called nilradical. Every analytic Y space

has a subspace Ysing, called its singular locus, such that Y \Ysing (which may be empty)

is smooth. If Y is reduced, then Ysing will be a subspace of strictly smaller dimension.

At first glance, one is therefore tempted to always get rid of the nilpotence and work

with the reduced space Yred. However, there are several reasons why we should allow for

non-reduced spaces:

1. Firstly, we shall encounter a number of ideals defined in an intrinsic way by the geom-

etry; there is no reason to expect them to define reduced spaces in general (although

often they will). As such, nonreduced spaces come up naturally. We would rather not

bother with reducing them every time arise.

2. We want to deal with intersections or fibre products that are not transverse in the

same way as we would deal with transverse ones; sometimes these intersections will

not be reduced so we should include these objects if we want to treat all intersections

in a uniform way.

3. Relatedly, we need non-reduced spaces if we want to properly count intersection points:
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for example, a generic line L in the plane will intersect a parabola C in exactly two

points, but if L is tangent to C there is only one point of intersection. To correctly ac-

count for this situation, Bézout’s Theorem tells us that we must assign an intersection

multiplicity of two to this point. This multiplicity is exactly detected by the presence

of nilpotent elements in OL∩C: this ring is a two-dimensional algebra over C, with a

one-dimensional space of nilpotent elements.

We would also like to say when a given analytic space can be broken into a union of

smaller pieces:

Definition 2.1.4. An analytic space Y is irreducible if it cannot be written as the union

Y = Y1 ∪ Y2 of two closed analytic subspaces.

Every analytic space can be written uniquely as the union of a collection of irreducible

subspaces, called its irreducible components. In the previous example of the coordinate

axes Y ⊂ C2, there are two irreducible components: the x- and y-axes.

Notice that there is a confusing point with regard to terminology: it is possible for an

analytic space to be reduced (i.e., have no nilpotence) but reducible (i.e., have multiple

irreducible components). The union of the coordinate axes Y ⊂ C2 gives just such an

example.

2.1.2 Holomorphic vector bundles and sheaves

Let X be a complex manifold. If E → X is a holomorphic vector bundle, we may consider

its sheaf E of holomorphic sections. Elements of E may be added together and multiplied

by holomorphic functions and therefore E forms a module over the sheaf of holomorphic

functions. We say that E is an OX-module.

In general, we have the

Definition 2.1.5. Let X be a complex manifold or analytic space. An OX-module is a

sheaf that assigns to every open set U ⊂ X a module over the ring OX(U), in a way that is

compatible with the restriction maps. A morphism between two OX-modules is a morphism

of sheaves that is compatible with the module structures.

If E is a rank r vector bundle, a local trivialization of E over an open set U ⊂ X gives rise

to an isomorphism E|U ∼= OX|⊕rU with the module of sections of the trivial bundle, which is

a free module over OX|U. We therefore say that the OX-module E is locally free . There is

a natural one-to-one correspondence between holomorphic vector bundles and locally free

OX-modules. (In fact, this correspondence is an equivalence of categories.) For this reason,

we shall often abuse notation and say that the locally free sheaf E itself is “a vector bundle”.

One of the main problems in dealing only with vector bundles is that they do not form

an abelian category. If φ : E1 → E2 is a morphism of vector bundles that has constant rank,
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then we obtain a new vector bundle whose fibres are the quotients of the fibres of E2 be the

images of the fibres of E2. However, if φ drops rank at some point x ∈ X, then these fibres

will jump in dimension and so we cannot assemble them into a vector bundle.

However, we can still form the quotient sheaf E1/φ(E2) and it will be an OX-module; it

will simply fail to be locally free at x. In so doing, we obtain new objects that are more

general than vector bundles:

Definition 2.1.6. An OX-module E is coherent if for every x ∈ X there is a neighbourhood

U of X together with a map of finite-rank vector bundles φ : E1 → E2 on U such that

E|U ∼= E1/φ(E2).

The usefulness of coherent sheaves is that they do form an abelian category: we can form

the kernels and cokernels of an arbitrary morphism of coherent sheaves, and these kernels

and cokernels are themselves coherent.

Example 2.1.7. Let X = C be the complex line with coordinate z. Consider the map

φ : OX → OX on the trivial line bundle, given by multiplication by z. The image of this map

is the ideal I ⊂ OX of all functions vanishing at the origin Y = {0} ⊂ X, and the quotient is

OY, which is a coherent sheaf supported on Y. Notice that all of the elements in I kill OY

when we think of OY as an OX-module.

Given a coherent sheaf E , we obtain an ideal I ⊂ OX by declaring that f ∈ I if and only

if fs = 0 for all f ∈ E . This ideal is called the annihilator of E , and the corresponding

subspace Y ⊂ X is the support of E .

In the previous example, if we take E = OY the annihilator is the ideal of functions

vanishing at the origin in C and the support is Y. On the other hand, if X is reduced (e.g.,

a complex manifold) than the support of any vector bundle on X is X itself.

Definition 2.1.8. Suppose that X is a connected analytic space. A torsion sheaf on X

is a coherent sheaf E whose support is a proper closed subspace of X, i.e., E(U) is a torsion

module for all open sets U ⊂ X.

Thus, if Y ⊂ X is a closed analytic subspace, then OY is a torsion sheaf on X. If E is a

coherent sheaf on X, there is a maximal subsheaf of E that is torsion. This subsheaf is called

the torsion subsheaf of E . If the torsion subsheaf is trvial, E is called torsion-free .

Clearly any subsheaf of a torsion-free sheaf is torsion-free.

If E1 and E2 are coherent sheaves, then so are the direct sum E1⊕E2, the tensor products

E1 ⊗OX
E2 and the sheaf HomOX

(E1, E2) of OX-linear maps from E1 to E2. In particular,

every coherent sheaf E has a dual E∨ = Hom(E ,OX). These constructions coincide with

the usual operations on vector bundles.

Any coherent sheaf E has a natural morphism φ : E → (E∨)∨ to its double dual that

sends s ∈ E to the map φ(s) : E∨ → OX defined by evaluation: φ(s) · α = α(s). In general,
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this map is neither injective nor surjective; in fact, the kernel of this map is exactly the

torsion subsheaf of E . If the map φ is an isomorphism, then E is said to be reflexive .

Clearly any vector bundle is reflexive.

We recall some useful facts from [78], which show that reflexive sheaves behave in many

ways like vector bundles:

1. If X is reduced and irreducible (for example, a connected manifold), then the kernel

of any vector bundle map E1 → E2 is reflexive. In fact, every reflexive sheaf is locally

of this form.

2. If X is reduced and irreducible, then the dual of any coherent sheaf is automatically

reflexive.

3. If X is a manifold, then the locus where a reflexive sheaf fails to be locally free has

codimension ≥ 3 in X. Thus, every reflexive sheaf has a well-defined rank, defined as

its rank on the open dense set where it is a vector bundle.

4. Any reflexive sheaf of rank one is automatically a line bundle, i.e., locally free.

5. If X is a manifold, then reflexive sheaves exhibit the Hartogs phenomenon: if Y ⊂ X is

a subspace of (complex) codimension at least two, then any section s ∈ E|X\Y extends

uniquely to a section of E .

6. If X is a manifold, and E is a reflexive sheaf of rank r, then E has a well-defined

determinant line bundle det E . By the previous three points, it is enough to define

E on the open set U ⊂ X where E is locally free, and there we simply declare that

det E = ΛrE .

7. If X is a manifold and E is a rank-two reflexive sheaf, then E ∼= E∨ ⊗ det E .

Example 2.1.9. Recall from the The Example, the sheaf F ⊂ TC3 of vector fields tangent

to the two-dimensional symplectic leaves of the Poisson structure σ on C3. We saw that

F is the kernel of the vector bundle map σ∧ : TC3 → det TC3 and so we conclude that it

is a reflexive sheaf of rank two. Notice that the Poisson structure σ defines a section of

Λ2F away from the origin, since it is tangent to all of the leaves. Therefore, by the Hartogs

phenomenon, it extends to a section of detF .

We claim that this section is non-vanishing. Indeed, if it were to vanish, it would have to

do so on a hypersurface because it is a section of a line bundle. But σ is nonvanishing away

from the origin, so it cannot possibly vanish on a hypersurface. Thus, σ is a nonvanishing

section of detF , even though it vanishes as a section of Λ2TX. In particular, by Item 7

above, σ defines an isomorphism σ] : F∨ → F . If we think of F∨ as the cotangent sheaf

of the symplectic leaves, then σ behaves like a symplectic form: it gives an isomorphism
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between the cotangent and tangent sheaves even though these sheaves are not bundles at

the origin. We shall return to this theme later in the thesis.

2.1.3 Calculus on analytic spaces

Since an analytic space X need not be smooth, it has no tangent bundle in general, but we

may still speak of vector fields as defining derivations. Thus, we may define the tangent

sheaf TX as the sheaf of all C-linear maps Z : OX → OX that obey the Leibniz rule

Z(fg) = Z(f)g + fZ(g). As usual, the commutator gives this sheaf a Lie bracket with

the usual properties familiar from the smooth case. Since derivations can be multiplied by

functions TX is naturally an OX-module. In fact, it is a coherent sheaf.

We shall often be interested in understanding when a collection of vector fields F ⊂ TX
are tangent to an analytic subspace Y ⊂ X. This property can be characterized as follows:

F is tangent to Y if it preserves the ideal defining Y. In other words, if f ∈ OX is a function

vanishing on Y we require that LZf also vanishes on Y for all Z ∈ F . This definition is

very useful because it is compatible with various natural operations on subspaces. Indeed,

we will make repeated use of the following

Theorem 2.1.10. Let Y ⊂ X be a closed analytic subspace and let F ⊂ TX be tangent to Y.

Then F is also tangent to the following subspaces:

1. the reduced subspace Yred ⊂ Y,

2. the singular locus Ysing ⊂ Y, and

3. each of the irreducible components of Y.

Moreover, if Z ⊂ X is another analytic subspace to which F is tangent, then F is also

tangent to

4. the union Y ∪ Z, and

5. the intersection Y ∩ Z.

Proof. Statements 1 and 3 follow from [128, Theorem 1], using the correspondence between

primary ideals and irreducible components. Statement 2 follows from [77, Corollary 2], using

the fact that the singular locus is defined by the first Fitting ideal of Ω1
Y, which describes

the locus where Ω1
Y is not locally free; see [51, §16.6].

If I and J are the ideals defining Y and Z, then Y ∪ Z and Y ∩ Z are defined by I ∩ J
and I + J , respectively. Statements 4 and 5 follow immediately.

We can also define a complex of differential forms on X as follows: consider the diagonal

embedding ∆X ⊂ X× X of X, and let I ⊂ OX×X be the ideal defining this closed subspace.

Then the conormal sheaf of ∆X is given by I/I2. If X were a complex manifold, this conormal
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sheaf would be identified with the cotangent bundle of X by the projections p1, p2 : X×X→
X, but if X is a general analytic space, we define the cotangent sheaf to be Ω1

X = I/I2. The

key difference from the case of manifolds is that Ω1
X will fail to be locally free at the singular

points.

We can now define the k-forms for k > 1 by setting ΩkX = ΛkΩ1
X, the kth exterior power

as an OX-module. A function f ∈ OX has an exterior derivative df = [p∗1f − p∗2f ] ∈ I/I2,

and this derivative d : OX → Ω1
X extends to the exterior algebra in the usual way, giving the

de Rham complex of the analytic space X. The sheaf TX of vector fields is identified with

the dual of Ω1
X as an OX-module, and so we can define contractions with vector fields, Lie

derivatives, etc., obeying the usual identities familiar from manifolds. Note, though, that

some care must be taken since ΩkX is not, in general reflexive. Hence the double dual (ΩkX)∨∨

is a different object when X is singular, sometimes called the sheaf of reflexive k-forms.

2.2 Lie algebroids

Let X be a complex manifold. We denote by TX the tangent sheaf of X—that is, the sheaf

of holomorphic vector fields. A Lie algebroid on X is a triple (A, [·, ·], a), where A is the

sheaf of sections of a holomorphic vector bundle, [·, ·] is a C-linear Lie bracket on A, and

a : A → TX is a map of holomorphic vector bundles. These data must satisfy the following

compatibility conditions:

1. a is a homomorphism of Lie algebras, where the bracket on TX is the usual Lie bracket

of vector fields

2. We have the Leibniz rule

[ξ, fη] = (La(ξ)f)η + f [ξ, η]

for all ξ, η ∈ A and f ∈ OX.

The map a : A → TX is called the anchor map. We will regularly abuse notation and

denote the whole triple (A, [·, ·], a) simply by A.

More generally, we can relax our assumptions and allow for more singular objects: we

can let X be an analytic space or replace A with an arbitrary coherent sheaf, or both. The

same definition applies. Thus, when we write something like “let A be a Lie algberoid on

X”, we typically mean that X is a complex analytic space and A is a Lie algebroid that is

a coherent sheaf, but not necessarily a vector bundle. If, at some point, we need to assume

that A comes from a vector bundle (i.e., is locally free), we will be careful to indicate this

assumption.

Let us now discuss several examples of Lie algebroids:



Chapter 2. Lie algebroids in complex geometry 16

Example 2.2.1. If X is a complex manifold then the tangent bundle TX is obviously a Lie

algebroid.

Example 2.2.2. The action of a complex Lie algebra g on a complex manifold X (or, more

generally, an analytic space) is defined by a Lie algebra homomorphism g → H0(X, TX) to

the space of global holomorphic vector fields. This map gives the trivial bundle g× X→ X

the structure of a Lie algebroid, called the action algebroid gn X.

Example 2.2.3. If F ⊂ TX is an involutive subbundle of the tangent bundle (meaning that

F is closed under Lie brackets), the inclusion F → TX makes F into a locally free Lie

algebroid.

Example 2.2.4. The previous example can be generalized considerably. Suppose that X is

an analytic space and F ⊂ TX is a coherent subsheaf that is involutive, i.e., [F ,F ] ⊂ F .

Then the inclusion a : F ↪→ TX gives F the structure of a Lie algebroid. In general, even

if F is locally free, it will not arise from a subbundle of TX since the rank of the vector

bundle map a can drop along a subspace of X. A locally free Lie algebroid for which the

anchor map a : A → TX is an embedding of sheaves is called almost injective in [41, 43].

In Section 2.3, we shall discuss an interesting class of almost injective Lie algebroids that

are associated with hypersurfaces.

Example 2.2.5. If E is a vector bundle or a torsion-free coherent sheaf on X, we may consider

its Atiyah algebroid gl(E), which is the sheaf of first order differential operators D : E → E
with scalar symbol. The commutator of differential operators gives gl(E) a bracket, and the

inclusion End(E) → gl(E) of the OX-linear endomorphisms as the zeroth order operators

gives an exact sequence

0 // End(E) // gl(E) // TX // 0,

where the anchor map gl(E)→ TX is given by taking symbols.

Notice that if A is any Lie algebroid, then the image F = a(A) ⊂ TX of the anchor map

is necessarily an involutive subsheaf, that is

[F ,F ] ⊂ F .

Hence, by Nagano’s theorem on the integrability of singular analytic distributions, X is parti-

tioned into immersed complex analytic submanifolds that are maximal integral submanifolds

of F . We call these submanifolds the orbits of A.

In general, it is useful to consider subspaces Y ⊂ X that are unions of orbits; in other

words, we ask that all of the vector fields coming from A are tangent to Y. The precise

definition is as follows:
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Definition 2.2.6. A closed complex analytic subspace Y ⊂ X is A-invariant if the corre-

sponding sheaf of ideals IY ⊂ OX is preserved by the action of A. In other words, we require

that La(ξ)f ∈ IY for all ξ ∈ A and f ∈ IY.

One of the main reasons for the usefulness of A-invariant subspaces is the following

lemma, which follows directly from the definition:

Lemma 2.2.7. If Y ⊂ X is A-invariant, then the bracket and anchor restrict to give A|Y
the structure of a Lie algebroid on Y.

Notice that Theorem 2.1.10 applies directly with F = Img(a) ⊂ TX to show that the

singular locus, reduced subspace and all of the irreducible components of an A-invariant

subspace are themselves A-invariant. Moreover, intersections and unions of A-invariant

subspaces are also A-invariant.

In particular, a given Lie algebroid has a number of important A-invariant subspaces—

for example, the singular locus and irreducible components of X itself.

Example 2.2.8. Let us return to The Example. Recall that the vector fields Xx = 2y∂y −
2z∂z, Xy = x∂z − 2y∂x and Xz = 2z∂x − x∂y span an involutive subsheaf F ⊂ TC3 that is

not a vector bundle. Nevertheless, according to our definition, it is still a Lie algebroid—just

not a locally free one.

Since the function f = x2 + 4yz is annihilated by Xx, Xy and Xz, its zero locus—the

cone Y—defines an F-invariant subspace. This fact is visible in the geometry: Y is the

union of the two F-orbits {0} and Y \ {0}. Thus F|Y defines a Lie algebroid on Y, giving

an example of a Lie algebroid that is not locally free on a space that is not smooth.

To explain the Lie algebroid structure, we describe how a section ξ ∈ F|Y acts on a

function g ∈ OY: first extend g and ξ to corresponding objects g′ ∈ OC3 and ξ′ ∈ F in a

neighbourhood of Y. Then Lξg = (Lξ′g
′)|Y is obtained by restricting the action on C3. The

condition that Y be F-invariant is exactly what is required for this process is well-defined

(independent of the choices of extensions).

Recall that the singular locus of Y is the origin. The corresponding ideal is the ideal

generated by x, y and z. This ideal is preserved by the action of the Hamiltonian vector

fields Xx, Xy and Xz since they all vanish at the origin. Thus the singular locus is an

invariant subspace for the Lie algebroid F|Y.

Perhaps the most important invariant subspaces for a Lie algebroid are the degeneracy

loci, which are the loci where the rank of the anchor map a drops. The structure of these

subspaces will be the subject of Chapter 6, but we define them now since they will appear

often.

Notice that for k ≥ 0, the locus where the rank is k or less is exactly the locus where the

(k+1)st exterior power Λk+1a vanishes. Since the coefficients of this tensor are holomorphic,

the zero locus is an analytic subspace.
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We give a more precise definition, valid for an any analytic space X and any Lie algebroid

A (not necessarily locally free) as follows: the (k+ 1)st exterior power of a defines a natural

map

Λk+1a : Λk+1A → Λk+1TX.

Dually, this map defines a morphism

Λk+1a : Λk+1A⊗ Ωk+1
X → OX.

The image of Λk+1a is an ideal I ⊂ OX and the kth degeneracy locus of A is the analytic

subspace Dgnk(A) ⊂ X defined by I.

Proposition 2.2.9. For every k ≥ 0, the degeneracy locus Dgnk(A) is A-invariant.

Proof. The proof follows the related result for Poisson structures [117, Corollary 2.3]; see

also [73]. Let φ = Λk+1a : Λk+1A → Λk+1TX. By definition, the ideal I defining Dgnk(A) is

generated by functions of the form

f = 〈φ(ξ), ω〉

where ξ ∈ Λk+1A, ω ∈ Ωk+1
X and 〈·, ·〉 : Λk+1TX ⊗ Ωk+1

X → OX is the natural pairing. We

must verify that if we take a section η ∈ A then the derivative La(η)f is also in the ideal.

But we easily compute

La(η)f =
〈
La(η)φ(ξ), ω

〉
+
〈
φ(ξ),La(η)ω

〉
= 〈φ(Lηξ), ω〉+

〈
φ(ξ),La(η)ω

〉
∈ I,

where we have used the compatibility of the anchor and bracket of A to pass the Lie

derivative through φ.

2.3 Lie algebroids associated with hypersurfaces

Suppose that X is a complex manifold, and suppose that D ⊂ X is a hypersurface in X

(possibly singular, reducible and non-reduced). We follow the standard convention and

denote by OX(−D) the ideal defining D. Thus OX(−D) is an invertible sheaf—a holomorphic

line bundle. Its dual is denoted by OX(D) and consists of functions having poles bounded

by D; if f is a local equation for D then f−1 is a generator for OX(D). More generally, if E
is a coherent sheaf, we denote by E(−D) = E ⊗ OX(−D) ⊂ E the sheaf of sections of E that

vanish on E , and by E(D) = E ⊗ OX(D) the sections with appropriate poles.
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There are two natural Lie algebroids associated to D that arise as involutive subsheaves

of TX. The first is the subsheaf TX(−D) ⊂ TX consisting of vector fields that vanish on D.

If Z1, . . . , Zn is a local basis for TX and f ∈ OX(−D) is a defining equation for D, then the

vector fields fZ1, . . . , fZn give a local basis for TX(−D), and hence TX(−D) is locally free.

Notice that even though this Lie algebroid is locally free, it is not given by a subbundle of

TX: locally, the anchor map is just multiplication by the function f . Hence it is generically

an isomorphism and drops rank to 0 along D.

The second Lie algebroid related to D is its sheaf of logarithmic vector fields [125]

TX(− log D) ⊂ TX, which consists of all of the vector fields that are tangent to D. In

algebraic terms, Z ∈ TX lies in TX(− log D) if it preserves the ideal OX(−D) defining D. In

other words if f is a local equation for D, we require that LZf = gf for some g ∈ OX. From

the latter description, it is straightforward to verify that TX(− log D) is involutive, and that

TX(− log D) = TX(− log Dred), where Dred is the reduced space underlying D. In contrast

with TX(−D), the Lie algebroid TX(− log D) will not, in general, be locally free.

Definition 2.3.1. Let X be a complex manifold. A reduced hypersurface D ⊂ X is a free

divisor if TX(− log D) is locally free.

Remark 2.3.2. The author thanks the external thesis examiner for observing that, that

freeness in the above sense should not be confused with base point freeness of linear systems.

Both terms are standard in the literature, but the latter notion will not be used in this thesis.

The term “free divisor” was introduced by Kyoji Saito, who provided a useful way to

check that a given hypersurface is free, now known as Saito’s criterion :

Theorem 2.3.3 (Saito [125]). Suppose that X is a complex manifold of dimension n and that

D ⊂ X is a reduced hypersurface. Then D is a free divisor if and only if in a neighbourhood

of every point p ∈ D we can find n vector fields Z1, . . . , Zn ∈ TX(− log D) such that the

corresponding covolume form µ = Z1 ∧ · · · ∧ Zn vanishes transversally on the smooth locus

of D, i.e., µ is a generator for ω−1
X (−D). In this case, Z1, . . . , Zn give a local basis for

TX(− log D).

The basis Z1, . . . , Zn is sometimes called a Saito basis. The proof of the theorem is

essentially an appeal to Cramer’s rule, which allows one to express every vector field tangent

to D uniquely as a linear combination of the given ones by computing some determinants.

In so doing, we must divide by the determinant Z1∧· · ·∧Zn. The transversality assumption

assures this apparent singularity is cancelled by a similar factor in the numerator, resulting

in a holomorphic expression.

Example 2.3.4. Every smooth hypersurface is free, because we can pick coordinates (x1, . . . , xn)

in such a way that D is given by the zero set of x1. Then the vector fields Z1 = x1∂x1
, Z2 =

∂x2
, . . . , Zn = ∂xn give a Saito basis.
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Example 2.3.5. A hypersurface D ⊂ X is said to have normal crossings singularities if,

in a neighbourhood of every p ∈ D, we can find coordinates x1, . . . , xn so that D is the zero

locus of the function x1x2 · · ·xk for some k ≥ 1. Then the vector fields Z1 = x1∂x1 , . . . , Zk =

xk∂xk and Zk+1 = ∂xk+1
, . . . , Zn = ∂xn give a Saito basis and hence D is free. Notice that

these vector fields commute; this is not an accident. In fact, a hypersurface D is normal

crossings if and only if D is free and at every point of D we can find a basis for TX(− log D)

consisting of commuting vector fields [54, Theorem 1.52 and Proposition 1.54].

Example 2.3.6. The cusp singularity D ⊂ C2, illustrated in Figure 2.1a, is defined as the zero

set of the function f = x3− y2. This hypersurface is not normal crossings, but nevertheless

it is a free divisor. We claim that the vector fields

Z1 = 2x∂x + 3y∂y

Z2 = 2y∂x + 3x2∂y

form a Saito basis. Indeed, one readily verifies that Z1(f) = 6f and Z2(f) = 0 so that

Z1, Z2 ∈ TC2(− log D), while

Z1 ∧ Z2 = 6f∂x ∧ ∂y

gives a reduced equation for D. The claim now follows from Saito’s criterion.

x

y

(a) The cusp x3 − y2 = 0 (b) The surface xy3z + y5 + z3 = 0

Figure 2.1: Some free divisors.

Example 2.3.7. Sekiguchi [129] has classified free divisors in C3 that are defined by quasi-

homogeneous polynomials. For example the surface D ⊂ C3 defined by the equation xy3z+
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y5 + z3 = 0 is a free divisor that Sekiguchi calls FH,7. In this case, the vector fields

Z1 = x∂x + 3y∂y + 5z∂z

Z2 = 3y∂x − 3
5 (2x2y + z)∂y + 10

3 xy
2∂z

Z3 = 5z∂x + 3
5x(y2 − 3xz)∂y + 5

3y(3xz − y2)∂z

give a basis for TC3(− log D). This surface is illustrated in Figure 2.1b; we refer the reader

to the web site of E. Faber for pictures of the rest of the free divisors from Sekiguchi’s

classification.

In general, the freeness of a hypersurface is intimately connected with the structure of its

singular locus. By examining the syzygies of the Jacobian ideal, one obtains the following

remarkable characterization:

Theorem 2.3.8 ([3, 138]). A singular reduced hypersurface D is a free divisor if and only

if its singular locus has codimension two in X and is Cohen–Macaulay.

Remark 2.3.9. The Cohen–Macaulay property for an analytic space Y is a weakening of

smoothness that nevertheless shares many of the same good properties; see, for example,

[50, Chapter 18].

Corollary 2.3.10. If X is a two-dimensional complex manifold (i.e., a complex surface)

then every complex curve D ⊂ X—no matter how singular—is a free divisor.

2.4 Lie algebroid modules

Suppose that A is a Lie algebroid on X and that E is a holomorphic vector bundle on X, with

E its sheaf of holomorphic sections. More generally, we could replace E with an arbitrary

sheaf of OX-modules. An A-connection on E is a C-bilinear operator

∇ : A× E → E
(ξ, s) 7→ ∇ξs

with the following properties:

1. ∇ is OX-linear with respect to A: that is, the identity

∇fξs = f∇ξs

holds for all f ∈ OX, ξ ∈ A and s ∈ E ; and

2. the Leibniz rule

∇ξ(fs) = (La(ξ)f)s+ f∇ξs
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holds for all f ∈ OX, ξ ∈ A and s ∈ E .

Remark 2.4.1. Equivalently, we may view ∇ as a map E → HomOX
(A, E). Provided that

either A or E is locally free, we have the more familiar form HomOX
(A, E) = A∨ ⊗ E where

A∨ is the dual of A.

The connection ∇ is flat if the identity

∇ξ∇η −∇η∇ξ = ∇[ξ,η]

holds for all η, ξ ∈ A. In this case, we say that the pair (E ,∇)—or simply E itself—is an

A-module . A section s ∈ E is a flat section if ∇ξs = 0 for all ξ ∈ A.

Notice that if E and E ′ are A-modules, then there are natural A-module structures on

E⊕E ′, Hom(E , E ′), E⊗E ′, etc. A morphism from E to E ′ is a morphism of vector bundles

(or sheaves of modules) that respects the action of A. A section of Hom(E , E ′) defines a

morphism of A-modules if and only if it is a flat section.

Definition 2.4.2. An invertible A-module is an A-module (L,∇) such that L a holo-

morphic line bundle.

A locally free Lie algebroid A on a complex manifold X comes equipped with two natural

invertible modules. The first is the trivial line bundle OX, on which A acts by the formula

∇ξf = La(ξ)f

for ξ ∈ A and f ∈ OX.

The second natural, defined in [53], is the canonical module or modular represen-

tation , ωA = detA⊗ ωX, on which A acts by the formula

∇ξ(u⊗ ω) = Lξu⊗ ω + u⊗La(ξ)ω

for ξ ∈ A, u ∈ detA and ω ∈ ωX. Here Lξu denotes the action of A on detA obtained

by mimicking the formula for the Lie derivative of a top-degree multivector field along a

vector field. This module plays an important role in the theory of Poincaré duality for Lie

algebroid cohomology that we recall in Section 2.5.

Example 2.4.3. Let X be a complex manifold and let D ⊂ X be a reduced hypersurface that is

a free divisor in the sense of Definition 2.3.1. Let A = TX(− log D) be the corresponding Lie

algebroid. Then Saito’s criterion (Theorem 2.3.3) guarantees that detA ∼= ω−1
X (−D) where

ω−1
X = det TX is the anticanonical line bundle. We conclude that the canonical module for

A is

ωA = ω−1
X (−D)⊗ ωX

∼= OX(−D),
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the sheaf of functions that vanish on D. One readily verifies that the action of TX(− log D)

is simply the usual action by differentiation of functions along vector fields.

A well-known fact in the theory of D-modules is that a module over the tangent sheaf TX
that is coherent as an OX-module is necessarily locally free over OX—i.e., a vector bundle.

However, other Lie algebroids may admit OX-coherent modules that are not locally-free.

For example, if Y ⊂ X is an A-invariant closed subspace with ideal sheaf IY, then IY is

preserved by A and is therefore an A-submodule of OX. Hence the quotient OY = OX/IY
inherits the structure of an A-module in a natural way, even though it is a torsion coherent

sheaf.

Nevertheless, the structure of coherent A-modules is heavily constrained:

Proposition 2.4.4. Let A be a Lie algebroid on the analytic space X and let (E ,∇) be a

sheaf equipped with an A-connection. Then the support of E is an A-invariant subspace of

X.

Proof. The proof of the first statement follows [117, Lemma 2.1]: suppose that fE = 0 for

some f ∈ OX, and that ξ ∈ A. Then

0 = ∇ξ(fE) = La(ξ)(f)E + f∇ξE = La(ξ)(f)E

Hence La(ξ)(f) also annihilates E . Thus the annihilator of E is A-invariant. But the

annihilator is exactly the ideal that defines the support of E .

Proposition 2.4.5. Suppose that X is a complex manifold and that A is a locally free Lie

algebroid on X. Let (E ,∇) be a coherent sheaf equipped with an A-connection. If the anchor

map a : A → TX is surjective, then E is locally free (a vector bundle).

Proof. Since the question is local in nature, and A and TX are vector bundles, we work

locally and choose a splitting b : TX → A with ab = idTX . Then b∨ ◦ ∇ : E → Ω1
X ⊗ E

is a connection on E in the usual sense. This connection need not be flat, and hence it

does not, in general, give E the structure of a DX-module. Nevertheless, the proof in [20,

VI, Proposition 1.7] applies word-for-word using this connection to show that E is locally

free.

The following theorem is an immediate corollary:

Theorem 2.4.6. Suppose that A is a locally free Lie algebroid on the complex manifold X

and that E is a coherent sheaf that is an A-module. Then the restriction of E to any orbit

of A is locally free. Hence the rank of E is constant on all of the orbits of A.

Remark 2.4.7. Intuitively, this theorem is expected since we should be able to use the

connection to perform a parallel transport between fibres of E that lie over a given orbit,

and hence these fibres must all be isomorphic.



Chapter 2. Lie algebroids in complex geometry 24

2.5 Lie algebroid cohomology

Let X be a complex manifold and letA be a holomorphic vector bundle that is a Lie algebroid

on X. The k-forms for A are given by

ΩkA = ΛkA∨,

where A∨ is the dual vector bundle to A. There is a natural differential dA : OX → Ω1
A

that takes the function f ∈ OX to the 1-form a∨(df), where a∨ : Ω1
X → A∨ is the dual of

the anchor. Using the Lie bracket on A, this differential can be extended to a complex of

sheaves

dR(A) =

(
0 // OX

dA // Ω1
A

dA // Ω2
A

//dA // · · ·
)

by mimicking the usual formula for the exterior derivative of differential forms. The coho-

mology of A is the hypercohomology

H•(A) = H•(dR(A))

of this complex of sheaves.

More generally, associated to any A-module (E ,∇) is its de Rham complex

dR(A, E) =

(
0 // E ∇ // Ω1

A ⊗ E
d∇A // Ω2

A ⊗ E //d∇A // · · ·
)

obtained by combining the differential of A with the flat connection ∇ in the usual way.

The de Rham cohomology of A with values in E is the hypercohomology

H•(A, E) = H•(dR(A, E))

of this complex of sheaves. When A is a vector bundle, we have

H•(A, E) = Ext•A(OX, E)

where the right hand side is the usual Yoneda group of extensions in the abelian category

of A-modules [123]. When A is not a vector bundle, we prefer to define the cohomology of

A by this formula.

We remark that if

0 // E // F // G // 0

is an exact sequence of A-modules, we obtain a corresponding long exact sequence in coho-

mology. Notice that this approach becomes particularly useful when we allow sheaves that
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are not vector bundles:

Example 2.5.1. If Y ⊂ X is an A-invariant closed subspace corresponding to the ideal I ⊂ OX

and E is an A-module, then we have the exact sequence

0 // IE // E // E|Y // 0

of A-modules. We therefore have the long exact sequence

· · · // H•(A, IE) // H•(A, E) // H•(A|Y, E|Y) // H•+1(A, IE) // · · ·

relating the cohomology of E to that of its restriction.

One reason for the importance of the canonical module ωA is its role as a dualizing

object: in [53], it was shown that the contractions

ΩjA ⊗ Ωr−jA ⊗ detA⊗ ωX → ωX

for j ≥ 0 and r = rank(A), give rise to a natural pairing of complexes

dR(A, E)⊗ dR(A, E) [−r]→ ωX.

When X is a compact manifold, we obtain a Poincaré duality-type pairing on Lie algebroid

cohomology.

The original definition of the pairing was made in the smooth category, where it is not, in

general, perfect. In contrast, the complex analytic situation is much better behaved and one

may show that the induced pairing is perfect in two different ways. In [135], Stiénon used a

Dolbeault-type approach based on Block’s duality theory [13] for elliptic Lie algebroids. In

[35], Chemla followed the approach to duality used in the theory of D-modules, obtaining

a relative version of the duality theory, applicable in the more general situation of a proper

morphisms of Lie algebroids. We shall recall only the global version here, which corresponds

to the case of a morphism to a point:

Theorem 2.5.2 ([35, Corollary 4.3.6],[135, Proposition 6.3]). Let X be a compact complex

manifold of dimension n and let A a holomorphic Lie algebroid on X that is locally free of

rank r. If E is a holomorphic vector bundle of finite rank that is an A-module, then the

natural pairing

Hi(A, E)⊗C Hn+r−i(A, E∨ ⊗ ωA)→ C

is perfect.

Example 2.5.3. When A = 0 is the trivial Lie algebroid, the duality is just Serre duality.
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Example 2.5.4. When A = TX, the cohomology of A is the de Rham cohomology of X and

the duality is the usual Poincaré duality defined by integration of forms.

2.5.1 The Picard group

Let A be a Lie algebroid on X. If L1 and L2 are invertible A-modules (i.e., line bundles with

flat A-connections), then the tensor product L1⊗L2 is another invertible module, as is the

dual L∨1 . Moreover, the tensor product L1⊗L∨1 is canonically isomorphic to the trivial line

bundle OX as an A-module. Thus, the isomorphism classes of invertible A-modules form

an abelian group, where the group operation is tensor product and the inversion is given by

taking duals. This group is called the Picard group of A. We denote by Pic0(A) ⊂ Pic(A)

the subgroup consisting of line bundles whose first Chern class is trivial.

The Picard group has a cohomological interpretation, which we now explain. This de-

scription is similar to the usual description of the usual Picard group of holomorphic line

bundles on a complex manifold; see, e.g., [69]. An immediate corollary is the observation

that the Picard group of a Lie algebroid on a compact complex manifold naturally has the

structure of a finite dimensional abelian complex Lie group.

Let O×X be the sheaf of non-vanishing holomorphic functions on X, given the structure

of a sheaf of abelian groups via multiplication of functions. There is a natural operator

dσ log : O×X → A∨ taking a non-vanishing function f to f−1dA(f), and we can extend this

map to a complex

dR
(
A,O×X

)
=

(
0 // OX

dσ // Ω1
A

dσ // Ω2
A

dσ // · · ·
)

using the usual Lie algebroid differential. We denotes its cohomology by H•
(
A,O×X

)
=

H•
(
dR
(
A,O×X

))
.

Proposition 2.5.5. There is a canonical isomorphism Pic(A) ∼= H1
(
A,O×X

)
.

Proof. The proof is the same as for usual flat holomorphic connections (see, e.g., [52]).

Computing the hypercohomology using a Čech resolution for a good open covering X =⋃
i∈I Ui, one finds that a one-cocycle is represented by non-vanishing functions gij ∈ O×X (Uij)

on double overlaps and one-forms αi ∈ Ω1
A(Ui) on open sets.

The cocycle condition forces gijgjkgki = 1, so that the functions gij give the transition

functions for a holomorphic line bundle over X. The condition also forces αi−αj = dA log gij ,

so that the one-forms αi glue together to give the resulting line bundle an A-connection.

Finally, the cocycle condition forces dAαi = 0 for all i so that this connection is flat.

Similarly, one checks that two cocycles are cohomologous if and only if they define

isomorphic A-modules, completing the proof.
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Notice that the morphism exp : OX → O×X induces a surjective morphism of complexes

dR(A) → dR
(
A,O×X

)
, where the morphism Ω•A → Ω•A in positive degree is simply the

identity. We therefore have an exact sequence of complexes

0 // ZX
2πi // dR(A)

exp // dR
(
A,O×X

)
// 0,

where ZX is the sheaf of locally-constant Z-valued functions. The long exact sequence in

hypercohomology then gives the exactness of the sequence

H0(A)
exp // H0

(
A,O×X

)
// H1(X,Z) // H1(A) // Pic(A)

c1 // H2(X,Z)

where H•(X,Z) is the usual singular cohomology of X and c1 sends an invertible module

(L,∇) to the first Chern class of L.

Notice that the zeroth cohomology groups in this sequence are spaces of global holo-

morphic functions. If X is compact, all global holomorphic functions are constant, and so

the leftmost map becomes the exponential exp : C → C∗, which is surjective. Thus, the

map H1(X,Z) → H1(A) is injective. Moreover, H1(X,A) is finite dimensional because it is

built from the cohomology of coherent sheaves on X. Finally, the map Pic(A) → H2(X,Z)

is exactly the first Chern class. We therefore arrive at the following

Corollary 2.5.6. If X is compact, then Pic(A) is a finite-dimensional complex Lie group.

Moreover, the connected component containing the the identity is identified with

Pic0(A) ∼= H1(A) /H1(X,Z) .

In particular, the Lie algebra of Pic(A) is naturally isomorphic to H1(A). Moreover, there

is an exact sequence

0 // H0
(

X,Ω1
A,cl

)
// Pic0(A) // Pic0(X)

where H0
(

X,Ω1
A,cl

)
is the space of global, holomorphic, closed 1-forms for A and Pic0(X) is

the usual Picard group of holomorphic line bundles on X with trivial first Chern class.

Proof. It remains to prove the final statement. To do so, we simply note that if the holo-

morphic line bundles underlying two invertible A-modules (L,∇) and (L,∇′) are the same,

then their difference ∇−∇′ is a closed global section of Ω1
A.

Notice that when X is compact, all global holomorphic functions on X are constant and so

there are no nonzero, globally-defined exact 1-forms for A. Hence there is a natural inclusion

H0
(

X,Ω1
A,cl

)
→ H1(A), which is the derivative of the map H0

(
X,Ω1

A,cl

)
→ Pic0(A) at the

identity.
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Corollary 2.5.7. If X is a compact complex manifold and its fundamental group is finite,

then the first Lie algebroid cohomology of X coincides with the space of dA-closed global

sections of Ω1
A.

Proof. In this case, H1(X,OX) = 0 so that Pic(X) is discrete.

2.6 The universal envelope, jets and higher order con-

nections

We now recall the construction of the ring of differential operators for a Lie algebroid.

We shall make relatively little use of this notion, but it will be useful in describing jets

and higher order operators in the next section. This construction is described in many

references and is particularly useful if one wants to do homological algebra; see, for example

[11, 35, 36, 117, 123]

Let A be a Lie algebroid on X. The universal enveloping algebroid of A, also known

as the ring of A-differential operators is the sheaf DA of C-algebras generated by OX

and A, subject to the relations

f ⊗ g = fg

f ⊗ ξ = fξ

ξ ⊗ f − f ⊗ ξ = La(ξ)f

ξ ⊗ η − η ⊗ ξ = [ξ, η]

(2.1)

for all f, g ∈ OX and ξ, η ∈ A.

Example 2.6.1. When A = TX is the tangent sheaf of a complex manifold X, this construction

yields the usual sheaf DX of differential operators on X.

Example 2.6.2. When X is a point so that A = g is just a Lie algebra, we recover the

universal enveloping algebra of g.

The sheaf of rings DA has a natural filtration by the order of a differential operator:

D≤kA is simply the OX-submodule of DA generated by the words of degree ≤ k in A. The

associated graded sheaf of rings is the symmetric algebra Sym•OX
A.

If (E ,∇) is an A-module, then the morphism

∇ : A → EndCX
(E)

defined by the action of A on E is compatible with the relations (2.1) above, and it therefore

extends to a map

∇̃ : DA → EndCX
(E) ,
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making E into a left DA-module. Conversely, any left DA-module E inherits an OX-module

structure from the embedding OX → DA and a flat A-connection from the embedding

A → DA.

The basic result is the following

Lemma 2.6.3. There is a natural equivalence between the categories of A-modules and left

DA-modules and this equivalence preserves the underlying OX-module structure.

This allows one to do homological algebra with A-modules by treating them as modules

over this sheaf of rings. For example, this lemma makes it clear that the category of A-

modules has enough injectives.

Dual to the ring of differential operators is the sheaf of jets, as we now briefly recall. See

[29] for a more detailed discussion.

Definition 2.6.4. Let A be a Lie algebroid on X and E an OX-module. The sheaf of

k-jets of E along A is the OX-module

J kAE = HomOX

(
D≤kA , E

)
When A = TX is the tangent bundle of a complex manifold, this construction recovers

the usual sheaf of jets of E . The anchor map induces a natural morphism

jka∗ : J kE → J kAE

and so we may define the k-jet of s ∈ E along A to be the section jkAs = jka∗(jks), where

jks ∈ J kE is the usual k-jet of s.

Since D≤kA /D≤k−1
A

∼= Symk
OX
A, we have a natural exact sequence

0 // Symk
OX
A∨ ⊗OX

E // J kAE // J k−1
A E // 0 (2.2)

In order to model higher-order ordinary differential equations in Section 3.2.2 it is useful

to introduce the notion of a higher-order connection on a sheaf. Following [49], we have the

Definition 2.6.5. Let A be a Lie algebroid on X and let E be an OX-module. A kth-order

A-connection on E is an OX-linear morphism

∆ : J kAE → Symk
OX
A∨ ⊗OX

E

that splits the jet sequence (2.2). If s ∈ E , we abuse notation and write

∆s = ∆(jkAs) ∈ Symk
OX
A∨ ⊗OX

E .

If ∆s = 0, we say that s is a solution of ∆.
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In particular, a first-order A-connection on E is nothing but an A-connection on E in

the usual sense. Notice that this connection is not required to be flat.

In studying higher order differential equations, it is often useful to convert them to a

system of first order equations by introducing new variables for the derivatives. The invariant

description of this procedure is a canonical method for turning a kth-order A-connection on

E into an A-connection on the sheaf J k−1
A E , which we now describe.

As for usual jet bundles, there is an embedding J kAE → J 1
AJ

k−1
A E defined by jkAs 7→

j1
Aj

k−1
A s, giving the following commutative diagram with exact rows:

0 // Symk
OX
A∨ ⊗ E //
� _

��

J kAE //
� _

��

J k−1
A E // 0

0 // A∨ ⊗ J k−1
A E // J 1

AJ
k−1
A E // J k−1

A E // 0

(2.3)

where the leftmost vertical map is given by the inclusions

Symk
OX
A∨ ⊗ E → A∨ ⊗ Symk−1

OX
A∨ ⊗ E → A∨ ⊗ J k−1

A E .

Since specifying a kth-order connection ∆ : J kAE → Symk
OX
A∨⊗E is equivalent to specifying

a right splitting J k−1
A E → J kAE of (2.2) we see that ∆ induces a splitting

J k−1
A E → J kAE → J 1

AJ k−1
A E

of the one-jet sequence for J k−1
A E . The latter splitting is, in turn, the same as an A-

connection on J kAE . We see immediately that s ∈ E is a solution of ∆ if and only if jk−1
A s

is a flat section for the resulting connection.

2.7 Holomorphic Lie groupoids

Lie algebroids are the infinitesimal counterparts of Lie groupoids, which originated in the

work of Erhesmann and Pradines. In this section, we briefly review the definitions and basic

constructions. We refer the reader to, e.g., [103, 107] for a thorough introduction.

Recall that a groupoid is simply a category in which every object is invertible. A Lie

groupoid is a groupoid with a compatible manifold structure, defined as follows

Definition 2.7.1. A holomorphic Lie groupoid is a tuple (G,X, s, t,m, id) defining a

groupoid whose arrows are a complex manifold G and whose morphisms are a complex

manifold X. The maps s, t : G→ X which take an arrow to its source and target are required

to be holomorphic submersions, and the composition of arrows is given by a holomorphic
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map

m : G(2) = Gs×tG→ G,

where Gs×tG = {(g, h) ∈ G× G | s(g) = t(h)} denotes the fibre product of G with itself over

s and t. The map id : X→ G is a closed embedding which takes x ∈ X to the identity arrow

over X. If g, h ∈ G satisfies s(g) = t(h), we write gh = m(g, h) for their composition.

We will often abuse notation and denote a groupoid simply by G ⇒ X, or even G when

X is clear from context. Since in this thesis we work only in the complex analytic category,

we will omit the adjective “holomorphic” and simply refer to G ⇒ X as a Lie groupoid

over X.

Definition 2.7.2. A morphism between the Lie groupoids G ⇒ X and H ⇒ Y is a

holomorphic map F : G → H that induces a functor between the corresponding categories.

Example 2.7.3. If X is a complex manifold, the pair groupoid Pair(X) ⇒ X has arrows

Pair(X) = X × X. The groupoid structure is completely fixed by requiring that the source

and target maps are given by

s(x, y) = y

t(x, y) = x

The composition of (x, y), (y, z) ∈ Pair(X) given by

(x, y) · (y, z) = (x, z)

and the identity map id : X → Pair(X) is the diagonal embedding of X. The situation is

illustrated in Figure 2.2. Since every Lie groupoid G ⇒ X maps to Pair(X) via its source

and target maps, Pair(X) is the terminal object in the catgeory of Lie groupoids over X, and

therefore this picture serves as a good intuitive guide for the structure of other groupoids.

Example 2.7.4. If X is a complex manifold and H is a complex Lie group acting holomor-

phically on X, we may form the action groupoid H n X ⇒ X. The space of arrows is

H n X = H× X, and the source and target maps are given by

s(h, x) = x

t(h, x) = h · x

with composition

(h, x) · (h′, y) = (hh′, y)

defined whenever x = h′y. The identity map is given by the identification X ∼= {1} × X ⊂
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H× X where 1 ∈ H is the identity element in the group.

id(X)

h•g •

gh
•

st

XX

Figure 2.2: A schematic diagram of the pair groupoid of X, which is the product X × X.
This picture is rotated by π/4 from the usual illustration of X × X so that the manifold of
identity arrows—the diagonal embedding of X—is a horizontal line.

Let G⇒ X be a Lie groupoid, and let Y ⊂ X be an open submanifold or a closed analytic

subspace. The full subgroupoid of G over Y, is the subspace

G|Y = s−1(Y) ∩ t−1(Y) ⊂ G

consisting of all arrows in G which start and end on Y. This subspace inherits the structure

of a groupoid over Y by restricting the structure maps for G. If Y is smooth and an

appropriate transversality condition is satisfied, then will G|Y will be a Lie groupoid. Of

particular importance is the case when Y = {p} is a single point. In this case, the full

subgroupoid G|p forms a Lie group, called the isotropy group of G at p.

Example 2.7.5. If H is Lie group acting on X, we may form the action groupoid H n X as

in Example 2.7.4. For p ∈ X, the isotropy group (H n X)|p is S × {p}, where S ⊂ H is the

stabilizer of p.

Just as the infinitesimal version of a Lie group is a Lie algebra, the infinitesimal version

of a Lie groupoid G ⇒ X is a Lie algebroid Lie(G) on X, constructed as follows. Consider

the subsheaf Tt = ker(Tt) ⊂ TG consisting of vector fields that are tangent to the target

fibres. Since t is a submersion, this sheaf is locally free—a vector bundle. Moreover if x ∈ X,

then any vector field ξ ∈ Tt restricts to a vector field on t−1(x).

If g ∈ G, then left multiplication by G gives an isomorphism

Lg : t−1(s(g))→ t−1(t(g)).
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We say that ξ ∈ Tt is left-invariant if for every g ∈ G, the isomorphism Lg sends the

vector field ξ|t−1(s(g)) to the vector field ξ|t−1(t(g)). One readily checks that left-invariant

vector fields are closed under the Lie bracket on Tt, and that a left-invariant vector field is

completely determined by its restriction to id(X) ⊂ G. Hence the OX-module

Lie(G) = Tt|id(X),

which is isomorphic to the normal bundle of id(X) in G, inherits a Lie bracket. It also

inherits a map to the tangent sheaf via the composition

Tt|id(X)
// TG|id(X)

Ts // TX.

With this structure, Lie(G) becomes a locally free Lie algebroid on X. This construction is

functorial: if F : G → H is a morphism between the Lie groupoids G ⇒ X and H ⇒ Y, its

derivative defines a morphism Lie(G)→ Lie(H).

Example 2.7.6. The Lie algebroid of Pair(X) is naturally identified with the tangent sheaf

TX.

Example 2.7.7. If E is a locally-free sheaf on X, the gauge groupoid of E is the Lie groupoid

GL(E) over X for which the morphisms between the points p and q in X are the C-linear

isomorphisms E|p → E|q between the fibres of E . The isotropy group at p is therefore

identified with GL(E|p), the group of linear automorphisms of the fibre over p.

The Lie algebroid of GL(E) is the sheaf D1(E) of first order differential operators on E—

the Atiyah algebroid discussed in Example 2.2.5. The isotropy Lie algebra at p is EndC(E|p),
which is the Lie algebra of the isotropy group.

This example is important to us because it is related to the notion of a representation

of a Lie groupoid on a vector bundle:

Definition 2.7.8. Let G ⇒ X be a Lie groupoid, let p1, p2 : G(2) = Gs×tG → G be the

projections on the first and second factors, and let m : G(2) → G be the composition in

the groupoid. A G-equivariant sheaf is a pair (E , ρ), where E is an OX-module, and

ρ ∈ HomG(s∗E , t∗E) is an isomorphism such that

p∗1ρ ◦ p∗2ρ = m∗ρ,

i.e., ρ is multiplicative. If E is locally free, we say that the pair (E , ρ) is a representation

of G.

A morphism between two equivariant sheaves (E , ρ) and (E ′, ρ′) is an OX-linear map
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ψ : E → E ′ such that the following diagram commutes:

s∗E
ρ //

s∗φ

��

t∗E

t∗φ

��
s∗E ′

ρ′ // t∗E ′

We denote by Rep(G) the category of representations of G with these morphisms.

Remark 2.7.9. If E is a locally-free sheaf, then a representation of G on E is equivalent to the

specification of a morphism ρ : G→ GL(E) of Lie groupoids, i.e., a holomorphic assignment

to every g ∈ G of a linear isomorphism ρ(g) : E|s(g) → E|t(g), such that

ρ(gh) = ρ(g)ρ(h).

for all composable elements g, h ∈ G.

Example 2.7.10. For the case of groupoid H n X ⇒ X associated with a group action as in

Example 2.7.4, a representation is the same thing as an equivariant vector bundle for the

group action.

2.7.1 Integration and source-simply connected groupoids

By analogy with the case of Lie algebras and Lie groups, it is natural to ask whether a

given Lie algebroid A can be “integrated” to a Lie groupoid. If A is a Lie algebroid on X

that is a vector bundle (locally free), then an integration of A is a pair (G, φ) of a Lie

groupoid G ⇒ X, together with an isomorphism of Lie algebroids φ : Lie(G) → A. If an

integration of A exists, we say that A is integrable . Not all Lie algberoids are integrable,

but a large class of them are. A celebrated theorem of Cranic and Fernandes [42] gives a

set of necessary and sufficient conditions for such an integration to exist in the C∞ setting.

Subsequent work by Laurent-Gengoux, Stiénon and Xu [94] verified that these condition are

also valid in the holomorphic context.

Since the general integrability conditions are somewhat technical, we shall not recall them

here. Instead, we state a simple condition that guarantees integrability for the examples

that concern us in this thesis:

Theorem 2.7.11 (Debord [43], Crainic–Fernandes [42]). If A is a locally free Lie algebroid

on X for which the anchor map a : A → TX is an embedding of sheaves, then A is integrable

to a Lie groupoid G⇒ X having the property that the only map X→ G which is a section of

both s and t is the identity map id : X→ G.

Corollary 2.7.12. If X is a complex manifold and D ⊂ X is any hypersurface—no matter

how singular—then the Lie algebroid TX(−D) is integrable. Moreover, if D is a free divisor,
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then TX(− log D) is also integrable.

Just as a Lie algebra may integrate to many different Lie groups, an integrable Lie

algebroid may have many non-isomorphic integrations. Among all Lie groupoids, there is

an important class that play a role analogous to the simply connected group Lie groups:

Definition 2.7.13. A Lie groupoid G ⇒ X is source-simply connected if the fibres of

the source map s : G→ X are connected and simply connected.

If G ⇒ X and H ⇒ Y are Lie groupoids with G ⇒ X source-simply connected, and if

φ : Lie(G) → Lie(H) is a morphism between the corresponding Lie algebroids, then there

exists a unique morphism Φ : G → H that induces φ (see, e.g., [107, Proposition 6.8]).

Hence source-simply connected groupoids are initial objects in the category of integrations

of a given Lie algebroid. In particular, they are unique up to isomorphism.

If a Lie algebroid is integrable, it has a canonical source-simply connected integration:

Theorem 2.7.14. There is a natural equivalence A 7→ Π1(A) between the categories of

integrable Lie algebroids and the category of source-simply connected Lie groupoids.

Example 2.7.15. We saw in Example 2.7.3 that the tangent sheaf TX is always integrated

by the pair groupoid Pair(X), but the source fibre over a point x ∈ X is X × {x}, which

need not be simply connected. The canonical source-simply connected integration is given

by the fundamental groupoid Π1(X) of X, which is the set of equivalence classes of paths

γ : [0, 1] → X, where γ ∼ γ′ if there is an end-point-preserving homotopy between γ and

γ′. The source and target maps are given by s([γ]) = γ(0) and t([γ]) = γ(1), and the

composition is concatenation of paths.

2.8 Groupoids in analytic spaces

Our discussion of groupoids so far has focused on Lie groupoids, in which the spaces involved

are manifolds and the structure maps satisfy some transversality assumptions. However,

in general, it is also useful to consider groupoids for which G and X are simply analytic

spaces and the maps s and t are analytic but need not be submersions. Such objects are

groupoids in analytic spaces, and they are necessary if we wish to discuss groupoids

whose Lie algebroids are not vector bundles. Notice that the existence of fibre products

such as Gs×tG, which is one of the main reasons for assuming that the source and target

maps of a Lie groupoid are submersions, is automatic when we work with analytic spaces;

no transversality is required.

Given a Lie groupoid G ⇒ X in analytic spaces, we obtain its Lie algebroid as follows.

Consider the embedding id : X → G, which we assume to be closed. If I ⊂ OG is the

ideal defining X, then the conormal sheaf is, by definition, the coherent module OX-module
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I/I2. The Lie algebroid is the normal bundle of X, which is the dual Lie(G) = (I/I2)∨. In

particular, when X is reduced and irreducible, it is a reflexive sheaf.

Reflexive Lie algebroids will appear in a few places in this thesis, particularly in the con-

text of Poisson geometry, where they help us to understand the structure of the symplectic

leaves. They seem to be an interesting class worthy in their own right. We therefore pose

the following

Problem 2.8.1. Suppose that X is reduced and irreducible, and that A is a Lie algebroid

on X that is a reflexive sheaf. Under what conditions does there exist a groupoid in analytic

spaces that integrates A? In other words, is there an analogue of the Crainic–Fernandes

obstruction theory [42] in this context?

To see that this problem is potentially interesting, let us return to the non-locally free

Lie algbroid F of vector fields tangent to the symplectic leaves of C3 ∼= sl(2,C) from The

Example. In Section 2.5, we saw that F is reflexive, and as a result, we were able use the

Hartogs phenomenon to show that it carried a natural symplectic structure. We will now

exhibit the corresponding groupoid.

Consider the map C3 → C defined by the Casimir function f = x2 + 4yz. We can then

form the fibre product

G = C3
f×fC3 =

{
(p, q) ∈ C3 × C3

∣∣ f(p)− f(q) = 0
}
,

which is a five-dimensional analytic space with an isolated singularity at (0, 0). It is the

cone over a smooth quadric hypersurface in P5.

Notice that with this description, G is a subgroupoid of the pair groupoid Pair
(
C3
)

=

C3 × C3. It thus has the structure of a groupoid in analytic spaces with C3 as its space

of objects. The orbits of this groupoid are precisely the level sets of f , which are the

symplectic leaves. Away from the singular point, it is easy to see that G is a Lie groupoid,

and that its Lie algebroid A = Lie(G) is the tangent bundle to the symplectic leaves. Thus

A|C3\{0} = F|C3\{0}. Since both of these Lie algebroids are reflexive and the origin has

codimension three, it follows that Lie(G) = F on all of C3.

The fact that G is singular at (0, 0) is detected by the fact that the rank of F jumps at

the origin. Similarly, the symplectic structure on F is reflected on G as follows: if we equip

C3×C3 with the Poisson structure σ× (−σ), then G is a Poisson subspace (see Section 4.3),

and the source and target maps to C3 are anti-Poisson and Poisson, respectively. Thus G is

a Poisson groupoid and its source fibres are symplectic.

Consider the action groupoid H = SL(2,C)nC3, where SL(2,C) acts on C3 ∼= sl(2,C) by

the adjoint action. The source and target maps of this groupoid give a morphism SL(2,C)n
C3 → Pair

(
C3
)

whose image is the subgroupoid G. Thus G, although singular, arises very

naturally as the image of a morphism of smooth Lie groupoids.
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Furthermore, G can be used to produce Lie groupoid structures on some more interesting

spaces and to get a good understanding of their geometry, as follows. Notice that the

standard action of C∗ on C3 induces an action on Pair
(
C3
)

for which all of the groupoid

structure maps are equivariant. Moreover, G ⊂ Pair
(
C3
)

is preserved by the action because

it is defined by a homogeneous quadratic polynomial. The restriction

G′ = G \ ({0} × Y ∪ Y × {0})

of G to the open set C3 \ {0} is therefore a Lie groupoid whose structure maps are C∗-
equivariant, and hence the quotient H = P(G′) = G′/C∗ is a Lie groupoid over the quotient

(C3 \ {0})/C∗ ∼= P2. Notice that H is simply a smooth quadric hypersurface with the

pair C1 = P(Y × {0}) and C2 = P({0} × Y) of smooth disjoint rational curves removed (a

codimension three locus).

Proposition 2.8.2. Let C ⊂ P2 be the smooth conic obtained by projectivizing Y. Then

the groupoid H constructed above is the source-simply connected Lie groupoid integrating

TP2(− log C).

Proof. One obtains the identification Lie(H) ∼= TP2(− log C) by looking at the projections

of the vector fields in F to P2.

To see that the groupoid is source-simply connected, we proceed as follows. Suppose first

that p ∈ P2 \ C and consider the line L ⊂ C3 corresponding to p. The source preimage of L

in G is the intersection of the four-plane L⊕C3 with G, and therefore its projectivization is

a smooth quadric surface. According to the construction, this surface is s−1(p)tC2, and so

we see that we see that t maps s−1(p) two-to-one onto P2 \C. Now, the complement of any

curve in a smooth connected surface is necessarily connected. Hence s−1(p) is connected.

Since the fundamental group of P2 \ C is Z/2Z, this map must be the universal cover, and

hence the source fibre is simply connected.

On the other hand, if p ∈ C, then the line L is contained in G and the source preimage

is L × Y. Its projectivization is a quadric surface Q ⊂ P(L ⊕ C3) ∼= P3 with an isolated

singularity at q = P(L\{0}). Notice that q = Q∩C1 does not lie in H, and hence the source

fibre is smooth. If we embed C in P3 as P({0} × Y), then Q is identified with the cone over

C in P3 with vertex q, and the linear projection Q \ {q} → C gives the target map. In this

way, the source fibre is identified with the the total space of a degree-two line bundle over

C. Since C ∼= P1 is simply connected, so is s−1(p).

2.9 The question of algebraicity

The discussion so far has focussed on Lie algebroids in the complex analytic category, but

one could also define a Lie algebroid in the algebraic category by replacing OX everywhere



Chapter 2. Lie algebroids in complex geometry 38

with the sheaf of regular functions on a complex algebraic variety X. We then require that

the anchor map a : A → TX be an algebraic map between algebraic vector bundles or

sheaves.

Although most of the general discussion about Lie algebroids carries through, there is

one key difference: when we find the orbits of a Lie algebroid, we are looking for functions

whose level sets define the integral submanifolds of a distribution F ⊂ TX, and we must

therefore solve a system of differential equations. In general, the resulting functions need

not be algebraic and so they may not describe algebraic subvarieties.

Knowing Chow’s Theorem [38] that every closed complex analytic subspace Y of a projec-

tive variety X is necessarily algebraic, one might hope that the problem of finding algebraic

orbits goes away if we restrict our attention to projective varieties. However, it is not so:

Example 2.9.1. Suppose that X = P2 is the projective plane and let A be the line bundle

OP2(−d) with d > 0. Any nonzero map a : A → TX is necessarily algebraic. Since A has

rank one, this map embeds A as an involutive subsheaf and therefore gives A the structure

of a Lie algebroid. However, it follows from a theorem of Jouanolou [84, Theorem 4.1.1]

that if a is generic, then the only A-invariant algebraic subvarieties of P2 are the isolated

points where a vanishes.

Notice, however, that there are nevertheless some important A-invariant algebraic sub-

varieties: in particular, if a : A → TX is an algebraic map of sheaves, then so are its exterior

powers, and hence the degeneracy loci Dgnk(A) are algebraic subvarieties.

As a result, we can prove the following

Proposition 2.9.2. Suppose that X is a smooth algebraic variety and that A is a Lie

algebroid on X with an algebraic anchor map. If X has only finitely many orbits of a given

dimension k, then they are locally closed algebraic subvarieties.

Proof. The space Y = Dgnk(A)\Dgnk−1(A) is smooth andA-invariant, and henceA restricts

to a Lie algebroid on Y of constant rank k. Since there are only finitely many orbits of

dimension k, we must have that dim Y = k and hence the orbits must coincide with the

irreducible components of Y, which are algebraic.

Similarly, Lie algebroids that come from algebraic Lie groupoids have algebraic leaves:

Lemma 2.9.3. Let G⇒ X be a Lie groupoid for which G and X are algebraic varieties and

the structure maps are algebraic, and let A be its Lie algebroid. Then the orbits of A are

locally closed algebraic subvarieties of X.

Proof. The orbits of A are the connected components of the orbits of G, which in turn

are the images of the source fibres of G under the target map. Since the source fibres are

algebraic subvarieties and the target map is algebraic, the result follows.
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It would be interesting to know to which extent the converse holds:

Problem 2.9.4. Give conditions that ensure that a Lie algebroid on an algebraic variety X

is the Lie algebroid of some algebraic Lie groupoid.

Remark 2.9.5. The related problem for Lie algebras was addressed in [37, 63].

We note that many interesting Lie algebroids in the smooth category—such as the Pois-

son structure on the dual of the Lie algebra of an algebraic group—integrate to algebraic

Lie groupoids, even though the canonical integration described by Theorem 2.7.14 may not

be algebraic. We will see more examples of this phenomenon in Chapter 3.

For now, we state the following

Conjecture 2.9.6. If D is a free divisor on the algebraic variety X, then there exists an

algebraic Lie groupoid G with Lie algebroid TX(− log D) such that the natural map G→ X×X

is birational.

We have several reasons for believing this conjecture to be true:

1. We saw already in Corollary 2.7.12 that such a Lie algebroid is integrable to some

holomorphic Lie groupoid. The issue is that the canonical integration will not usually

be algebraic: indeed, the source fibre over a point x ∈ U ∼= X \ D is necessarily

isomorphic to the universal cover of U, which need not be an algebraic variety.

2. There are many examples—for example, linear free divisors [66]—in which the Lie

algebroids come from the action of an algebraic group with an open orbit. In these

cases, the map G→ X×X is finite but need not be birational; one might hope to take

a quotient of this groupoid to get a new one that is birational.

3. Recent work of Li [97] in the smooth category explains how to construct an alge-

braic groupoid that is birational to X × X in the case when D is a union of smooth

hypersurfaces with normal crossings.

4. The methods discussed in Section 3.3.2 involve blowing up X × X to obtain new

groupoids. It is therefore tempting to imagine that there might exist an algorithm

similar to Hironaka’s theorem on resolution of singularities [81] that would produce

the desired groupoid.
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Lie theory on curves and

meromorphic connections

In this chapter we apply the theory of Lie algebroids and Lie groupoids to a classical no-

tion in geometry and analysis: that of a meromorphic connection on a vector bundle. To

motivate the discussion, we begin with a brief review of asymptotic analysis and the Stokes

phenomenon. This subject has a rich history and has experienced a resurgence of late due

to its relevance in studying various wall-crossing phenomena in geometry and physics.

We then introduce the relevant Lie algebroids, explore their basic properties and explain

their relationship with meromorphic connections and ordinary differential equations, and

give several concrete descriptions of the corresponding Lie groupoids. Finally, we examine

how the Lie groupoids give an apparently new way of summing the divergent asymptotic

series that arise when one attempts to expand the solutions of a certain differential equations

in a power series centred at an irregular singular point. Much of this material appears in

slightly altered form in the joint work [72] with Gualtieri and Li.

3.1 Invitation: divergent series and the Stokes phe-

nomenon

Consider a complex curve X (a Riemann surface) and an effective divisor D. If E is a

holomorphic vector over X, a meromorphic connection on E with poles bounded by

D is a differential operator ∇ : E → Ω1
X(D) ⊗ E on its sheaf of holomorphic sections that

satisfies the Leibniz rule ∇(fs) = f∇s + df ⊗ s. Thus, in a local trivialization of E near a

point p ∈ D of multiplicity k and a coordinate z centred at p, we may write

∇ = d− 1
zk
A(z) dz

40
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for a holomorphic matrix A(z).

We are interested in knowing when two such connections are isomorphic. Let us consider

a simple example, where X = C, D = k · (0) and E = X× C2 is the trivial rank-two bundle.

Consider the connections ∇1 and ∇2 given by

∇1 = d− 1

2zk

(
−1 0

0 1

)
dz

and

∇2 = d− 1

2zk

(
−1 z

0 1

)
dz

A similar example was considered by Witten in [143]. We wish to know if there is a holo-

morphic bundle automorphism g : E→ E such that

∇2g = g∇1

In other words, we are looking for a matrix-valued function g that is a solution of the

differential equation

2zk
dg

dz
=

(
−1 z

0 1

)
g − g

(
−1 0

0 1

)
We seek a solution by expanding g as a power series

g(z) =

∞∑
j=0

gjz
j ,

where gj ∈ C2×2 are constant matrices and g0 is invertible. Substituting this expression

into the differential equation (or following the algorithm in [7]), one obtains a recurrence

relation for the coefficients that can be solved explicitly.

If k = 1, we find that

g(z) =

(
a bz

2

0 b

)
,

for some a, b ∈ C, giving a polynomial gauge transformation that makes the connections

equivalent.

Meanwhile, for k = 2, we obtain

g(z) =

(
a bz

2

∑∞
n=0(−1)nn!zn

0 b

)
,

with a, b ∈ C. We therefore encounter a problem: the series in the upper right corner

diverges. We conclude that the only way for g to be holomorphic is if b = 0, in which case
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it is not invertible. So, we conclude that ∇1 and ∇2 cannot be equivalent.

However, the connections∇1 and∇2 are holomorphic on the punctured line C∗ = C\{0},
so it must therefore be possible to find gauge equivalences between them on simply-connected

open subsets of C∗. One then wonders if this divergent series has some interpretation in

terms of honest, holomorphic gauge transformations.

One such interpretation is provided by the theory of Borel summation . The basic

idea is that the divergence of the formal power series

f̂(z) =

∞∑
n=0

(−1)nn! zn

can be tamed if we divide the nth coefficient by n!. This procedure defines a map

B : C[[z]] → C[[x]]∑∞
n=0 anz

n 7→
∑∞
n=0

anx
n

n!

called the Borel transform . In our example, the Borel transform is

Bf̂(x) =

∞∑
n=0

(−1)nxn.

This series converges in the unit disk and it can be analytically continued to all of C\{−1},
giving the rational function

Bf̂(x) =
1

1 + x
.

The theory tells us that we should assign the sum

∞∑
n=0

(−1)n!zn ∼ f(z) =
1

z

∫
γ

Bf̂ e−x/z dx =
1

z

∫
γ

e−x/z

1 + x
dx

where the contour γ is an infinite ray emanating from 0. This integral is essentially the

Laplace transform, which gives an inverse to the Borel transform when the latter is restricted

to convergent series.

For the integral to converge, we must choose γ so that e−x/z is decaying rapidly as

x → ∞ along γ, and we must avoid the singular point x = −1 of the integrand. Let us

focus on the right half-plane S+ = {z ∈ C | Re(z) > 0}. For z ∈ S+, we can take γ to be

the positive real axis; one can check that any other ray in this sector will produce the same

result. We obtain the function

f+(z) =
1

z

∫ ∞
0

e−x/z

1 + x
dx =

e1/zΓ(0, 1/z)

z
,
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where Γ is the incomplete gamma function, which has a branch cut along the negative real

axis. This function has the divergent series f̂ as an asymptotic expansion in the sector S+,

meaning that ∣∣∣∣∣f+(z)−
N∑
n=0

(−1)nn!zn

∣∣∣∣∣ = O(|z|N+1)

as z → 0 in S+. In other words, while the series diverges, its partial sums nevertheless give

a good approximation for f+. Moreover, by “differentiating under the integral sign” one

can verify that the corresponding gauge transformation

g+(z) =

(
a bzf+(z)

2

0 b

)

gives an isomorphism between the connections ∇1 and ∇2 away from the branch cut. We

conclude that while the series expansion for g is divergent, it can still be used to obtain an

honest solution of the differential equation.

This appearance of divergent asymptotic expansions is typical when we study connec-

tions with poles of order k ≥ 2; it is an essential feature of irregular singularities. The

remarkable and subtle analytic theory of multi-summation explains how to obtain holo-

morphic gauge transformations from divergent series such as g(z) in great generality. We

refer the reader to [7, 83, 124, 130, 139, 141] for various perspectives on this problem.

One of the major outputs of this analytic programme is the irregular Riemann–Hilbert

correspondence. This correspondence gives a local classification of meromorphic connections

in terms of “generalized monodromy data”, in which one takes into account not only the

possible multi-valuedness of the solutions, arising from analytic continuation around the

poles of the connection, but also the way in which the asymptotic properties change in

different angular sectors emanating from the poles. The latter information is encoded in the

so-called Stokes matrices.

Using the analytic results as input, Boalch [14] has explained how this data can be

assembled into a Riemann–Hilbert map, giving an isomorphism between the moduli spaces

of meromorphic connections, and the corresponding spaces of generalized monodromy data.

This result generalizes the more standard description of the moduli space of flat connections

on a surface X as the character variety Hom(π1(X, p) ,GL(n,C)) /GL(n,C).

In this chapter, we work towards a more geometric understanding of the analytic theory

itself. Our perspective is that meromorphic connections on a curve X with poles bounded

by an effective divisor D are precisely the same as modules over the Lie algebroid TX(−D)

of vector fields vanishing to prescribed order on D. It is therefore natural to integrate them

to representations of the corresponding Lie groupoid. In this way, the groupoid serves as

the universal domain for the parallel transport of these singular connections.

We close the chapter with an application of the groupoids: we explain that the reason



Chapter 3. Lie theory on curves and meromorphic connections 44

we encounter divergent series when seeking gauge transformations as above is simply that

the series live on the wrong space. By pulling them back to the groupoid in an appropriate

way, we obtain convergent series that can be used to recover holomorphic solutions to the

equations. Remarkably, the proof of convergence is purely geometric: it uses no analysis

beyond the classical theorem on existence and uniqueness of solutions to analytic ordinary

differential equations at a nonsingular point.

3.2 Lie algebroids on curves

3.2.1 Basic properties

Let X be a smooth connected complex curve, and let D ⊂ X be an effective divisor. The

subsheaf TX(−D) ⊂ TX consisting of vector fields vanishing to prescribed order on D is

locally free and involutive, and therefore defines a Lie algebroid on X. The anchor map,

given by the inclusion, is an isomorphism away from D, and vanishes on D, giving a canonical

identification Dgn0(TX(−D)) = D as analytic spaces. The orbits of TX(−D) are precisely the

complement X \ D and the individual points of D. It is clear that these Lie algebroids are

the only nontrivial examples of rank one on X:

Lemma 3.2.1. Let A be a locally free Lie algebroid of rank one on a smooth connected

curve X. Then either the anchor and bracket of A are trivial, or the anchor map defines a

canonical isomorphism A ∼= TX(−D), where D = Dgn0(A).

At a point p ∈ D of multiplicity k, the (k − 1)-jet of the anchor map A → TX vanishes,

but the k-jet does not. It therefore defines an element of the one-dimensional vector space

(T∗pX)k ⊗ A∨p ⊗ TpX, giving a canonical identification

Ap ∼= (T∗pX)⊗(k−1)

of the isotropy Lie algebra, which is abelian.

The dual of the Lie algebroid TX(−D) is the sheaf Ω1
X(D) of meromorphic forms with

poles bounded by D. The corresponding de Rham complex is simply the derivative

OX
d // Ω1

X(D),

and hence a TX(−D)-connection on a coherent sheaf E is exactly the same thing as a mero-

morphic connection ∇ : E → Ω1
X(D)⊗E . Because the rank of A is one, such a connection is

automatically flat.

The canonical module for this Lie algebroid is given by ωD = TX(−D)⊗ Ω1
X = OX(−D),

the ideal of functions vanishing to prescribed order on D. We therefore have the following
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Proposition 3.2.2. Suppose that X is a smooth, compact curve and let A = TX(−D) for an

effective divisor D. Let (E ,∇) be a vector bundle equipped with a TX(−D)-connection. Then

there is a perfect pairing

Hk(A, E)⊗C H2−k(A, E∨(−D))→ C.

for 0 ≤ k ≤ 2. Moreover, the Euler characteristic is given by

χ(A, E) = rank(E) (2− 2g − deg(D)),

where g is the genus of X, and we have the following inequalities for the Betti numbers:

h0(A, E) ≤ rank(E)

h1(A, E) ≤ rank(E) (2g + deg(D))

h2(A, E) ≤ rank(E) .

Proof. The statement about the duality is an immediate consequence of the result for general

Lie algebroids (Theorem 2.5.2).

The Lie algebroid cohomology is the hypercohomology of the complex

E → Ω1
X(D)⊗ E ,

Let d = deg D, e = deg E and r = rank(E). We may compute the Euler characteristic using

the Hirzebruch–Riemann–Roch theorem:

χ(A, E) = χ(E)− χ(Ω1
X(D)⊗ E)

= (e+ r(1− g))− ((2g − 2 + d)r + e+ r(1− g))

= r(2− 2g − d).

For the statement about the Betti numbers, simply notice that an element of H0(A, E) is a

global holomorphic section s of E that is flat (∇s = 0). By parallel transport, such a section

is completely determined by its value at a single point p ∈ X \ D, and hence we must have

h0(A, E) ≤ dim Ep = rank(E). The statement about h2 now follows from duality, and the

remaining inequality for h1 follows from those for h0 and h2 together with the computation

of the Euler characteristic.

Corollary 3.2.3. Suppose that X is compact and k ∈ Z, and consider the natural modules
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OX(kD). We have

h0(A,OX(kD)) =

1 k ≥ 0

0 k < 0

h1(A,OX(kD)) = 2g + deg(D)− 1

h2(A,OX(kD)) =

0 k ≥ 0

1 k < 0.

Proof. Since D is effective OX(kD) has no global sections for k < 0. Meanwhile, for k ≥ 0,

the natural inclusion OX → OX(kD) defines a flat section for the connection and hence we

have h0 ≥ 1. Since OX(kD) is a line bundle, we have h0 ≤ 1, giving the first equality.

The value of h2 now follows from duality, and then the value of h1 follows from the Euler

characteristic.

Notice that the case k = 0 is just the usual de Rham cohomology of A. In particular,

we see that the dimension of the Picard group Pic(A) is 2g + deg D− 1.

3.2.2 Higher order connections and singular differential equations

The Lie algebroid A = TX(−D) provides a useful way of describing ordinary differential

equations with singularities. Recall from Section 2.6 that a vector bundle or coherent sheaf

E has a sheaf of n-jets J nAE along A, and that an nth-order connection on E is a splitting

J nAE → (A∨)n ⊗ E of the jet sequence. Recall further that such a connection defines an A-

connection on J n−1
A E in a canonical way. This structure is nothing but the usual interplay

between higher-order ordinary differential equations (ODEs) and linear systems as we now

describe.

Let us consider the structure of an nth-order connection on OX in the neighbourhood of

a point p ∈ D of multiplicity k. In a local coordinate z centred at p, the vector field δ = zk∂z

generates A and the meromorphic form α = dz
zk

generates A∨. We therefore obtain a basis

1, α, α2, · · · , αn for J nAOX. The n-jet of a function f ∈ OX is given by

f · 1 + δ(f) · α+ · · ·+ δn(f) · αn,

and a kth-order connection J nAOX → OX acts on f by

∆(f) = (δn(f) + pn−1δ
n−1(f) + · · ·+ p0f)αn.
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for some fixed p0, . . . , pn−1 ∈ OX. For example, with n = 2, we have the formula

∆(f) =

(
z2k d

2f

dz2
+ (p1 + kzk−1)zk

df

dz
+ p0f

)
α2.

In the basis 1, α, · · · , αn−1 for J n−1
A OX, the corresponding connection is given by

∇ = d+



0 −1 0 · · · 0

0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

p0 p1 p2 · · · pn−1


dz

zn
(3.1)

Thus

∇


f0

f1

...

fn−1

 = 0

if and only if δfj = fj+1 for j < n− 1 and

δfn−1 + pn−1fn−1 + · · ·+ p0f0 = 0,

which is clearly equivalent to the single nth-order equation ∆(f0) = 0.

It is often useful to examine an ODE on the complex line C near the point at infinity

in P1. The advantage of the geometric formulation using Lie algebroids is that it clarifies

which bundle should be used for the extension to P1.

Example 3.2.4. The hypergeometric equation is the second-order ODE

z(1− z)d
2f

dz2
+ [c− (a+ b+ 1)z]

df

dz
− abf = 0,

with a, b, c ∈ C. Its singular points form the divisor D = 0 + 1 +∞ ⊂ P1. Let δ = z(1− z)∂z
be a generator for A on the chart C ⊂ P1. Multiplying the hypergeometric equation by

z(1− z) puts it in the form

δ2(f) + p1δ(f) + p0f = 0

where p1 = c−1− (a+ b−1)z and p0 = −abz(1−z). This operator extends to second-order

connection J 2
AOP1 → A2. It is the unique such operator for which the solutions of the given

hypergeometric equation are flat sections.

Example 3.2.5. An important early example in the study of differential equations with

irregular singularities was Stokes’ analysis [136] of the Airy functions. Recall that the Airy
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equation is the second-order differential equation

d2f

dx2
= xf.

This equation corresponds to the second-order connection

∆ : f 7→
(
d2f

dx2
− xf

)
dx2

on OC. In the coordinate z = 1/x at infinity in P1, we have

d

dx
= −z2 d

dz

and so

∆(f) =

(
z4 d

2f

dz2
+ 2z3 df

dz
− z−1f

)(
dz

z2

)2

=

(
z6 d

2f

dz2
+ (2z2)z3 df

dz
− zf

)(
dz

z3

)2

=
(
δ2(f)− z2δ(f)− zf

)(dz
z3

)2

,

where δ = z3∂z. Therefore ∆ extends to give a second-order connection

∆Airy : OP1 → A−2 ⊗OP1

for the Lie algebroid A = TP1(−3 · ∞).

We can convert the Airy operator ∆Airy into an A-connection on the rank-two bundle

E = J 1
AOP1 ∼= OP1 ⊕OP1(1).

In the coordinate x and the corresponding basis 1, dx for E , the connection is given by

∇Airy = d−

(
0 1

x 0

)
dx.

In the coordinate z at infinity, with basis 1, dz/z3 for E , the connection is given by

∇Airy = d−

(
0 1

z z2

)
dz

z3
,

giving a representation of TP1(−3 · ∞).



Chapter 3. Lie theory on curves and meromorphic connections 49

3.2.3 Meromorphic projective structures

Let X be a smooth, connected curve with an effective divisor D. In our description of the

source-simply connected groupoid integrating the Lie algebroid TX(−D), we will make use of

the uniformization theorem to identify the universal cover of U with the complex line C or

the upper half-plane H. From the universal covering map, U inherits an atlas of holomorphic

charts whose overlap maps are constant projective transformations, and this data can be

used to produce a flat connection on a P1-bundle over U, as described by Gunning [75].

Moreover, the behaviour of this connection near D is controlled, and hence it may described

in terms of Lie algebroids.

We fix once and for all a square root ω
1/2
X of the canonical bundle ωX = Ω1

X, and make

the following

Definition 3.2.6. A projective structure on (X,D) is a second-order TX(−D)-connection

φ : ω
−1/2
X → ω2

X(2D)⊗ ω−1/2
X

for which the induced connection on the determinant detJ 1
Aω
−1/2
X

∼= OX(D) is the canonical

one.

Amongst all of the projective structures on (X,D) there is a privileged one that is deter-

mined by uniformization.

In a coordinate z centred at a point x ∈ D of multiplicity k, such a φ has the form

φ(fdz−1/2) =

(
d2f

dz2
+ qφ,zf

)
dz3/2

with

qφ,z =
p0

z2k
.

for some p0 ∈ OX. We call qφ,z the connection coefficient of φ in the coordinate z.

If w = g(z) is another coordinate, then

qφ,w = qφ,z + S(g) ◦ z

where

S(g) =
g′′′

g′
− 3

2

(
g′′

g′

)2

is the Schwarzian derivative of g.

A projective structure on (X,D) induces a TX(−D)-connection on the rank-two bundle

J = J 1
TX(−D)ω

−1/2
X , and thus an algebroid PSL(2,C)-connection on the P1-bundle P(J ). It

is this P1-bundle that will be used in our description of the groupoid.
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3.3 Lie groupoids on curves

3.3.1 Motivation: integration of representations

If D is an effective divisor on the curve X, the Lie algebroid A = TX(−D) is locally free, and

the anchor map is generically an isomorphism. It therefore follows from the general theory

of Lie groupoids that A is integrable to a source-simply connected holomorphic Lie groupoid

Π1(X,D), which is unique up to isomorphism; see Section 2.7.1. Moreover, the groupoid has

the following property:

Theorem 3.3.1. Parallel transport establishes an equivalence between the category of mero-

morphic GL(n,C)-connections on X with poles bounded by D and the category of equivariant

vector bundles on Π1(X,D).

In other words, the groupoids Π1(X,D) are the natural domains for the parallel transport

of meromorphic connections; they give a canonical way to extend the usual parallel transport

holomorphically over the singular points. Identical statements are true for principal bundles

with arbitrary structure groups.

The equivalence can be described in concrete terms as follows. On the groupoid G =

Π1(X,D), there is a natural foliation given by the fibres of the source map. Let F ⊂ TG be

the corresponding involutive subbundle. We immediately have the following

Lemma 3.3.2. Suppose that EG is an F-module. Then restriction of flat sections gives an

isomorphism

H0(G, EG)
∇ ∼= H0(X, EG|X) .

where X ⊂ G is the manifold of identities. In other words, a flat section of E is uniquely

determined by its value at the identity.

Proof. Each source fibre is simply connected and intersects X at a single point. Hence

parallel transport along the source fibres uniquely specifies the section from its restriction

to X.

Now if E is a representation of A = TX(−D), the pullback s∗E is canonically trivial along

each source fibre of G, and so s∗E inherits in a natural way the structure of an F-module.

Meanwhile, the pullback (t∗E , t∗∇) is a meromorphic TG-connection with singularities along

the subgroupoid G|D. However, its restriction to the subsheaf F ⊂ TG is holomorphic, giving

t∗E the structure of an F-module as well. Notice that we have s∗E|X ∼= t∗E|X ∼= E . Hence

the identity map on E defines a canonical section of Hom(s∗E , t∗E) |X. Applying the lemma,

we see that there is a unique morphism ρ : s∗E → t∗E of F-modules whose restriction to X

is the identity. One can verify that this section is multiplicative, i.e., ρ(gh) = ρ(g)ρ(h) for

all g, h ∈ G, giving the unique equivariant structure on E whose derivative along X is the

Lie algebroid connection ∇.
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Suppose now that we have a morphism φ : E1 → E2 of A-modules and let ρi : s∗Ei → t∗Ei
be the corresponding equivariant structures. Then we have a diagram

s∗E1
ρ1 //

s∗φ

��

t∗E1
t∗φ

��
s∗E2

ρ2 // t∗E2

where each map is a morphism of F-modules. Since t∗φ ◦ ρ1 and ρ2 ◦ s∗φ have the same

restriction to X, namely φ, the two must be equal on all of G. In other words, the diagram

must commute, so that φ is a G-equivariant map. We have therefore obtained the desired

isomorphism HomA(E1, E2) ∼= HomG(E1, E2), giving an equivalence of categories.

3.3.2 Blowing up: the adjoint groupoids

The first method for constructing an integration of A = TX(−D) is motivated as follows:

the pair groupoid Pair(X) is an integration of the Lie algebroid TX, and A is obtained from

TX(−D) simply by twisting along the divisor D. We therefore wish to modify Pair(X) along

D in some appropriate manner. The correct formulation was developed by Gualtieri and Li

in the smooth category and the construction is equally valid in the holomorphic setting:

Theorem 3.3.3 ([71]). Let X be a complex manifold and let G ⇒ X be a Lie groupoid.

Suppose that H⇒ Y is a closed Lie subgroupoid supported on a smooth closed hypersurface

Y ⊂ X. Denote by p : BlH(G) → G the blowup of G along H, and let S,T ⊂ BlH(G) be the

proper transforms of s−1(Y), t−1(Y) ⊂ G. Then the manifold

[G : H] = BlH(G) \ (S ∪ T)

inherits in a unique way the structure of a Lie groupoid over X for which the blowdown map

p|[G:H] : [G : H]→ G is a morphism of groupoids.

Moreover, the Lie algebroid of [G : H] is canonically identified with the subsheaf of Lie(G)

consisting of sections whose restriction to Y lies in Lie(H), i.e., we have an exact sequence

of sheaves

0 // Lie([G : H)] // Lie(G) // Lie(G) |Y/Lie(H) // 0.

Using this approach, we have a notion of twisting a Lie groupoids along a divisor sup-

ported on a union of smooth hypersurfaces:

Definition 3.3.4. Let G ⇒ X be a Lie groupoid and let Y ⊂ X be a smooth closed
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hypersurface. The twist of G along Y is the Lie groupoid

G(−Y) = [G : idG(Y)]

obtained by blowing up G along the identity arrows over Y. More generally, if D = k1Y1 +

· · ·+knYn is an effective divisor such that the reduced hypersurfaces Y1, . . . ,Yn are smooth

and disjoint, the twist of G along D is the Lie groupoid obtained from G by performing a

ki-fold twist of G along each hypersurface Yi.

Notice that Lie(G(−Y)) = Lie(G) (−Y) consists of all sections that vanish identically

along Y, justifying the nomenclature. Applied to the particular case when X is a curve, D

is an effective divisor and G = Pair(X) is the pair groupoid, we obtain a new groupoid

Pair(X,D) = Pair(X) (−D)

whose Lie algebroid is TX(−D). This groupoid has the following universal property: let

H ⇒ X be another Lie groupoid and suppose that the image of the anchor of Lie(H) is

contained in TX(−D). Then there is a unique morphism φ : H→ Pair(X,D) that makes the

following diagram commute:

Pair(X,D)

��
H

φ

;;vvvvvvvvvv

(s,t)
// Pair(X) .

In particular, every Lie groupoid integrating TX(−D) has a unique morphism to Pair(X,D).

In this way, Pair(X,D) plays a role analogous to the adjoint group of a Lie algebra.

Notice that this construction is local: if we take a connected open set U ⊂ X, then the

restriction Pair(X,D) |U is canonically identified with Pair(U,D ∩ U). Thus, in order to un-

derstand the local structure of Pair(X,D), it suffices to examine the groupoids Pair(∆, k · 0),

for k ≥ 1 where ∆ ⊂ C is the unit disk. We delay the explicit description of these local

normal forms until later in the chapter, where they will be obtained as a consequence of

some of the following simple examples on P1.

3.3.3 Examples on P1

Degree one divisors on P1

Since all degree-one divisors on P1 are related by an automorphism of P1, we may fix our

attention on the case when D is the point∞ ∈ P1. To integrate TP1(−∞) we must twist the

pair groupoid Pair
(
P1
)

= P1×P1 along∞. This groupoid contains three important rational
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curves: the diagonal ∆ = id(P1), together with the source and target fibres

S = s−1(∞) = P1 × {∞}

and

T = t−1(∞) = {∞} × P1.

The groupoid Pair
(
P1,∞

)
is obtained by blowing up the point id(∞) = (∞,∞) at which

S and T intersect, and removing the proper transforms of S and T. The identity embedding

id(P1) in the blowup is simply the proper transform of ∆. The situation is illustrated in

Figure 3.1.

Pair
(
P1,∞

)

E

T′S′

∆′

st

P1P1

Pair
(
P1
)

TS

∆

st

P1P1

Figure 3.1: The twist of Pair
(
P1
)

along D = ∞, presented as the blowup of P1 × P1 with
the rational curves S′,T′ removed. The isotropy group at ∞ is the exceptional divisor E,
shown in red, punctured where it meets S′ and T′ to give a copy of C∗.

This groupoid has the following elegant description, obtained by Gualtieri. The rational

curves S and T have self-intersection zero, and hence their proper transforms, which are

disjoint, have self-intersection −1. Blowing down these two curves we obtain a copy of P2

with two privileged points ps, pt ∈ P2, giving an isomorphism

Pair
(
P1,∞

) ∼= P2 \ {ps, pt}.

The manifold of identities is given by the proper transform ∆′ of ∆, which is a +1-curve

intersecting neither S′ nor T′. It therefore maps to a line in P2 disjoint from ps and pt.

Meanwhile, the exceptional divisor E, a −1-curve, intersects both S′ and T′ with multiplicity

one, and hence it also maps to a line in P2: the one spanned by ps and pt. Similarly, the

source and target fibres through a point x ∈ ∆′ ∼= P1 map to the lines xps and xpt.

This analysis shows that the groupoid composition is given by intersecting lines in P2, as
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illustrated in Figure 3.2.

Pair
(
P1,∞

) ∼= P2 \ {ps, pt}

hg

ps

pt

••
gh•

∆ ∼= P1

E

•
∞

Figure 3.2: The groupoid Pair
(
P1,∞

)
, presented as P2 with two points removed. Projection

from these points onto the line ∆ ∼= P1 give the source and target of an element in the
groupoid, and the multiplication gh is obtained by intersecting the lines gps and hpt.

As a result of the latter description, we see that the groupoid Pair
(
P1,∞

)
obeys a

version of the GAGA principle; we note that this property will not hold for some of the

other groupoids that we shall consider:

Theorem 3.3.5. Every analytic equivariant vector bundle E for the groupoid Pair
(
P1,∞

)
is

isomorphic to an algebraic one, i.e., one for which the structure map s∗E → t∗E is algebraic.

Proof. Consider the open embedding j : G → P2. By the Birkhoff–Grothendieck theorem,

the bundle E on P1 splits as a sum of line bundles. Since the source and target maps

are linear projections, we have j∗s
∗OP1(1) ∼= j∗t

∗OP1(1) ∼= OP2(1), and hence the sheaves

j∗s
∗E and j∗t

∗E must be locally free. Since the complement of G has codimension two, the

equivariant structure ρ : s∗E → t∗E defines a global section of Hom(j∗s
∗E , j∗s∗E). Since P2

is projective, this section must be algebraic.

Remark 3.3.6. This theorem is closely related to the fact that a meromorphic connection

with first order poles has regular singularities: the flat sections have at most polynomial

growth near the poles.

We note that every source fibre of this groupoid is simply connected, except for the

isotropy group over ∞ ∈ P1, which is a copy of C∗. Even though this groupoid is not

source-simple connected, one can verify directly that every TP1(−∞)-connection on a vector

bundle over P1 integrates to a representation of the groupoid. Hence, in this case, the

source-simply connected integration, which fails to be Hausdorff, is not required for the

study TP1(−∞)-connections.
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Degree two divisors on P1 (reduced)

Up to automorphisms of P1, the only reduced divisor of degree two is D = 0 +∞. In this

case, the pair groupoid Pair
(
P1
)

contains four distinguished lines, the source and target

fibres S0,S∞ and T0,T∞ through both 0 and ∞, which all have zero self-intersection.

To twist the pair groupoid along D, we form the blowup

H = Bl{(0,0),(∞,∞)}
(
P1 × P1

)
.

The proper transforms S′0,S
′
∞,T

′
0,T
′
∞ are all −1-curves, and the groupoid is

Pair
(
P1, 0 +∞

)
= H \ (S′0 ∪ S′∞ ∪ T′0 ∪ T′∞) .

Blowing down S′0 and S′∞, we identify

Pair
(
P1, 0 +∞

) ∼= P1 × P1 \ (T′′0 ∪ T′′∞)

where T′′0 and T′′∞ are the images of T′0 and T′∞ under the blow-down. These curves are

non-intersecting and have zero self-intersection. Thus, they may be identified with the fibres

over 0 and ∞ of the first projection P1 × P1 → P1. In this way, we identify

Pair
(
P1, 0 +∞

) ∼= C∗ n P1

where C∗ n P1 = C∗ × P1 ⇒ P1 is the groupoid induced by the action of C∗ on P1 by

automorphisms fixing 0 and ∞ (cf. Example 2.7.4). This groupoid is not source-simply

connected, as its the source fibres are all isomorphic to C∗. However, using the exponential

map exp : C → C∗, we obtain an action of C on P1, and the source-simply connected

integration is

Π1

(
P1, 0 +∞

) ∼= Cn P1.

Degree two divisors on P1 (confluent)

We now consider our first example for which the divisor is not reduced: D = 2 · ∞ ⊂ P1.

The Lie algebroid A = TP1(−2 · ∞) has a one-dimensional space of global sections, given

by the infinitesimal generators for the group of parabolic automorphisms of P1 that fix ∞.

Therefore, the exponential map

H0
(
P1,A

)
→ Aut

(
P1
)

is an embedding, giving rise to an algebraic action of the one-dimensional additive group of

sections of A on P1. This group acts freely and transitively on the complement of ∞, and
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hence we have an identification

Pair
(
P1, 2 · ∞

) ∼= H0
(
P1,A

)
n P1

with the action groupoid. The natural map

H0
(
P1,A

)
⊗CP1

OP1 → A

is an isomorphism in this case. Hence, the groupoid is identified with the total space of the

trivial bundle TP1(−2 · ∞) in such a way that the source map is the bundle projection and

the identity map is the zero section. In particular, this groupoid is source-simply connected.

Divisors of arbitrary degree supported on a single point

To obtain Pair
(
P1, k · ∞

)
with k > 2, we must perform a (k − 2)-fold iterated twist of

Pair
(
P1, 2 · ∞

)
at ∞. Using this construction we can prove the following

Theorem 3.3.7. For k ≥ 2 and p ∈ P1, there is a canonical isomorphism

Pair
(
P1, k · p

) ∼= Tot(TP1(−k · p))

for which the source map is the bundle projection and the identity bisection is the zero

section. Moreover, the groupoid homomorphisms

Pair
(
P1, k · p

)
→ Pair

(
P1, k′ · p

)
for k ≥ k′ ≥ 2 are given by the natural maps

Tot(TP1(k · ∞))→ Tot(TP1(k′ · ∞)) .

Proof. We saw above that the statement is true for k = 2. So, suppose by way of induction

that the statement is true for some k ≥ 2. Since p is an orbit of Pair(X, k · p), the source and

target fibres over p are equal to the fibre of TP1(−k ·p) over p. Therefore, Pair(X, (k + 1) · p)
is obtained by blowing up 0p ∈ Tot(TP1(−k · p)) and removing the proper transform of the

fibre. By Lemma 3.3.8 below, the result is Tot(TP1(−(k + 1) · p)). The statements about

the source and identity maps are true by continuity, since the blow-down is an isomorphism

of line bundles away from the fibre over p.

Lemma 3.3.8. Let X be a curve, L an invertible sheaf on X and p ∈ X. Let Y = Bl0p(Tot(L))

be the blowup of the total space of L at the zero element over p, and let L|p ⊂ Y be the proper
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transform of the fibre over p. Then there is a canonical identification

Y \ L|p ∼= Tot(L(−p))

for which the blow down is the natural map Tot(L(−p))→ Tot(L).

Proof. The map φ : Tot(L(−p)) → Tot(L) has the property that φ−1(0p) = L(−p)|p is a

Cartier divisor on Tot(L(−p)). Hence the universal property of blowing up gives a natural

morphism

φ′ : Tot(L(−p))→ Y.

We claim that φ′ maps Tot(L(−p)) isomorphically onto Y \ Lp. Since φ(L(−p)|p) = {0p},
the image of φ′ may only intersect L|p along the exceptional divisor E. The tangent space

to Tot(L) at 0p has a natural splitting, resulting in the identification

E = P(TpX⊕ L|p).

Meanwhile, the fibre of L(−p) at p is

L(−p)|p ∼= HomC(TpX,L|p)

Sending a linear map TpX→ L|p to its graph defines an embedding

L(−p)|p → P(TpX⊕ L|p)

which is the restriction of φ′ to the fibre. The image of this embedding is the complement

of P(L|p) = L|p ∩ E, giving the required identification of the image of φ′.

3.3.4 Uniformization

The blowup construction described in the previous sections produces the adjoint-type groupoid

Pair(X,D), to which all other integrations of TX(−D) map. However, as we have seen, these

groupoids are usually not source-simply connected. Meanwhile, the procedure of Crainic–

Fernandes [42], which produces the canonical source-simply connected integration, relies

on an infinite-dimensional quotient. In this section, we give two explicit finite-dimensional

descriptions of the source-simply connected integrations which rely on the uniformization

theorem for Riemann surfaces. We assume without loss of generality that X is connected,

and for both constructions, we focus on the case when D is reduced, as the other cases may

be obtained from this one by iterated blowups.

The first construction express the groupoid as suitably completed quotient of the product

H×H of two copies of the upper half-plane by the action of a Fuchsian group. The second
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description uses the uniformizing projective connection to embed the groupoid as an explicit

open set in a P1-bundle over X.

The basic observation underlying both approaches is that the restriction of Π1(X,D) to

the punctured curve U = X \ D must be isomorphic to the fundamental groupoid of U. Let

Ũ be the universal cover, so that U ∼= Ũ/Γ, where Γ = π1(U, p) for some p ∈ U. By the

uniformization theorem, Ũ must be isomorphic to C,P1 or the upper half-plane H. We shall

focus on the case when Ũ = H since it is the most prevalent: for example, if X is compact of

genus g and D consists of n distinct points, then the universal cover of U will be H whenever

2−2g−n < 0. Thus if D is non-empty, the only exceptions are when g = 0, so that X ∼= P1,

and n ≤ 2. These cases were studied already in Section 3.3.3.

Quotient construction

With the notation above, let f0 : H → U be the covering map. The fundamental groupoid

of U may be presented as

Π1(U) ∼= (H×H)/Γ,

where Γ acts diagonally. The isomorphism is as follows: since H is simply connected, we

have an isomorphism H×H→ Π1(H), and the map (f0)∗ : Π1(H)→ Π1(U), sending a curve

in H to its image via f0, identifies Π1(U) with the quotient. In particular, the target and

source maps are given by applying f0 to the left and right factors of H × H, respectively.

Our goal in this section is to explain how to “complete” Π1(U) to Π1(X,D) by adding in the

isotropy groups over D.

We shall use a procedure that mimics the standard completion of U to X by adding

the cusps, which we now briefly recall. For details, see [55, 106]. Let ∂H ⊂ P1 denote the

boundary of H, and let Λ ⊂ ∂H be the cusps of Γ—that is, the collection of fixed points

of parabolic elements of Γ. We give H∗ = H ∪ Λ a topology by declaring that the open

neighbourhoods of a point p ∈ Λ are the open disks in P1 that are contained in H and

tangent to ∂H at p. With this topology (which is different from the subspace topology in

P1), the map f0 extends to a continuous surjective map f : H∗ → X. In this way, the points

of the divisor D are identified with the points of Λ/Γ.

Suppose that p ∈ Λ. Acting by an element of PSL(2,R), we may assume that p = ∞.

Then the stabilizer of p is freely generated by an element of the form

Ta =

(
1 a

0 1

)

with a > 0, i.e., a translation τ 7→ τ + a. The shifted half-planes

Hc = {τ ∈ H | Im(τ) > c}
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for c� 0 give a basis of neighbourhoods for∞ ∈ H∗ and the quotient ∆ = (Hc∪{∞})/ 〈Ta〉
gives an open neighbourhood of the point x = [∞] in the quotient X = H∗/Γ. Moreover,

the function τ 7→ exp(2πiτ/a), which is invariant under Ta, descends to the quotient to give

a coordinate on ∆ that vanishes at x.

Example 3.3.9. Suppose that (X,D) = (P1, 0 + 1 +∞). For τ ∈ H, let

℘τ (z) =
1

z2
+

∑
(m,n)∈Z2\{(0,0)}

1

(z +m+ nτ)2
− 1

(m+ nτ)2

be the Weierstrass ℘-function of modulus τ . Define the modular function

λ : H → P1

τ 7→ ℘τ ( 1+τ
2 )−℘τ ( τ2 )

℘τ ( 1
2 )−℘τ ( τ2 )

.

Then λ is invariant under the principal congruence subgroup

Γ(2) = {g ∈ SL(2,Z) | g ≡ 1 mod 2Z}

=

〈(
1 2

0 1

)
,

(
1 0

2 1

)〉
,

and gives the universal cover λ : H→ P1\{0, 1,∞} (see [2, Section 7.3.4]). As τ → +i∞, we

have λe−πiτ → 16, so that λ→ 0 and eπiτ descends to a coordinate on P1 in a neighbourhood

of 0.

Let us now explain how to extend the fundamental groupoid of U to the groupoid

Π1(X,D) when D is reduced. By exponentiation, the isotropy group of Π1(X,D) at p ∈ D

is identified with the fibre of TX(−p) at p, which is canonically isomorphic to C (see Sec-

tion 3.2.1). We must therefore glue a copy of C to every cusp. Consider the set

W(Γ) = H×H
∐

Λ× C.

We give W(Γ) a topology as follows. The topology on H×H is the usual one, so it remains

to define the open neighbourhoods of a point (p, u) ∈ Λ × C. If p = ∞, we take as a basis

of open neighbourhoods the sets

V(c, r, u) = {(τ1, τ2) ∈ Hc ×Hc | |τ1 − τ2 − u| < r} ∪ {(p, u′) ∈ Λ× C | |u− u′| < r}

for r, c > 0. If p 6= ∞, we pick an element g ∈ PSL(2,R) with gp = ∞ and use the

sets g−1V(c, r) as a basis of open sets of p. The resulting system of neighbourhoods is

independent of the choice of g.

In this topology, a sequence (τ1,n, τ2,n)n≥0 ∈ H × H limits to the point (∞, u) ∈ Λ × C
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if and only if

lim
n→∞

Im(τ1,n) = lim
n→∞

Im(τ2,n) =∞ (3.2)

and

lim
n→∞

(τ1,n − τ2,n) = u (3.3)

with respect to the usual topology of C. Notice that since we may take r, c to be rational

and still obtain a basis of neighbourhoods, the topology on W(Γ) is first countable.

The space W(Γ) carries a natural action of Γ: the action on H×H ⊂W(Γ) is the diagonal

one

g · (τ1, τ2) = (gτ1, gτ2)

and the action on Λ× C ⊂W(Γ) is given by

g(p, u) = (gp, u).

This action is continuous since it preserves the basis of open neighbourhoods described

above.

Furthermore, W(Γ) has in a canonical way the structure of a topological groupoid whose

objects are H∗. The groupoid operation is defined as follows: Λ × C is a disjoint union of

abelian groups indexed by Λ, and hence it forms a groupoid for which the source and target

maps are the projection Λ× C→ Λ, and the groupoid operation is addition:

(p, u)(p, u′) = (p, u+ u′)

for p ∈ Λ and u, u′ ∈ C. Meanwhile H × H ⇒ H is the pair groupoid Pair(H). Taking the

disjoint union of these groupoids we obtain the groupoid

W(Γ) = Pair(H)
∐

Λ× C⇒ H ∪ Λ,

and we leave to the reader the straightforward verification that the groupoid operations are

continuous.

Now consider the quotient

G = W(Γ)/Γ = Pair(H) /Γ
∐

(Λ× C)/Γ = Π1(U)
∐

(D× C),

and notice that this set has the structure of a groupoid over X. By construction, this

structure is compatible with the topology and hence G ⇒ X is a topological groupoid.

Moreover, this description makes it clear that the source fibres of G are simply-connected.
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It remains to give G a holomorphic structure, making it into a Lie groupoid isomorphic

to Π1(X,D). Once again, it is enough to consider the situation in a neighbourhood of ∞.

Suppose that the stabilizer of ∞ in Γ is generated by the translation Ta : τ 7→ τ + a with

a > 0. Then V′ = V(c, r, u)/ 〈Ta〉 gives a neighbourhood of [(∞, u)] ∈ G. Let us give

coordinates on this neighbourhood.

Let ∆1 ⊂ C and ∆2 ⊂ C, be the product of the disks of radii e−c and r centred at 0 and

u, respectively, and consider the map

φr,c,u : V(c, r, u)→ ∆1 ×∆2

defined by

φr,c,u(τ1, τ2) = (e2πiτ1/a, τ1 − τ2)

for (τ2, τ2) ∈ H×H and

φr,c,u(∞, u′) = (0, u′)

Since e2πiτ1/a → 0 as Im(τ1)→∞, this map is continuous, and it descends to a homeomor-

phism from V′ to ∆1 ×∆2. Its restriction to V′ ∩ Π1(U) ⊂ G is clearly holomorphic and

hence it gives a coordinate chart.

Using this chart together with the corresponding coordinate e2πiτ/a on the neighbour-

hood Hc/ 〈Ta〉 ⊂ X of [∞] ∈ D, the target map t is just the projection ∆1 × ∆2 → ∆1.

Hence it is a holomorphic submersion. Meanwhile, the source map is given by

s(z, w) = [τ2] = e2πi(τ1−u)/a = e2πiu/at.

which is also a submersion. Similarly, the multiplication and inversion are seen to be holo-

morphic. We have arrived at the following

Theorem 3.3.10. The topological groupoid G = W(Γ)/Γ⇒ X is canonically isomorphic to

the source-simply connected Lie groupoid groupoid Π1(X,D).

Proof. The arguments above show that W(Γ)/Γ is a source-simply connected Lie groupoid.

It remains to check that the Lie algebroid is given TX(−D), but this fact follows easily from

the local formulae for s and t above.

Corollary 3.3.11. If D = p1 + · · · + pn is the divisor of punctures, then the groupoid

Π1(X, k1p1 + · · ·+ knpn) is given by performing a (ki − 1)-fold iterated blowup of W(Γ)/Γ

at id(pi) for each i.

Remark 3.3.12. It should be straightforward to generalize the quotient construction to deal

directly with the non-reduced case.

This description of the groupoid naturally leads us to the following



Chapter 3. Lie theory on curves and meromorphic connections 62

Question 3.3.13. What is the precise relationship between equivariant vector bundles for

Π1(X,D) (i.e., meromorphic connections) and automorphic forms for the action of Γ on

H×H, with suitable holomorphicity conditions imposed at the cusps?

Embeddings in projective bundles

Once again, we focus on the case in which D is reduced and the universal cover of the

punctured curve U = X \ D is isomorphic to H. The uniformization theorem gives rise to

a natural projective connection on U; see [75]. We will use this projective connection to

embed the groupoid in a P1-bundle over X.

Let τ be the standard coordinate on H, and let L = ω
−1/2
H be a square-root of the

anti-canonical sheaf on H. The second-order differential operator

∆ : L → (Ω1
H)2 ⊗ L = L−3

f(dτ)−1/2 7→ d2f
dτ2 (dτ)3/2

defines a projective structure on H, which is invariant under the action of PSL(2,R). The

kernel of this operator is generated by the sections

µ1 = dτ−1/2

and

µ2 = τdτ−1/2.

This basis was chosen so that the ratio η2/η1 gives the standard coordinate on H.

If U = H/Γ is the quotient by the action of a Fuchsian group Γ, the operator ∆ descends

to give a projective structure on U. If we push µ1 and µ2 forward by the covering map,

we obtain multivalued sections η1 and η2 of ω
−1/2
U that are annihilated by the projective

structure and whose ratio gives the inverse of the covering map.

Including the cusps of Γ, we obtain the curve X with a reduced effective divisor D,

so that U = X \ D. A straightforward calculation shows that the operator ∆ extends to

a meromorphic projective structure on (X,D) in the sense of Definition 3.2.6; see, e.g.,

[80, 92]. Near a point p ∈ D, there is a coordinate z on X in which the uniformizing

projective structure has the form

∆(fdz−1/2) =

(
d2f

dz2
+

f

4z2

)
dz3/2

=

(
δ2(f)− δ(f) +

1

4
f

)
dz3/2

z2
(3.4)

where δ = z∂z is a generator for TX(−D) in this chart.
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Any meromorphic projective structure on (X,D) induces a TX(−D)-connection on the jet

bundle J = J 1
TX(−D)ω

−1/2
X , and thus a PSL(2,C)-connection on the corresponding P1-bundle

P(J )→ X. This connection integrates to an action of the source-simply connected groupoid

Π1(X,D) on P(J ), i.e., a homomorphism

ρ : Π1(X,D)→ PSL(J )

of Lie groupoids.

Notice that P(J ) has a canonical section σ : X → P(J ), given by the embedding the

line bundle Ω1
X(D)⊗ ω−1/2

X via the jet sequence. We therefore obtain a holomorphic map

ι : Π1(X,D) → P(J )

g 7→ ρ(g) · σ(s(g))
(3.5)

by acting on this section.

Lemma 3.3.14. The map ι : Π1(X,D) → P(J ) is an open embedding that makes the

following diagrams commute:

Π1(X,D)
ι //

t
##GGGGGGGGG

P(J )

π
}}zz

zz
zz

zz
Π1(X,D)

ι // P(J )

X X

id

ccGGGGGGGGG
σ

==zzzzzzzz

Proof. The commutativity of the diagrams is immediate from the definition. We must show

that ι is an open embedding. Since Π1(X,D) and P(J ) are complex manifolds of equal

dimension and ι is holomorphic, it is sufficient to verify that ι is injective.

If p ∈ U = X \D, then the source fibre through p is mapped to the horizontal leaf of the

connection on P(J ) that contains σ(p). Since the connection comes from the uniformizing

projective structure, each horizontal leaf intersects the section σ in at most one point, and

the monodromy action of π1(U, p) on the fibre PSL(Jp) is free for all p ∈ U. It follows easily

that ι is injective on the open set Π1(U) ⊂ Π1(X,D).

Since t = π ◦ ι the image of Π1(U) is disjoint from the image of the target fibres over

D. Hence it remains to check injectivity on the individual isotropy groups over D. Using

the local form (3.4) of the projective structure in the coordinate z near p ∈ D, we compute

using (3.1) the local form for the connection on J :

∇ = d+

(
0 −1
1
4 −1

)
dz

z
.
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in the basis dz−1/2, dzz ⊗ dz
−1/2. The projection of the connection matrix to sl(2,C) is

A =

(
1
2 −1
1
4

−1
2

)
.

Recall that the isotropy group of Π1(X,D) over p is identified with additive group of complex

numbers, and hence the action of the isotropy group is given by the map

ρ|p : C → Aut(P(J )p) ∼= PSL(2,C)

t 7→ [exp(−tA)]
(3.6)

Since A has rank one and

A ·

(
0

1

)
6= 0,

the isotropy group acts freely on the orbit of σ(p), as required.

3.4 Local normal forms

In this section, we describe the local structure of the groupoids Pair(X,D) and Π1(X,D)

associated to an effective divisor on a smooth curve.

3.4.1 Local normal form for twisted pair groupoids

If D is an effective divisor on the smooth curve X and U ⊂ X is an open set, we have

Pair(X,D) |U ∼= Pair(U,D ∩ U)

Taking U to be a coordinate disk centred at a point p ∈ D of multiplicity k, we see that

Pair(X,D) is locally isomorphic to the restriction of the groupoid Pair
(
P1, k · 0

)
to the unit

disk ∆ ⊂ C ⊂ P1. We may therefore use the description of Pair
(
P1, k · 0

)
given in Theo-

rem 3.3.7 to obtain the local normal form:

Theorem 3.4.1. We have an isomorphism

Pair(C, 0) ∼= C∗ nC⇒ C

where the action of C∗ on C is given by λ · z = λz for λ ∈ C∗ and z ∈ C.

If k ≥ 1, then

Pair(C, k · 0) ∼=
{

(µ, z) ∈ C2
∣∣ µzk−1 6= 1

}
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with structure maps

s(µ, z) = z

t(µ, z) =
z

1− µzk−1

id(z) = (0, z)

(ν, w) · (µ, z) =

(
ν

(1− µzk−1)k−2
+ µ, z

)
for w = t(µ, z)

(µ, z)−1 =

(
−(1− µzk−1)k−2µ,

z

1− µzk−1

)
.

Proof. The case k = 1 is the restriction of Pair
(
P1, 0 +∞

)
treated in Section 3.3.3, and is

the action groupoid associated with action of C∗ by automorphisms fixing 0 and ∞. This

gives the first description of Pair(C, 0) in the theorem. The second description is given by

setting λ = 1
1−µ ∈ C∗.

We now treat the case k ≥ 2. By Theorem 3.3.7, the groupoids in question are given by

removing the source and target fibres through ∞ from

Pair
(
P1, k · 0

) ∼= Tot(TP1(−k · 0)) ,

and when k = 2 the groupoid is given by the action of automorphisms of P1 which fix zero.

Let z be an affine coordinate centred at 0 and u = z−1 the coordinate at ∞. Then the

vector field

δ2 = −∂u = z2∂z

is a basis for TP1(−2 · 0). In the u-coordinate, the action is given by

(µδ2, u) 7→ u− µ

In the z-coordinate, the action is therefore

(µδ2, z) 7→
1

z−1 − µ
=

z

1− µz
,

which gives the target map in the groupoid. Note that the source fibre through ∞ is given

by u = 0, which is not in the z chart. Meanwhile, the target fibre through ∞ is given by

µz = 0. Hence the formulae in the theorem are correct for k = 2.

Now let δk = zk∂z. To describe the groupoids for k > 2, consider the map

Tot(TC(−k · 0))→ Tot(TC(−2 · 0))

(µδk, z) 7→ (zk−2δ2, z)
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which by Theorem 3.3.7 is the restriction of a groupoid homomorphism. We see immediately

that

s(µδk, z) = z

and

t(µδk, z) =
z

1− µzk−2 · z
=

z

1− µzk−1
.

All of the other formulae in the theorem are straightforward consequences of these ones,

and we therefore omit the calculations.

Corollary 3.4.2. We have

Pair(∆, 0) = {(µ, z) ∈ C∗ ×∆ | |µz| < 1}

and

Pair(∆, k · 0) =

{
(µ, z) ∈ C×∆

∣∣∣∣ µzk−1 6= 1,
|z|

|1− µzk−1|
< 1

}
for k ≥ 2, with the same structure maps as in the theorem.

3.4.2 Source-simply connected case

Suppose that D is an effective divisor on a smooth curve X and p ∈ D is a point of multiplicity

k. If we choose a coordinate disk ∆ centred at p, there will be a natural map

Π1(∆, k · p)→ Π1(X,D) |∆,

but in general this map will not be an isomorphism. The reason is that the isotropy group

of Π1(X,D) at a point q ∈ ∆ \ {p} is the fundamental group π1(X \ D, q) while the isotropy

group of Π1(∆, k · p) is the local fundamental group π1(∆ \ {p}, q). However, if we take the

connected component Π1(X,D) |0∆ ⊂ Π1(X,D) |∆ containing the identity bisection, we obtain

a surjective map

φ : Π1(∆, k · p)→ Π1(X,D) |0∆

that is locally biholomorphic. Moreover, if the homomorphism π1(∆ \ {p}, q)→ π1(X \ D, q)

on fundamental groups is injective, then φ will be an isomorphism, giving a local normal

form for the groupoid. This situation will always occur if X is compact with positive genus,

or if X = P1 and D contains at least two distinct points.

We now describe the source-simply connected groupoids Π1(C, k · 0) associated with a

divisor supported at the origin in C.

Theorem 3.4.3. For k ≥ 1, there is an isomorphism

Π1(C, k · 0) ∼= C2
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with structure maps

s(µ, z) = z

t(µ, z) = eλz
k−1

z

id(z) = (0, z)

(ν, w) · (µ, z) =
(
e(k−1)µzk−1

ν + µ, z
)

for w = t(µ, z)

(µ, z)−1 =
(
−e(1−k)µzk−1

µ, eµz
k−1

z
)
.

Proof. When k = 1, these formulae reduce to the definition of the action groupoid for the

action of C on itself given by µ · z = eµz. Since C is simply connected, this action groupoid

is source-simply connected. Moreover, the vector field z∂z is an infinitesimal generator for

the action, and hence the Lie algebroid is canonically isomorphic to TC(−0). The action

groupoid is therefore identified with Π1(C, 0). Since the exponential map Lie(C) → C is

the identity, the groupoid can be identified with the total space Tot(TC(−0)) in such a way

that the source map is the bundle projection and the identity bisection is the zero section.

The groupoids for k > 1 are obtained by repeatedly blowing up Π1(C, 0) at the identity

element over 0 and discarding the proper transform of the fibre, just as in the proof of

Theorem 3.3.7. Since the blowup only affects the source fibre at 0, the groupoids so obtained

are source-simply connected. We can therefore identify

Π1(C, k · 0) ∼= Tot(TC(−k · 0))

in such a way that the morphism

Π1(C, k · 0)→ Π1(C, 0)

is given by the map

(µ(zk∂z), z) 7→ (µzk−1(z∂z), z).

The structure maps are uniquely determined by the fact that this map is a groupoid homo-

morphism and so a straightforward calculation yields the given formulae.

Corollary 3.4.4. We have

Π1(∆, k · 0) ∼=
{

(µ, z) ∈ C×∆
∣∣ Re(λzk−1) < log |z|−1

}
⊂ Π1(C, k · 0)

with structure maps given by restricting those of Π1(C, k · 0).

Proof. Since the inclusion ∆ \ {0} → C \ {0} induces an isomorphism on fundamental

groups, the restriction of Π1(C, k · 0) to ∆ is source-simply connected; this restriction is the
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set described above.

3.5 Summation of divergent series

At the outset of this chapter, we encountered divergent formal power series solutions of cer-

tain differential equations, and saw that they could be used to obtain holomorphic solutions

by the analytic procedure of Borel summation. In this section, we explain how some of these

divergent series can alternatively be summed directly using the appropriate groupoids, in a

bid to answer the following motivating question from Chapter 1:

Question. Do divergent asymptotic series expansions, such as

1

z

∫ ∞
0

e−t/z

1 + t
dt ∼

∞∑
n=0

(−1)nn!zn

have some intrinsic geometric meaning?

The idea is simple: we will see that if we take the formal power series solution on the

curve X and pull it back to the groupoid G = Π1(X,D) in an appropriate way, we obtain a

new power series in coordinates on the complex surface G that is necessarily convergent.

In order to make this procedure precise, it is convenient to use the language of formal

geometry, in which we treat formal power series as though they were functions on some

actual space. We refer the reader to [79, Section II.9] and [82] for an introduction to the

subject. We note that it is possible to give a more elementary (but less geometric) account

of the facts presented here without the use of this language; at a basic level, we are simply

make some elementary claims about the algebraic relationship between certain power series.

Let D be an effective divisor on the smooth complex curve X, and let A = TX(−D) be the

associated Lie algebroid. We denote by X̂ the formal neighbourhood of D in X. Since the

kth-order neighbourhood kD of D is A-invariant for all k ∈ N, the Lie algebroid A restricts

to a Lie algebroid Â on X̂.

We can now give an intrinsic definition of a formal power series gauge transformation:

Definition 3.5.1. Let (E1,∇1) and (E2,∇2) beA-modules. A formal isomorphism from

E1 to E2 is an isomorphism

φ̂ : (Ê1, ∇̂1)→ (Ê2, ∇̂2)

of Â-modules.

Let G be a Lie groupoid integrating the Lie algebroid A = TX(−D). We identify X

with its embedding id(X) ⊂ G. Let X̂ and Ĝ be the formal neighbourhoods of D in X

and G respectively. Then the groupoid structure maps for G restrict to give a groupoid

Ĝ ⇒ X̂ in the category of formal schemes. Notice that the natural maps Π1(X,D) →



Chapter 3. Lie theory on curves and meromorphic connections 69

G → Pair(X,D) are analytic isomorphisms in a neighbourhood of D, and hence we have

isomorphisms ̂Π1(X,D) ∼= Ĝ ∼= ̂Pair(X,D).

We have the following formal analogue of Lemma 3.3.2:

Proposition 3.5.2. Let F̂ ⊂ TĜ be the formal Lie algebroid of vector fields tangent to the

source fibres of Ĝ, and let (ÊĜ, ∇̂) be a locally free F̂-module. Then restriction of flat sections

to X̂ ⊂ Ĝ defines a canonical isomorphism

H0
(

Ĝ, ÊĜ
)∇̂

= H0
(

X̂, ÊĜ|X̂
)
.

Proof. If we choose local coordinates (z, λ) on G so that the source map is (z, λ) 7→ z and

we pick a trivialization of E near D, the statement reduces to the observation that an initial

value problem of the form

df

dλ
= A(z, λ)f

f(z, 0) = f0(z)

for A(z, λ) ∈ C[[z, λ]]n×n and f0(z) ∈ C[[z]]n has a unique solution f ∈ C[[z, λ]]n.

Therefore, arguing exactly as in Section 3.3.1, we can obtain an equivalence between the

category of locally free Â-modules and equivariant vector bundles on Ĝ. We observe that

there is an obvious restriction functor

·̂ : Rep(G)→ Rep(Ĝ).

In particular, if E1, E2 ∈ Rep(G) then we have a C-linear map

R(E1, E2) : HomG(E1, E2)→ HomĜ

(
Ê1, Ê2

)
Assuming that X is connected and D is non-empty, R(E1, E2) will be injective, because

an element of HomG(E1, E2) ⊂ H0(X,Hom(E1, E2)) is uniquely determined by its Taylor

expansion along D by analytic continuation. As we have seen, R(E1, E2) will not in general

be surjective, since there may exist formal homomorphisms that do not arise from analytic

ones. Nevertheless, in some cases we can use the theory to produce convergent series from

divergent ones:

Theorem 3.5.3. Suppose that E1 and E2 are analytic G-equivariant bundles with structure

maps ρi : s∗Ei → t∗Ei, and let ∇1, ∇2 be the corresponding A-connections. Suppose that

φ̂ : Ê1 → Ê2 is a formal isomorphism (Ê1, ∇̂1)→ (Ê2, ∇̂2) over X̂. Then we have the equality

ρ̂2 = t∗φ̂ ◦ ρ̂1 ◦ s∗φ̂−1



Chapter 3. Lie theory on curves and meromorphic connections 70

on the formal groupoid Ĝ. In particular, the right hand side, which a priori is purely formal,

is actually analytic.

Proof. The formal isomorphism φ̂ between the connections defines and isomorphism of Ĝ-

representations, which exactly means that

t∗φ̂ρ̂1 = ρ̂2s
∗φ,

as desired. Now ρ̂2 is just the Taylor expansion of ρ2 at D, and hence it must converge

because ρ2 is analytic. It follows that the right hand side also converges.

Let us illustrate this phenomenon by considering the example from Section 3.1, where

(X,D) = (C, 2 · (0)) and E1 = E2 = O⊕2
X with the connections

∇1 = d+
1

2z2

(
−1 0

0 1

)
dz

and

∇2 = d+
1

2z2

(
−1 z

0 1

)
dz.

We recall that the matrix-valued formal power series

φ̂ =

(
1 z

2

∑∞
n=0(−1)nn!zn

0 1

)
,

defines a formal isomorphism ∇̂1 → ∇̂2 that is not analytic. We will use Theorem 3.5.3 to

extract analytic isomorphisms on small open sets from this divergent series.

We use the coordinates (λ, z) on Pair(C, 2 · (0)) with s(u, z) = z and t(u, z) = z
1−uz as

coordinates on the formal groupoid Ĝ. Since the connection ∇1 is diagonal, it is easy to

compute its solutions: the matrix

ψ1(z) =

(
e−1/2z 0

0 e1/2z

)

is a fundamental solution of ∇1ψ1 = 0, and hence the representation corresponding to ∇1

is readily computed as

ρ1 = t∗ψ1 · s∗ψ−1
1 =

(
e−u/2 0

0 eu/2

)
According to Theorem 3.5.3, the Taylor expansion for the representation ρ2 corresponding
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to ∇2 is given by expanding the formal power series

ρ2 =

(
1 z

2(1−uz)
∑∞
n=0

(−1)nn!zn

(1−uz)n

0 1

)(
e−u/2 0

0 eu/2

)(
1 − z2

∑∞
n=0(−1)nn!zn

0 1

)
,

which seems likely to diverge at first glance. However, many cancellations occur, giving

ρ2 =

(
e−u/2 f

0 eu/2

)
,

where

f = 1
2zu+

(
1
48u

3z + 1
4u

2z2
)

+ 1
24u

3z2 +
(

1
6u

3z3 + 1
96u

4z2 + 1
3840u

5z
)

+ · · ·

converges in a neighbourhood of (0, 0). We note that the resulting analytic function is

multivalued on Pair(X,D), but single-valued when pulled back to Π1(X,D).

Fix a base point z0 ∈ C∗. Thus the parallel transport of ∇2 from z0 to z is

ψ2(z) = ρ2(
z−1
0 −z

−1

2 , z0) =

(
e(z−1−z−1

0 )/2 f(z−1
0 − z−1)

0 e−(z−1−z−1
0 )/2

)
,

giving the fundamental solution of the equation ∇2ψ2 = 0 with initial initial condition

ψ2(z0) = 1, defined for z in a simply connected neighbourhood of z0. In particular ψ2ψ
−1
1

gives an analytic isomorphism from ∇1 to ∇2 on such a neighbourhood. Truncating the

series expansion for f after N steps gives a rational function fN that converges to the

component ψ12
2 = f(z−1

0 −z−1) in a neighbourhood of z0 as N →∞. These approximations

are illustrated in Figure 3.3.

The procedure we have described produces solutions of the irregular singular equation

from divergent formal power series in a way that is purely local: the kth term in the Taylor

expansion of the solutions on the groupoid relies only on the Taylor coefficients of degree

≤ k for the Lie algebroid connection. We close our discussion of Lie theory on curves with

this tantalizing suggestion that the groupoid might allow for a geometric description of the

theory of multi-summation.
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Figure 3.3: Approximations of the component ψ12
2 of ψ2. Truncating the series expansion

on the groupoid in degree N gives an approximation by rational functions that converge to
the solution as N →∞.



Chapter 4

Poisson structures in complex

geometry

In this chapter, we review some basic aspects of Poisson geometry in the complex analytic

setting, in the spirit of [117]. Our goal throughout is to treat Poisson structures on singular

spaces on equal footing with their smooth counterparts. In particular, we recall the basic

definitions of multiderivations, Poisson structures and Poisson subspaces and the associated

Lie algebroids in a manner that is appropriate for general analytic spaces.

4.1 Multiderivations

One of the subtle issues that arise when dealing with singular spaces is that the identification

between multivector fields and multiderivations familiar from the case of smooth manifolds

fails in general. In this section, we give a brief review of multiderivations in preparation for

their use in Poisson geometry; we refer the reader to [93, Chapter 3] for a more detailed

treatment.

Let X be a complex manifold or analytic space. The sheaf of k-derivations on X is

the sheaf of C-multilinear maps

OX × · · · × OX︸ ︷︷ ︸
k times

→ OX

that are totally skew-symmetric and are derivations in each argument. In particular, X 1
X =

TX = (Ω1
X)∨ is just the tangent sheaf of X. More generally, the pairing

ΩkX ⊗X k
X → OX

73
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defined on generators by

(df1 ∧ · · · ∧ dfk)⊗ ξ 7→ ξ(f1, . . . , fk)

gives an isomorphism X k
X
∼= (ΩkX)∨ = Hom

(
ΩkX,OX

)
. When X is smooth, we also have the

duality ΩkX = (X k
X )∨, but the latter isomorphism fails, in general, when X is singular.

Using the usual formula for the product of alternating linear maps (the shuffle product),

we obtain a wedge product

∧ : X k
X ×X l

X →X k+l
X ,

that is OX-linear, making X •
X =

⊕
k≥0 X k

X into a graded-commutative algebra. Notice that

there are obvious contraction maps

ΩkX ⊗X l
X →X l−k

X

for l ≥ k and

ΩkX ⊗X l
X → Ωk−lX

for l ≤ k, satisfying the usual identities familiar from exterior products of vector spaces

and their duals. If E is a vector bundle or OX-module, we may also consider the sheaf

X k
X (E) = Hom

(
ΩkX, E

)
of k-derivations with values in E , and we note that X •

X (E) is

naturally a graded module over X •
X .

Additionally, there is a bracket

[·, ·] : X k
X ×X l

X →X l+k−1
X

called the Schouten bracket , which extends the Lie bracket on vector fields and makes

X •
X into a Gerstenhaber algebra. In particular, there is a natural action of TX = X 1

X on

X •
X by the Lie derivative

LZξ = [Z, ξ]

for Z ∈ X 1
X and ξ ∈ X •

X that is compatible with wedge products and contractions with

differential forms.

Related to the multiderivations are the multivector fields Λ•TX, which are OX-linear

combinations of wedge products of vector fields. There is a natural algebra homomorphism

ΛkTX →X k
X defined by sending the multivector field Z1 ∧ · · · ∧Zk with Z1, . . . , Zl ∈X 1

X to

the k-derivation

ξ(f1, . . . , fk) = det(Zi(fj))1≤i,j,≤k.

When X is smooth, Φ is an isomorphism, but in general it is neither injective nor surjective.

The failure of Φ to be an isomorphism is already visible for the quadric cone Y ⊂ C3 from
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The Example, as we shall in Example 4.3.2. This failure shows that in order to do Poisson

geometry on singular spaces we must work with X •
X rather than Λ•TX. Once this fact is

recognized, it is straightforward to adapt many of the techniques from Poisson geometry in

the smooth category to the singular case.

4.2 Poisson brackets

Let X be a complex manifold, or, more generally, an analytic space. A Poisson structure

on X is a C-linear Lie bracket {·, ·} : OX × OX → OX on holomorphic functions that is a

derivation in both arguments, i.e., it satisfies the Leibniz rule

{f, gh} = {f, g}h+ f{g, h}

for all f, g, h ∈ OX. Thus, the Poisson bracket is defined by a global section σ ∈ H0
(
X,X 2

X

)
of the sheaf of two-derivations. The Jacobi identity for the bracket is equivalent to the

equation

[σ, σ] = 0

for the Schouten bracket of σ. From now on, we refer to the pair (X, σ) as a Poisson

analytic space ; if X is a manifold, then we also call (X, σ) a complex Poisson manifold .

If (X, σ) and (Y, η) are Poisson analytic spaces, a morphism from (X, σ) to (Y, η) is a

holomorphic map F : X → Y such that the pullback of functions F ∗ : F−1OY → OX is

compatible with the brackets, i.e., {F ∗(f), F ∗(g)} = F ∗{f, g}.

Example 4.2.1. If X is two-dimensional, then X 3
X = 0, and hence any two-derivation σ ∈

H0
(
X,X 2

X

)
defines a Poisson structure. If X is a compact manifold, then X 2

X = ω−1
X is the

anticanonical line bundle and hence the Poisson structure is determined up to rescaling by

the curve C ⊂ X on which it vanishes, which is an anti-canonical divisor.

Example 4.2.2. Let X be an even-dimensional complex manifold and let β ∈ H0
(
X,Ω2

X

)
be

a holomorphic two-form that is closed an nondegenerate, i.e., a holomorphic symplectic

form . The nondegeneracy allows us to form the inverse σ = β−1 ∈ H0
(
X,X 2

X

)
, and the

condition dβ = 0 ensures that this two-derivation is a Poisson structure. Conversely, a

Poisson structure that is nondegenerate can be inverted to obtain a holomorphic symplectic

form.

Example 4.2.3. The Poisson structure on C3 from The Example is defined by the brackets

{x, y} = 2y

{x, z} = −2z

{y, z} = x,
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for the coordinate functions, which generate OC3 . The corresponding two-derivation is

σ = x∂y ∧ ∂z + 2y∂x ∧ ∂y − 2z∂x ∧ ∂z,

which is a global section of X 2
C3 , making (C3, σ) a complex Poisson manifold.

Example 4.2.4. If g is a complex Lie algebra, the dual space g∨ is a complex Poisson manifold,

as follows: we identify g ⊂ Og∨ with the space of linear functions on the dual g∨. Thus g

generates Og∨ as a commutative algebra and we obtain a Poisson bracket {·, ·} on Og∨ by

requiring that

{x, y} = [x, y]

for all x, y ∈ g, where [·, ·] : g × g → g is the Lie bracket. This Poisson structure is known

as the Lie–Poisson structure or the Kirillov–Kostant–Soriau Poisson structure. The

Example corresponds to the case when g ∼= sl(2,C).

Example 4.2.5. Let g be a complex Lie algebra. Then Λ•g inherits a bracket that extends

the Lie bracket on g. An element γ ∈ Λ2g is called a triangular r-matrix if it satisfies

the classical Yang–Baxter equation [γ, γ] = 0. Suppose that X is an analytic space and

ρ : g→ H0
(
X,X 1

X

)
is a Lie algebra homomorphism, i.e., and infinitesimal action of g on X.

If γ ∈ Λ2g is a triangular r-matrix, then its image σ = Λ2ρ(γ) ∈ H0
(
X,X 2

X

)
is a Poisson

structure on X. We will use this approach to construct Poisson structures on projective

space associated with linear free divisors in Section 7.5.

Example 4.2.6. Many moduli spaces in gauge theory and algebraic geometry, including the

moduli spaces parametrizing the meromorphic connections that we studied in Chapter 3,

come equipped with natural Poisson structures whose geometry is intimately connected with

the moduli problem under consideration. See, for example, [14, 15, 23, 24, 25, 26, 57, 100,

105, 118].

When (X, σ) is a Poisson analytic space, there is a natural morphism σ] : Ω1
X → X 1

X

defined by

σ](α)(β) = σ(α ∧ β)

for α, β ∈ Ω1
X. This map is the anchor map for a Lie algebroid structure on Ω1

X, which we

denote by Ω1
X,σ. Notice that this Lie algebroid is a vector bundle if and only if X is smooth.

The bracket is given by the Koszul bracket [91]

[α, β] = Lσ](α)β −Lσ](β)α− d(σ(α ∧ β)).

The image F = Img
(
σ]
)
⊂ X 1

X is involutive and therefore defines a subalgebroid of the

tangent sheaf X 1
X . In particular, when X is a manifold, it is partitioned into orbits which are

immersed submanifolds Y ⊂ X. Moreover, σ restricts to give a nongenerate Poisson structure

on Y. Thus the orbits are holomorphic symplectic manifolds, called the symplectic leaves.
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If (X, σ) is a Poisson analytic space, then we say that a vector field Z ∈X 1
X is a Poisson

vector field if LZσ = 0. In other words, Poisson vector fields are the local infinitesimal

symmetries of σ. We denote by Pois(σ) ⊂ X 1
X the sheaf of Poisson vector fields. Notice

that this sheaf is not an OX-module; it is only a sheaf of complex vector spaces.

For any function f ∈ OX, we have the Hamiltonian vector field σ](df), which is the

derivation OX → OX obtained by bracketing with f :

σ](df) = {f, ·}

We denote by Ham(σ) = Img
(
σ] ◦ d

)
⊂ X 1

X the sheaf of Hamiltonian vector fields. It

follows from the Jacobi identity that every Hamiltonian vector field is Poisson:

Ham(σ) ⊂ Pois(σ) ,

but the inclusion is, in general strict.

Example 4.2.7. In The Example, the Hamiltonian vector fields of x, y and z are the vector

fields

Xx = σ](dx) = 2y∂y − 2z∂z

Xy = σ](dy) = x∂z − 2y∂x

Xz = σ](dz) = 2z∂x − x∂y

on C3 that generate the reflexive Lie algebroid F = Img
(
σ]
)
⊂X 1

C3 .

Example 4.2.8. Let X = C2 with linear coordinates x and y, and let σ = x∂x∧∂y. Then the

vector field ∂y is Poisson. Notice that every Hamiltonian vector field vanishes on the locus

where x = 0, and hence ∂y, which is non-vanishing, cannot be Hamiltonian.

We remark that Poisson vector fields, which are local symmetries, need not extend to

global vector fields: not every local section of Pois(σ) comes from a global one.

Example 4.2.9. Let X = P2. Since X 2
P2 = ω−1

P2
∼= OP2(3), a Poisson structure σ on P2 is

determined up to rescaling by the cubic curve Y ⊂ P2 on which it vanishes. Suppose that Y

is smooth (hence, an elliptic curve) and consider an affine chart C2 ⊂ P2 with coordinates

x, y. Then the Poisson structure has the form

σ|C2 = f∂x ∧ ∂y

where f is a defining equation for Y in this chart. Since the Poisson structure has a factor

of f , the vector field

Z = σ](df)/f
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is holomorphic on all of C2. One easily verifies that Z ∈ Pois(σ) and that it preserves the

curve Y∩C2. However, it cannot extended to a Poisson vector field on P2: indeed, if it were

to extend, then by continuity, the extension would have to preserve Y; i.e., it would be a

section of TP2(− log Y). But a straightforward calculation in sheaf cohomology shows that

TP2(− log Y) has no global sections.

4.3 Poisson subspaces

If (X, σ) is a Poisson analytic space, a Poisson subspace of (X, σ) is an analytic subspace

Y equipped with a Poisson structure η ∈ H0
(
Y,X 2

Y

)
such that the inclusion i : Y → X is a

morphism of Poisson analytic spaces, i.e., it is compatible with the brackets. Notice that if

such an η exists, then it is necessarily unique since the map i∗ : i−1OX → OY is surjective

at every point of Y.

If Y ⊂ X is open, then it inherits in an obvious way the structure of a Poisson subspace

since the bracket is defined on all open sets. However, if Y ⊂ X is closed the condition of

being a Poisson subspace is rather special:

Proposition 4.3.1. Let (X, σ) be a Poisson analytic space and let Y ⊂ X be a closed

subspace with ideal I ⊂ OX. Then the following statements are equivalent

1. Y admits the structure of a Poisson subspace.

2. I is a sheaf of Poisson ideals, i.e., {I,OX} ⊂ I.

3. I is invariant under the action of any Hamiltonian vector field.

4. Y is an invariant subspace for the Lie algebroid Ω1
X,σ in the sense of Definition 2.2.6;

that is, σ](α) preserves I for all α ∈ Ω1
X.

Proof. If i : Y → X is the inclusion, then the map i∗ : i−1OX → OY is a surjective, bracket

preserving morphism with kernel I and so the equivalence of 1 and 2 is immediate. The

equivalence of 2 and 3 follows from the relationship between Hamiltonian vector fields and

the bracket. The equivalence of 3 and 4 is obtained by noting that the Lie algebroid Ω1
X,σ

is generated by exact one-forms and hence the image of the anchor map is generated by

Hamiltonian vector fields.

A function f ∈ OX is Casimir if its Hamiltonian vector field is zero. In other words, f

is Casimir if {f, g} = 0 for all g ∈ OX. In this case, the ideal I ⊂ OX generated by f is a

Poisson ideal: every element of I has the form hf for some h ∈ OX, and

{g, hf} = {g, h}f + h{g, f} = {g, h}f ∈ I

for all g ∈ OX. Thus I is closed under bracketing with arbitrary holomorphic functions.
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Example 4.3.2. Let us describe the (reduced) closed Poisson subspaces in The Example,

where

σ = x∂y ∧ ∂z + 2y∂x ∧ ∂y − 2z∂x ∧ ∂z

on C3. The function f = x2 + 4yz − c is a Casimir for all c ∈ C. The zero set of f − c is

exactly the c-level set of f and is reduced for all c ∈ C. The level sets for c 6= 0 are smooth

symplectic submanifolds, while the level set for c = 0 is the singular cone Y ⊂ C3. Thus

this singular space is a Poisson subspace. The only other reduced closed Poisson subspace

is the origin {0}, which is the singular locus of Y.

We claim that the induced Poisson structure σ|Y ∈ X 2
Y on Y cannot be represented by

any bivector field on Y. Indeed, one can verify that the Hamiltonian vector fields Xx =

σ](dx), Xy = σ](dy) and Xz = σ](dz) generate TY, and hence Xx ∧ XY , Xx ∧ Xz and

Xy ∧ Xz generate Λ2TY. But the pairing of any of these bivector fields with a two-form

µ ∈ Ω2
Y results in a function that vanishes to order at least two at the origin, while the

pairing of σ with dx∧dy, dx∧dz and dy∧dz vanishes only to first order. Hence σ|Y cannot

be described as a bivector field on Y, even though it is the restriction of a bivector field on

C3.

It will be very useful for us to consider a special class of Poisson subspaces that are

invariant under all local symmetries:

Definition 4.3.3. Let (X, σ) be a Poisson analytic space. A closed subspace Y ⊂ X is a

strong Poisson subspace if it is invariant under all of the local infinitesimal symmetries

of σ. In other words, we require that the ideal I ⊂ OX is preserved by LZ for every Poisson

vector field Z ∈ Pois(σ).

Notice an important distinction: for a subspace to be strong, we require it to be preserved

by Poisson vector fields defined on arbitrary open sets in X. It is frequently the case that

such a vector field is not the restriction of any global vector field on X. Thus, asking Y to

be invariant under globally defined vector fields is a strictly weaker condition in general.

As with the case of invariant subspaces for Lie algebroids, we may directly apply Theo-

rem 2.1.10 with F = Ham(σ) or F = Pois(σ) to conclude that the irreducible components,

the singular locus and the reduced subspace of a given Poisson subspace (resp., strong Pois-

son subspace) are themselves Poisson (resp., strong Poisson), and similarly for unions and

intersections.

Since Hamiltonian vector fields are always Poisson, it follows from Proposition 4.3.1 that

strong Poisson subspaces are Poisson subspaces. However, the converse fails, in general:

Example 4.3.4. Let X = C3 with coordinates x, y and z, and consider the Poisson structure

σ = ∂x ∧ ∂y. The function z is a Casimir function. Its level sets are the Poisson subspaces

defined by the symplectic leaves, which give a parallel family of planes. The vector field
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x y

z

Figure 4.1: The Poisson vector field ∂z is transverse to the symplectic leaves of ∂x ∧ ∂y, and
hence they are not strong Poisson subspaces.

Z = ∂z is clearly Poisson but it does not preserve any of these subspaces, and hence none

of them are strong. This situation is illustrated in Figure 4.1.

More generally, strong Poisson subspaces are concentrated where the rank of σ drops:

Proposition 4.3.5. Let X be a connected manifold, and let σ be a Poisson structure on X

which has constant rank, i.e., the rank of the anchor map σ] : Ω1
X → X 1

X is the same at

every point of X. Then the only strong Poisson subspace of X is X itself.

Proof. By Weinstein’s Splitting Theorem [142, Theorem 2.1], we may pick local coordinates

x1, . . . , xk, p1, . . . , pk and y1, . . . , yr near any point in X so that the Poisson structure has

the Darboux form

σ = ∂x1
∧ ∂p2 + · · ·+ ∂xk ∧ ∂pk .

Then all of the coordinate vector fields are Poisson and hence the sheaf Pois(σ) of Poisson

vector fields spans X 1
X . Since X is a connected manifold, the only subspace of X that is

invariant under all of X 1
X is X itself.

Remark 4.3.6. The local normal form used in the proof is obtained by analytic means. For

this reason, the proof is not applicable in the algebraic category and it is conceivable that

the proposition fails if we replace the sheaf of analytic Poisson vector fields with the sheaf

of algebraic Poisson vector fields in the Zariski topology. It would be interesting to study

this issue in more detail.

We will be particularly interested in studying the degeneracy loci of Poisson structures,

where the rank drops. When we defined the degeneracy loci of a Lie algebroid A, we used

the exterior power Λk+1a : Λk+A → Λk+1TX to define the kth degeneracy locus. However, if
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we try to use this definition with the Poisson algebroid A = Ω1
X,σ we find that it is a poor

choice:

Example 4.3.7. Consider the Poisson structure σ = x∂x ∧ ∂y on C2. Clearly, this Poisson

structure vanishes transversally and its zero locus should be defined by the equation x = 0.

However, if we write the anchor map σ] as a matrix in the coordinate basis, we have

σ] =

(
0 −x
x 0

)

and the determinant is x2, which does not give a reduced equation for the zero locus.

The problem is that σ] is skew-symmetric, and hence it is not a “generic” map Ω1
X →X 1

X .

In particular, if we write it locally as a matrix of functions, the determinants of the minors

never give reduced equations for the degeneracy loci. The reason that the determinant of

a skew-symmetric matrix is the square of its Pfaffian. It is therefore much better for us to

work with the Pfaffians, which are modelled by the exterior powers

σk+1 = σ ∧ · · · ∧ σ︸ ︷︷ ︸
(k+1) times

.

This multiderivation gives a natural map Ω2k+2
X → OX and the 2kth degeneracy locus of

σ is the closed analytic subspace Dgn2k(σ) defined by this ideal. The geometry of these

subspaces will be the focus of Chapter 6.

Polishchuk [117] proved that the degeneracy loci are Poisson subspaces and noted that

they are preserved by all Poisson vector fields. We thus have

Proposition 4.3.8. Let (X, σ) be a Poisson analytic space and k ≥ 0. Then the degeneracy

locus Dgn2k(σ) is a strong Poisson subspace of X.

Proof. The proof is similar to Proposition 2.2.9 for Lie algebroids. We simply use the fact

that if µ ∈ Ω2k+2
X , then

LZ(σk+1(µ)) = (LZσ
k+1)(µ) + σk+1(LZµ).

If Z is any Poisson vector field, then LZσ
k+1 = 0, and it follows that the image of σk+1 is

closed under the action of Z, as required.

Example 4.3.9. In The Example, with the Poisson structure

x∂y ∧ ∂z + 2y∂x ∧ ∂y − 2z∂x ∧ ∂z

on C3, the zero locus Dgn0(σ) is the locus where the bracket {f, g} vanishes for all f, g ∈ OC3 .

The corresponding ideal is generated by the elementary brackets {x, y} = 2y, {x, z} = −2z
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and {y, z} = x which defines the origin {0} ⊂ C3 as an analytic subspace with its reduced

structure. Hence, the origin is a strong Poisson subspace.

In what follows, it will be useful for us to consider the singular locus of the space X and

the degeneracy loci together, since they are the pieces of X where the nontrivial behaviour

of the Poisson structure occurs. We therefore make the following

Definition 4.3.10. Let (X, σ) be a Poisson analytic space and suppose that the maximum

rank of σ on X is 2k. The Poisson singular locus of (X, σ) is the strong Poisson subspace

Sing(X, σ) = Xsing ∪ Dgn2k−2(σ) ,

which is the union of the singular locus of X as an analytic space, and the locus where the

rank of σ drops. We say that (X, σ) is regular if X is smooth and σ has constant rank, i.e.,

Sing(X, σ) = ∅.

4.4 Poisson hypersurfaces and log symplectic structures

Let (X, σ) be a complex manifold (or more generally, a normal analytic space) a Poisson

hypersurface is a codimension one analytic space D ⊂ X that is a Poisson subspace. A

Poisson divisor [117] is an element of the free abelian group generated by the reduced

and irreducible Poisson hypersurfaces.

Recall from Section 2.3 that if D ⊂ X is a codimension one analytic space, then the

sheaf of logarithmic vector fields for D is the subsheaf X 1
X (− log D) ⊂ X 1

X consisting of

vector fields that preserve D, and that the corresponding de Rham complex is the complex

Ω•X(log D) of forms with logarithmic singularities along D. We may also speak of logarithmic

multiderivations as being dual to logarithmic forms: X •
X (− log D) = (Ω•X(log D))∨. When

D is a free divisor, so that the logarithmic vector fields form a vector bundle, we have

X •
X (− log D) = Λ•X 1

X (− log D) but this isomorphism may fail if D is not free.

Proposition 4.4.1. Suppose that D ⊂ X is a Poisson hypersurface. Then σ lies in the

subsheaf X 2
X (− log D) ⊂X •

X .

Proof. Since X •
X (− log D) = X •

X (− log Dred), we may assume that D is reduced. Further-

more, since X 2
X (− log D) is reflexive and the singular locus of D has codimension at least

two in X, it is enough to verify the claim on the open set where D is smooth.

Let f ∈ OX be a local equation for D in the neighbourhood of a smooth point x ∈ D.

Near x, the sheaf Ω2
X(log D) is generated as an OX-module by df

f ∧Ω1
X and Ω2

X. It is therefore

sufficient to check that the function σ(df/f, dg) = f−1{f, g} is holomorphic for all g ∈ OX.

But D is a Poisson subspace, and hence the ideal generated by f is Poisson. It follows that

{f, g} = hf for some h ∈ OX, so that f−1{f, g} is holomorphic.
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It follows that when D is a Poisson hypersurface, the anchor map σ] induces a skew-

symmetric Lie algebroid morphism Ω1
X(log D) → X 1

X (− log D), which we also denote by

σ]. As a result, the triple (Ω1
X(log D),X 1

X (− log D), σ) is an example of a triangular Lie

bialgebroid in the sense of Mackenzie and Xu [104]. Notice that we do not require these

Lie algebroids to be vector bundles, but in order to make sense of the duality condition in

the definition of a bialgebroid, we do need the sheaves to be reflexive.

If X is a complex manifold (or more generally, a normal analytic space) of dimension 2n

with n > 0, we can consider Poisson structures for which the anchor map σ] : Ω1
X → X 1

X

is generically an isomorphism. In this case, the degeneracy locus Dgn2n−2(σ) is a Poisson

hypersurface, defined as the zero locus of the section σn ∈ H0
(
X, ω−1

X

)
. Here, as always,

ω−1
X = X 2n

X = det X 1
X is the anticanonical line bundle. In this case, the complement

U = X \Dgn2n−2(σ) is a holomorphic symplectic manifold. For this reason, we say that σ is

generically symplectic.

Proposition 4.4.2. Suppose that (X, σ) is a generically symplectic Poisson manifold, and

let D be a Poisson hypersurface. Then the logarithmic anchor map

σ] : Ω1
X(log D)→X 1

X (− log D)

is an isomorphism if and only if Dred = Dgn2n−2(σ), where Dred ⊂ D is the reduced subspace.

Proof. Since D is a Poison subspace, then the Poisson structure must have rank less than

2n − 1 on D because of the dimension, and hence we always have Dred ⊂ Dgn2n−2(σ). It

remains to prove that the reverse inclusion holds only when Dred = Dgn2n−2(σ).

Let A = X 1
X (− log D). Since A and A∨ = Ω1

X(log D) are reflexive, we only need to

consider the open set where they are locally free (see Section 2.1.2). On this open set the

anchor map σ] : A∨ → A is an isomorphism if and only if σn ∈ detA is nonvanishing. But

A is also equal to X 1
X (− log Dred). Therefore, by Saito’s criterion (Theorem 2.3.3), we have

detA = ω−1
X (−Dred). Thus, the locus where σ] fails to be an isomorphism is precisely the

locus where the section σn ∈ ω−1
X (−Dred) vanishes. But this locus is precisely the divisor

Dgn2n−2(σ)− Dred, and hence σ is an isomorphism if and only if Dgn2n−2(σ) = Dred.

In the case when D = Dgn2n−2(σ) is reduced, the inverse of the isomorphism σ] :

Ω1
X(log D) → X 1

X (− log D) defines a two-form ω ∈ Hom
(
X 2

X (− log D),OX

)
. When D is a

free divisor, the latter sheaf is simply Ω2
X(log D). For this reason, we say that a Poisson

manifold (X, σ) is log symplectic if σ is generically symplectic and the degeneracy divisor

Dgn2n−2(σ) is reduced. (The same definition applies more generally when X is a normal

analytic space.)

Log symplectic Poisson structures were introduced by R. Goto in [64], where they are

used to construct Rozansky–Witten invariants associated with the moduli space of reduced
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SU(2)-monopoles of charge k. One finds some discussion of the cohomology and prequan-

tization of log symplectic structures in [45, 46]. Recently, they have also been studied in

the smooth category [33, 71, 109], where they are also referred to as b-Poisson [74, 127]

structures, and give higher-dimensional analogues of Radko’s topologically stable Poisson

structures on surfaces [120]. In the smooth category, it is assumed that the hypersurface

D = Dgn2n−2(σ) is a manifold. We emphasize that this condition is not enforced in this the-

sis. Indeed, one of our main results in Chapter 6, namely Theorem 6.6.1, will be concerned

with the structure of the singular locus of D.

4.5 Lie algebroids and symplectic leaves

Let (X, σ) be a connected complex Poisson manifold. Associated to σ are a number of Lie

algebroids: among these are the Poisson Lie algebroid Ω1
X,σ and the image Img

(
σ]
)
⊂X 1

X of

the anchor map, which is the tangent sheaf to the symplectic leaves. One of the troublesome

features of the latter algebroid is that is not a vector bundle. In fact, it will often not even

be reflexive. However, its double dual Img
(
σ]
)∨∨ ⊂ X 1

X is reflexive and has the following

description: suppose that dim X = n and that the rank of σ is generically equal to 2k < n.

Consider the map

σk∧ : X 1
X →X 2k+1

X

defined by taking the wedge product with σk. It is easy to see that the kernel of this map

is an involutive subsheaf F ⊂ X 1
X , hence a Lie algebroid. The sections of F are precisely

those vector fields that are tangent to all of the top-dimensional symplectic leaves, as we

saw in The Example for the case when X is the dual of sl(2,C).

Notice that, since F is presented as the kernel of a vector bundle map, it must be reflexive.

Moreover, it coincides with the image of σ] away from the degeneracy locus Dgn2k−2(σ).

Therefore, if the codimension of Dgn2k−2(σ) is at least two, F must be the double dual F∨∨.

Since F serves as a replacement for the tangent bundle to the top-dimensional leaves, it

inherits a symplectic structure:

Proposition 4.5.1. If the codimension of Dgn2k−2(σ) is at least two, then F is a symplectic

Lie algebroid, in the sense that it carries a non-degenerate closed two-form β ∈ H0
(
X,Ω2

F
)
,

where Ω2
F is the dual of Λ2F .

Proof. Away from Dgn2k−2(σ), F is the tangent bundle to the 2k-dimensional leaves, and

hence it carries a symplectic form. Since Ω2
F is reflexive and Dgn2k−2(σ) has codimension

at least two, this form extends to a nondegenerate closed form on all of X.

As was the case with Poisson structures tangent to a hypersurface, the map σ] : F∨ → F
makes (F ,F∨, σ) into a reflexive triangular Lie bialgebroid.



Chapter 4. Poisson structures in complex geometry 85

Notice that the zero locus of the morphism σk∧ is precisely the degeneracy locus Y =

Dgn2k−2(σ) as an analytic space. In the case when dim X = 2k + 1, we therefore have an

exact sequence

0 // F // X 1
X

σk∧ // ω−1
X

// ω−1
X |Dgn2k−2(σ)

// 0 (4.1)

As a result, there is a close relationship between the structure of F and that of Dgn2k−2(σ)

(see also [40, 61]):

Proposition 4.5.2. Suppose that (X, σ) is a connected Poisson manifold of dimension

2k+ 1 and that the rank of σ is generically equal to 2k. If the associated Lie algebroid F =

Ker
(
σk∧

)
⊂ X 1

X is a vector bundle, then every component of Dgn2k−2(σ) has codimension

at most two in X. Conversely, if every component of Dgn2k−2(σ) is smooth of codimension

two (or, more generally, if Dgn2k−2(σ) is Cohen–Macaulay of codimension two), then F is

a vector bundle.

Proof. If F is a vector bundle, the exact sequence (4.1) shows that the projective dimension

of ODgn2k−2(σ) is at most two. But the projective dimension of ODgn2k−2(σ) is an upper bound

for the codimension of every component.

Conversely, if Dgn2k−2(σ) is Cohen–Macaulay of codimension two, then the projective

dimension of ODgn2k−2(σ) is equal to two, and hence F is a vector bundle.

Example 4.5.3. Consider the Poisson structure on C3 defined by

σ = (x∂x + y∂y) ∧ ∂z.

The zero locus of σ is the z-axis, defined by the equations x = y = 0. This locus is smooth

of codimension two and hence F is a vector bundle. Indeed, the vector fields x∂x + y∂y and

∂z give a basis for F : every vector field tangent to the two-dimension symplectic leaves can

be written uniquely as a linear combination of these two. Notice, though, that ∂z does not

lie in the image of σ], and hence F cannot be generated by Hamiltonian vector fields. The

symplectic form on F can be represented by the meromorphic two-form (dxx + dy
y ) ∧ dz

Example 4.5.4. We return to The Example of the linear Poisson structure

σ = x∂y ∧ ∂z + 2y∂x ∧ ∂y − 2z∂x ∧ ∂z

on C3. This Poisson structure vanishes only at the origin, which has codimension three.

Correspondingly, F fails to be locally free there. Instead, it has projective dimension equal

to one: the sequence

0 // Ω3
C3

ισ //// Ω1
C3

σ] // F // 0
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is exact, giving a length-one resolution of F by vector bundles. In this case, F is generated

by Hamiltonian vector fields.



Chapter 5

Geometry of Poisson modules

In this section, we recall the notion of a Poisson module, which serves as the replacement for

a vector bundle with flat connection in Poisson geometry. We then develop several aspects of

their geometry that will be useful in our study of the degeneracy loci of Poisson structures.

5.1 Poisson modules

Let (X, σ) be a complex Poisson manifold or analytic space, and let E be a holomorphic

vector bundle, or more generally a sheaf of OX-modules. A Poisson connection on E is a

C-linear morphism of sheaves ∇ : E →X 1
X (E) satisfying the Leibniz rule

∇(fs) = −σ](df)⊗ s+ f∇s

for all f ∈ OX and s ∈ E . Recall that X 1
X (E) = Hom

(
Ω1

X, E
)
, so if X is a manifold or

E is a vector bundle, we have X 1
X (E) ∼= X 1

X ⊗ E . Thus, a Poisson connection is simply a

connection for the Poisson Lie algebroid Ω1
X,σ (see Section 2.4). When this connection is

flat, we say that E is a Poisson module .

Using a Poisson connection, we may differentiate a section of E along a one-form: if

α ∈ Ω1
X, we set

∇αs = (∇s)(α).

If f ∈ OX is a function, we write

{f, s} = ∇dfs.

87
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This operation satisfies the Leibniz rules

{f, gs} = {f, g}s+ g{f, s}

{fg, s} = f{g, s}+ g{f, s}

for f, g ∈ OX and s ∈ E . The bracket {·, ·} : OX×E → E completely determines the connec-

tion ∇ because Ω1
X is generated by exact forms. Flatness of the connection is equivalent to

the identity

{{f, g}, s} = {f, {g, s}} − {g, {f, s}}

for all f, g ∈ OX and s ∈ E . Thus a Poisson module can alternatively be viewed as a sheaf

that carries an action of the Poisson algebra of functions.

Remark 5.1.1. Let J 1E be the sheaf of one-jets of sections of E . Then a Poisson connection

is an OX-linear map ∇ : J 1E →X 1
X (E) making the following diagram commute:

Ω1
X ⊗ E −−−−→ J 1E

−σ]⊗idE

y y∇
TX ⊗ E −−−−→ X 1

X (E)

In other words, a Poisson connection is a first-order differential operator on E whose symbol

is −σ] ⊗ idE .

Recall from Section 2.4 that every locally free Lie algebroid A on a manifold X comes

equipped with two natural modules: the trivial bundle OX, and the canonical module ωA =

detA⊗ ωX. For Poisson structures, these modules have the following descriptions:

The natural Poisson module structure on OX is given by the composite morphism

−σ]d : OX →X 1
X = X 1

X (OX)

which takes a function to minus its Hamiltonian vector field. Meanwhile, for A = Ω1
X,σ we

have detA = ωX, the canonical bundle of X. Hence ωA = ω2
X. It follows that ωX itself is a

Poisson module, and the module structure is given by the formula

∇αµ = −α ∧ dισµ, (5.1)

for α ∈ Ω1
X and µ ∈ ωX, where ισ denotes interior contraction by σ. For a function f ∈ OX,

we have the identity

{f, µ} = −Lσ](df)µ.

we will refer to this Poisson module as the canonical Poisson module [53, 117]. As we

shall see in Chapter 6, the geometry of the canonical module is intimately connected with
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the structure of the degeneracy loci of σ.

If L is a line bundle (an invertible sheaf) equipped with a Poisson connection ∇, and if

s ∈ L is a local trivialization, we obtain a unique vector field Z ∈X 1
X such that

∇s = Z ⊗ s.

This vector field is called the connection vector field for the trivialization s. Then ∇ is

flat if and only if Z is a Poisson vector field.

Definition 5.1.2. Let (X, σ) be a complex Poisson manifold. The connection vector field

for a local trivialization φ ∈ ωX of the canonical module is called the modular vector field

associated to φ.

5.2 Pushforward of Poisson modules

One useful property of Poisson modules is that they can be pushed forward along Poisson

maps. We now describe this procedure and use it to produce some nontrivial Poisson

modules.

Suppose that φ : X→ Y is a holomorphic map and that E is a vector bundle or coherent

sheaf on X. We may then form the pushforward φ∗E , which is a sheaf on Y. If U ⊂ Y is

an open set, then the sections of φ∗E over U are given by the sections of E on φ−1(U) ⊂ X.

Since we have a pull back map OY(U) → OX(φ−1(U)), the sheaf φ∗E inherits in a natural

way an action of OY, making it into an OY-module. If φ : X → Y is a k-to-one branched

covering of complex manifolds of equal dimension, then the pushforward of a rank-r vector

bundle on X is a rank-kr vector bundle on Y.

Now suppose that X and Y are equipped with Poisson structures, and that E is a Poisson

module on X. If φ is a Poisson map, then the pullback of functions is compatible with Poisson

brackets. The composition OY × φ∗E → φ∗OX × φ∗E with the action of OX on E makes E
into a Poisson module.

Example 5.2.1. Consider X = C2 with coordinates x, y. The Poisson structure

{x, y} = x− y

is invariant under the Z2-action (x, y) 7→ (y, x), and hence the quotient Y = C2/Z2 inherits

a Poisson structure. The map φ : (x, y) 7→ (x + y, xy) gives an isomorphism Y ∼= C2. The

quotient map X→ Y is a two-to-one covering branched over the diagonal, where x = y and

the map is one-to-one.

Using coordinates u = x+ y, v = xy on the quotient, the Poisson structure is given by

{u, v} = u2 − 4v.
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Let us describe the pushforward of the canonical Poisson module ωX to Y. Let µ = dx ∧ dy
be a non-vanishing section of ωX. Then the OY-module E = φ∗ωX is a rank-two vector

bundle, with basis given by the sections s1 = φ∗µ and s2 = φ∗((x − y)µ). Using (5.1), we

readily compute that {x, µ} = {y, µ} = µ. To determine the action of v on s1, we write

{v, s1} = φ∗{φ∗v, µ}

= φ∗{xy, µ}

= φ∗ (x{y, µ}+ y{x, µ})

= φ∗((x+ y)µ)

= φ∗((φ
∗u) · µ)

= us1.

Proceeding in the same manner to compute the rest of the action, we find that the Poisson

connection is given by

∇ = −σ] ◦ d+ ∂u ⊗

(
2 0

0 0

)
+ ∂v ⊗

(
u 0

0 u− 1

)

in the basis t1, t2 for E .

5.3 Restriction to subspaces: Higgs fields and adapted-

ness

When the Poisson structure on X is zero, the Leibniz rule in the definition of a Poisson

module reduces to the requirement of OX-linearity. Thus, a Poisson module structure on a

vector bundle E is determined by a global section

Φ ∈ H0
(
X,X 1

X ⊗ End(E)
)

satisfying the equation Φ ∧ Φ = 0 ∈ X 2
X ⊗ End(E). Such a section is called a Higgs field

with values in the tangent bundle, and the pair (E ,Φ) is a co-Higgs bundle . (In contrast,

a Higgs bundle has a Higgs field takes values in the cotangent bundle.) See [121] for a

detailed study of co-Higgs bundles on P1 and P2.

When the Poisson structure is nonzero, a Poisson module structure is a genuine differ-

ential operator, and is therefore not given by a Higgs field. Nevertheless, as we now explain,

there are still some similar tensors present and they measure some important properties of

the Poisson module.

The first Higgs field arises when we attempt to restrict a Poisson module to a Poisson
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subspace. If the subspace is open, there is no problem, but if the subspace is closed, we

encounter some difficulty. Indeed, if X ⊂ Y is a closed Poisson subspace corresponding to a

Poisson ideal I ⊂ OX, then Y is an invariant subspace for the Lie algebroid Ω1
X,σ, and hence

E|Y is a Ω1
X,σ|Y-module. We wish to know when E|Y defines a Poisson module on Y. To this

end, consider the exact sequence

I/I2 // Ω1
X|Y // Ω1

Y
// 0,

where I/I2 is the conormal sheaf of Y in X. We then have an exact sequence

0 // X 1
Y (E) // X 1

X (E)|Y // Hom
(
I/I2, E|Y

)
,

for any coherent sheaf E . If ∇ is a Poisson connection on E , then the composition

E ∇ // X 1
X (E) // HomOY

(
I/I2, E|Y

)
is OX-linear, giving a section

ΦY
∇ ∈ H0

(
Y,Hom

(
E ⊗ I/I2, E|Y

))
.

This section vanishes identically if and only if (E|Y,∇|Y) defines a map E|Y → X 1
Y (E), i.e.,

a Poisson connection for σ|Y.

Notice that I/I2 inherits the structure of an OY-linear Lie algebra from the Poisson

bracket. When ∇ is flat, ΦY
∇ defines an action I/I2×E|Y → E|Y of this Lie algebra on E|Y.

When Y is a submanifold with normal bundle N , we have N = (I/I2)∨ and the action is

defined by a tensor

ΦY
∇ ∈ H0(Y,NY ⊗ End(E|Y)) .

If the conormal Lie algebra is abelian, this tensor satisfies the equation Φ ∧ Φ = 0, but in

general a correction is required that accounts for the Lie bracket B : Λ2N∨ → N∨; we have

Φ ∧ Φ− Φ ◦B = 0.

Nevertheless, we refer to ΦY
∇ as the normal Higgs field of ∇ along Y.

Recall from Definition 4.3.3 that a strong Poisson subspace is one that is preserved by

all Poisson vector fields. One of the useful aspects of strong Poisson subspaces is that they

behave well with respect to Poisson modules:

Lemma 5.3.1. Let (X, σ) be a Poisson analytic space and let (L,∇) be an invertible Poisson

module (a Poisson line bundle). If the closed analytic subspace Y ⊂ X is a strong Poisson

subspace of X, then the restriction (L|Y,∇|Y) is a Poisson module on Y with respect to the
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induced Poisson structure.

Proof. Choosing a local trivialization s of L, we have

∇s = Z ⊗ s,

where Z is a Poisson vector field. Since Y is a strong Poisson subspace, we have Z(IY) ⊂ IY.

Hence the image of Z ⊗ s in Hom
(
I/I2,L|Y

)
is zero and Z ⊗ s ∈X 1

Y (L), as required.

A second Higgs field arises when we ask the related question of whether a Poisson

connection comes from a connection along the symplectic leaves. Let F = Img
(
σ]
)
⊂ X 1

X

be the image of the anchor map. We wish to know when the Poisson connection is induced

by an action F×E → E by way of the anchor map. In general, F will not be a vector bundle,

but we can still form the quotient sheaf N = X 1
X /F , and consider the exact sequence

0 // F // X 1
X

// N // 0.

If E is a vector bundle, then X 1
X (E) ∼= X 1

X ⊗ E , and the sequence

0 // F ⊗ E // X 1
X (E) // N ⊗ E // 0

is also exact. Given a Poisson connection ∇ on E , the composite morphism

E ∇ // X 1
X (E) // N ⊗ E

is actually OX-linear because the extra term in the Leibniz rule lies in the image of σ].

Therefore this morphism defines a normal Higgs field

Φ∇ ∈ H0(X,N ⊗ End(E)) ,

which measures the failure of the connection vector fields for ∇ to be tangent to the sym-

plectic leaves of σ.

Definition 5.3.2. A Poisson connection ∇ on a vector bundle E is adapted if its normal

Higgs field Φ∇ vanishes. In other words, ∇ is adapted exactly when it is induced by a

morphism E → F ⊗ E ⊂X 1
X (E).

The usefulness of adapted Poisson modules comes from the fact that they restrict well:

Proposition 5.3.3. An adapted Poisson module restricts to a Poisson module on every

closed Poisson subspace.
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Proof. If ∇ is adapted, it is defined by a map E → F ⊗ E . If Y ⊂ X is a closed Poisson

subspace, then we have F(I) ⊂ I, and hence the action OX × E → E descends to an action

of OY = OX/I on E|Y.

In particular, an adapted Poisson module restricts to a Poisson module on any symplectic

leaf Y ⊂ X, which is nothing but a flat connection along Y.

Example 5.3.4. Consider the Poisson structure σ = ∂x ∧ ∂y on X = C3 with coordinates

x, y, z, previously discussed in Example 4.3.4 and Figure 4.1. Any vector field Z induces a

Poisson connection on OX by the formula

∇f = −σ](df) + fZ ∈X 1
X .

Notice that F = Img
(
σ]
)

is generated by ∂x and ∂y, and the normal Higgs field Φ∇ is

just the class of Z in the normal bundle N = X 1
X /F to the symplectic leaves. Hence

the connection is adapted if and only if Z is an OX-linear combination of ∂x and ∂y. In

particular, the connection associated to the Poisson vector field Z = ∂z is not adapted, even

though it is flat.

Figure 5.1: The normal Higgs field for the canonical module of the Poisson structure x∂x∧∂y
is the restriction of the vector field ∂y to the y-axis.

Example 5.3.5. Consider the Poisson structure σ = x∂x ∧ ∂y on C2, which vanishes on the

y-axis Y ⊂ C2. Thus F is generated by x∂x and x∂y, and the quotient X 1
X /F = N is a

torsion sheaf; it is precisely the restriction X 1
X |Y of the tangent bundle of X to a vector

bundle on Y. Using (5.1), the Poisson module structure on ωC2 is readily computed. We

have

∇(dx ∧ dy) = ∂y ⊗ (dx ∧ dy),

and hence the normal Higgs field for the canonical module is

Φ∇ = ∂y|Y 6= 0,

as illustrated in Figure 5.1. We therefore see that ωC2 is not an adapted module for this
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Poisson structure. However, its restriction to the open dense set U = C2 \Y is adapted. In-

deed, on U, the Poisson structure is symplectic and its inverse ω = σ−1 gives a trivialization

of ωU, giving a flat connection along this symplectic leaf.

Furthermore, we notice that Y, being the zero locus of σ, is a strong Poisson subspace.

Correspondingly, the normal Higgs field Φ∇ is tangent to Y, defining a Poisson module

structure on the restriction ωC2 |Y.

5.4 Lie algebroids associated with Poisson modules

Suppose that (X, σ) is a Poisson analytic space and that L is a line bundle. Let AL =

Hom
(
J 1L,L

)
be the sheaf of first-order differential operators on L (the Atiyah algebroid;

see Example 2.2.5). More generally, we denote by AkL the sheaf of totally skew maps

L × · · · × L︸ ︷︷ ︸
k times

→ Lk

that are first-order differential operators in each argument. Just as with multiderivations,

A•L inherits a wedge product and a Schouten bracket.

A flat Poisson connection ∇ determines a section σ∇ ∈ A2
L as follows: if s ∈ L is a

section giving a local trivialization, then we may write the connection as ∇s = Z ⊗ s for a

Poisson vector field Z ∈X 1
X . The operator is then defined by

σ∇(fs, gs) = ({f, g}+ Z(f)g − Z(g)f)s2.

where {·, ·} is the Poisson bracket on X. This expression is independent of the choice of

trivialization. Viewing L as linear functions on the dual L∨, this bracket can be extended

to a Poisson structure on the total space of L∨ that is invariant under the C∗-action; see,

e.g. [87, 117]. Notice that the image of σ∇ under the natural map A2
L →X 2

X is the Poisson

structure σ.

The section σ∇ satisfies [σ∇, σ∇] = 0, making the pair (AL, σ∇) a triangular Lie bialge-

broid in the sense of Mackenzie and Xu [104]. In particular, the dual sheaf A∨L inherits a

Lie bracket, which, together with the composition

a∗ : A∨L
σ]∇ // AL

a // X 1
X ,

givesA∨L the structure of a Lie algebroid. We stress that this construction works in significant

generality: as long as X is reduced and irreducible, AL will be reflexive and hence the usual

discussion of Lie bialgebroids on vector bundles carries through no matter how singular X

is.
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Since A∨L is a Lie algebroid, its orbits define a singular foliation of X. Since the diagram

Ω1
AL

σ]∇ // AL

��
Ω1

X

OO

σ] // X 1
X

commutes, it follows that a∗(AL) contains Img
(
σ]
)
, and thus the leaves of this foliation

contain the symplectic leaves of σ.

Geometrically, the orbits of A∨L are the projections to X of the symplectic leaves on the

total space of L∨. In general, these orbits may be strictly larger than the symplectic leaves.

Indeed, the foliation is generated locally by a connection vector field Z ∈X 1
X together with

the Hamiltonian vector fields Ham(σ). Thus, the two foliations agree exactly when the

module is adapted in the sense of Definition 5.3.2.

In particular, we note that since every Poisson manifold carries two Poisson line bundles

(OX and ωX), it follows that every Poisson manifold comes equipped with two natural

foliations: the usual foliation by symplectic leaves, and the orbits of A∨ωX
. We call the latter

the modular foliation . It would be interesting to study this secondary foliation in greater

detail.

5.5 Residues of Poisson line bundles

In this section, we introduce the notion of residues for Poisson line bundles. These residues

are multiderivations supported on the degeneracy loci of the Poisson structure, and they

encode features of the connection as well as the degeneracy loci themselves.

The basic idea is simple: suppose that (X, σ) is a Poisson manifold and L is a Poisson line

bundle. In a local trivialization s ∈ L, the Poisson connection is determined by a Poisson

vector field Z. When we change the trivialization, Z changes by a Hamiltonian vector field,

which lies in the image of σ]. Therefore, if x ∈ X is a point at which σ has rank 2k or less,

the wedge product Z ∧ σk|x is actually independent of the choice of trivialization, and so

Z ∧ σk|Dgn2k(σ) gives a well-defined tensor supported on the degeneracy locus. Moreover,

since Dgn2k(σ) is a strong Poisson subspace and Z is a Poisson vector field, the resulting

tensor is actually tangent to Dgn2k(σ): in other words, if Dgn2k(σ) is a submanifold, then

we have a section of Λ2k+1TDgn2k(σ), which we refer to as the residue of L.

Since the degeneracy loci of a Poisson structure are typically singular, we need a definition

of the residue that is appropriate for general analytic spaces. We formalize it as follows:

Proposition 5.5.1. Let (X, σ) be a Poisson analytic space and let (L,∇) be a Poisson line
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bundle. Then the morphism defined by the composition

J 1L ∇ // X 1
X (L)

σk // X 2k+1
X (L)

descends, upon restriction to Dgn2k(σ), to a morphism L →X 2k+1
Dgn2k(σ)(L), defining a multi-

derivation

Resk(∇) ∈ H0
(

Dgn2k(σ) ,X 2k+1
Dgn2k(σ)

)
.

Proof. Let Y = Dgn2k(σ). We abuse notation and denote the restricted Poisson structure

by σ ∈ X 2
Y . Since Y is a strong Poisson subspace, Lemma 5.3.1 guarantees that L|Y is a

Poisson module, and so the connection on L restricts to a morphism ∇|Y : J 1
YL →X 1

Y (L).

Consider the commutative diagram

Ω1
Y ⊗ L|Y

��

−σ]⊗idL

%%KKKKKKKKKK

J 1
YL

��

∇|Y // X 1
Y (L)

σk // X 2k+1
Y (L)

L|Y

44iiiiiiiiiii

By exactness of the jet sequence, the composition σk ◦ ∇|Y will descend to give the dashed

arrow we seek provided that σk ∧ σ](ξ) = 0 for all ξ ∈ Ω1
Y. But using the contraction

i : Ω1
Y ⊗X •

Y →X •−1
Y , we compute

σ](ξ) ∧ σk = (iξσ) ∧ σk = 1
k+1 iξ(σ

k+1),

which vanishes identically on Y since σk+1|Y = 0.

Definition 5.5.2. The section

Resk(∇) ∈ H0
(

Dgn2k(σ) ,X 2k+1
Dgn2k(σ)

)
defined by an invertible Poisson module (L,∇) is called the kth residue of ∇. The kth

residue of the canonical module ωX is called the kth modular residue of σ, and denoted

by

Reskmod(σ) ∈ H0
(

Dgn2k(σ) ,X 2k+1
Dgn2k(σ)

)
.

Remark 5.5.3. The modular residue is so named because it locally has the form Z ∧ σk,

where Z is the modular vector field of σ with respect to a local trivialization. In Section 7.6,

we will see a family of examples where the modular residues are all non-vanishing, giving

trivializations of X 2k+1
Dgn2k(σ).
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Example 5.5.4. Let X = C4 with coordinates w, x, y and z. Consider the commuting vector

fields Zw = w∂w, Zx = x∂x, Zy = y∂y and Zz = z∂z, and the generically symplectic Poisson

structure Zw ∧ Zx + Zy ∧ Zz. The modular vector field with respect to the volume form

dz ∧ dx ∧ dy ∧ dz is

Z = Zx + Zz − Zw − Zy,

and the degeneracy locus Dgn2(σ) is the zero locus of

σ2 = 2wxyz∂w ∧ ∂x ∧ ∂y ∧ ∂z,

which is the union of the four coordinate hyperplanes. The first modular residue is the

restriction of Z ∧ σ to Dgn2(σ). One readily checks that Z ∧ σ is tangent to this locus: for

example, on the w = 0 hyperplane W ⊂ C4, we have

Z ∧ σ|W = Zx ∧ Zy ∧ Zz|W

which is tangent to W. It defines multiderivation on Dgn2(σ) that is independent of the

choice of volume form µ

Similarly, the zero locus is the union of the pairwise intersections of the coordinate

hyperplanes, and the zeroth residue is the restriction of Z to this locus. The w = 0 slice of

this situation is illustrated in Figure 5.2.

In the previous example the residues were obtained by restricting global multiderivations

to the degeneracy loci. In general, though, the residue will not be the restriction of a global

Poisson vector field on X:

Example 5.5.5. Let X = P2, and recall that a Poisson structure on X is determined up to

rescaling by the cubic curve Y = Dgn0(σ) ⊂ P2 on which it vanishes. Since Y is a strong

Poisson subspace, any global Poisson vector field on P2 must preserve Y. If Y is smooth, a

computation in sheaf cohomology shows that the only such vector field is 0. Nevertheless

the residue is non-trivial: in fact, Y is an elliptic curve and the residue of any nontrivial

Poisson line bundle on P2 gives a nonvanishing vector field on Y. If the curve is singular,

then the modular residue, thought of as locally-defined a vector field on P2, will vanish at

the singular points, but still the residue will define a trivialization of the line bundle X 1
Y .

Some residues on P2 are illustrated in Figure 5.3.

Remark 5.5.6. The residue of ∇ can also be described in terms of the normal Higgs field

Φ∇ ∈ H0(X,N ): since the rank of σ on Dgn2k(σ) is ≤ 2k, the exterior product of Φ∇ and

σk gives a well-defined section of X 2k+1
X |Dgn2k(σ), and we have

i∗Resk(∇) = Φ∇|Dgn2k(σ) ∧ σ|kDgn2k(σ) ∈X 2k+1
X |Dgn2k(σ),
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x y

z

Figure 5.2: Modular residues for the Poisson structure wx∂w ∧ ∂x + yz∂y ∧ ∂z, shown in
the three-dimensional hyperplane w = 0. The first modular residue is a top multivector
field that is non-vanishing away from the coordinate planes. The planes w = y = 0 and
w = z = 0 are components of the zero locus of σ, and the zeroth modular residue is a vector
field on their union, shown in red.

Figure 5.3: The zero locus of a Poisson structure on P2 is a cubic curve. The red arrows
represent the modular residue Res0

mod(σ).
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where i : Dgn2k(σ)→ X is the inclusion. If Z ∈X 1
X is the connection vector field associated

to a local trivialization of the module, we have

i∗Resk(∇) = (Z ∧ σk)|Dgn2k(σ)

on the domain of Z.

5.6 Modular residues

In this section, we give an explicit and simple formula for the modular residues of a Poisson

structure. To do so, we recall that if σ is a Poisson structure, we can form the Poisson

homology operator [27, 91]

δ = ισd− dισ : Ω•X → Ω•−1
X

with δ2 = 0, giving a differential complex. Under the identification Ω•X
∼= X dimX−•

X ⊗ ωX,

this complex is simply the de Rham complex of the canonical Poisson module. In particular,

if µ ∈ ωX is a volume form, we have δµ = ιZµ, where Z ∈ X 1
X is the modular vector field

with respect to µ.

This operator satisfies the useful identities

[δ, d] = δd+ dδ = 0

and

[δ, ισ] = δισ − ισδ = 0,

from which one readily computes that

d ◦ ιk+1
σ = ιk+1

σ ◦ d− (k + 1)ιkσδ. (5.2)

Using these formulae we can compute the residues in terms of the derivative of the

Poisson structure:

Theorem 5.6.1. For k ≥ 0, denote by

Dσk+1 = j1(σk+1)|Dgn2k(σ) ∈ Ω1
X ⊗X 2k+1

X |Dgn2k(σ)

the derivative of σk+1 along its zero set, and denote by

Tr : Ω1
X ⊗X 2k+2

X →X 2k+1
X
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the contraction. Then the kth modular residue is given by the formula

i∗Reskmod(σ) =
−1

k + 1
Tr(Dσk+1) ∈X 2k+1

X |Dgn2k(σ),

where i : Dgn2k(σ)→ X is the inclusion.

Proof. Let Y = Dgn2k(σ). The question is local, so we may pick a trivialization µ ∈ ωX.

Let Z be the connection vector field with respect to this trivialization, so that ιZµ = δµ.

The residues is given by the restriction of Z ∧ σk, so it suffices to show that

(Z ∧ σk)|Y =
−1

k + 1
Tr(Dσk+1).

We compute

ιZ∧σkµ = ιkσιZµ

= ιkσδµ

= − 1

k + 1
dιk+1
σ µ

by (5.2) and the identity dµ = 0. But ιk+1
σ µ vanishes on Dgn2k(σ), and hence its one-jet

restricts to the derivative

D(ιk+1
σ µ) ∈ Ω1

X ⊗ Ωn−2k−2
X |Y,

where n = dim X. Since the symbol of the exterior derivative is the exterior product ε, we

have that

ιZ∧σkµ|Y =
−1

k + 1
ε(D(ιk+1

σ µ)) ∈ Ωn−2k−1
X |Y.

Now, the Hodge isomorphism X •
X → Ωn−•X defined by µ intertwines interior contraction and

exterior product, so this formula shows that

(Z ∧ σk)|Y =
−1

k + 1
Tr(Dσk+1),

as desired.

Example 5.6.2. Suppose that X is a log symplectic manifold for which the degeneracy divisor

Y = Dgn2n−2(σ) is smooth. Inverting σn gives a meromorphic volume form µ = (σn)−1

with poles on Y, which has a Poincaré residue Res(µ) ∈ H0(Y, ωY). We have the identity

Resn−1
mod(σ) = −nRes(µ)−1 ∈ H0

(
Y, ω−1

Y

)
,

so that the modular residues of top degree are residues in the usual sense.
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Example 5.6.3. For the Poisson structure

σ = (x∂x + y∂y) ∧ ∂z

on C3 considered in Example 6.5.3, the zero locus is the z-axis Z ⊂ C3. To compute the

modular residue, we calculate the derivative

Dσ = (dx⊗ (∂x ∧ ∂z) + dy ⊗ (∂y ∧ ∂z)) |Z,

and contract the one-forms into the bivectors to find

Res0
mod(σ) = −Tr(Dσ) = −2∂z|Z,

giving a trivialization of X 1
Z .



Chapter 6

Degeneracy loci

In this chapter, we undertake a detailed study of the degeneracy loci of Poisson structures

and Lie algebroids, highlighting the similarities and differences to the classical methods used

to study degeneracy loci in algebraic geometry. One of the main themes in this chapter is the

interplay between the properties of the degeneracy loci of a Poisson structure and geometry

of the canonical Poisson module. We use these ideas to give new evidence for Bonal’s

conjecture regarding Poisson structure on Fano varieties.

6.1 Motivation: Bondal’s conjecture

Recall that a line bundle L on a compact complex manifold X is ample if a sufficiently large

power of L can be used to embed X in a projective space. X is Fano if the anti-canonical

line bundle det TX is ample. Examples of Fano manifolds include projective spaces Pn, flag

varieties, and smooth hypersurfaces of degree ≤ n in Pn.

After observing some examples—particularly the Feigin–Odesskii–Sklyanin Poisson struc-

tures on projective space, which we will discuss in Section 7.6—Bondal made the following

conjecture:

Conjecture 6.1.1 (Bondal [19]). Let (X, σ) be a connected Poisson Fano manifold, and

suppose that 2k < dim X. Then the degeneracy locus Dgn2k(σ) has a component of dimension

at least 2k + 1.

This conjecture implies, for example, that the zero locus of a Poisson structure on any

Fano manifold must contain a curve. In dimension three, this conjecture is already a depar-

ture from the generic situation: X 2
X has rank three, so a generic bivector field should only

vanish at isolated points. The effect is even more dramatic in dimension four, where X 2
X

has rank six, and so we expect that the generic section is non-vanishing. We will see that

the situation for other degeneracy loci is similar. Of course, Poisson structures are far from

102
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generic sections; they satisfy the nonlinear partial differential equation [σ, σ] = 0, and it is

this “integrability” which leads to larger degeneracy loci.

One of the interesting aspects of this conjecture is that it is definitely of a global nature:

consider the Poisson structure

x∂y ∧ ∂z + 2y∂x ∧ ∂y − 2z∂x ∧ ∂z

from The Example. This Poisson structure on C3 vanishes at a single isolated point, so the

zero locus does not contain a curve. Hence the estimate of the dimension of Dgn0(σ) in the

conjecture does not apply in this case. The Fano condition—or something like it—seems to

be an essential part of the phenomenon.

Nevertheless, in 1997, Polishchuk provided some evidence in favour of Bondal’s conjec-

ture:

Theorem 6.1.2 ([117, Corollary 9.2]). Let (X, σ) be a connected Fano Poisson manifold.

If the Poisson structure generically has rank 2k, then the degeneracy locus Dgn2k−2(σ) is

non-empty and has a component of dimension ≥ 2k − 1.

In fact, Polishchuk gave the proof in the odd-dimensional “non-degenerate” case in which

the dimension of X is 2k + 1, but as Beauville observes in [10], his proof extends easily to

the more general case stated here. It follows immediately that Bondal’s conjecture holds

for Poisson structures whose rank is ≤ 2 everywhere, and, in particular, for Fano varieties

of dimension ≤ 3.

The basic tool used in Polishchuk’s proof is Bott’s vanishing theorem for the character-

istic classes of the normal bundle to a nonsingular foliation [22]. Polishchuk applies this

theorem to the anti-canonical line bundle ω−1
X of X in order to conclude that an appropriate

power of its first Chern class vanishes on X \ Dgn2k−2(σ). This vanishing would contradict

the ampleness of ω−1
X unless Dgn2k−2(σ) had sufficiently large dimension. The crucial ob-

servation that allows the application of Bott’s theorem is that ω−1
X is the determinant of

the normal bundle to the 2k-dimensional symplectic leaves of σ. One might like to prove

the full conjecture now by repeating the argument on Dgn2k−2(σ). However, ω−1
X can no

longer be identified with the appropriate normal bundle, and so the theorem does not ap-

ply. Moreover, Dgn2k−2(σ) will not, in general, be Fano, so one cannot apply an inductive

argument, either.

In this chapter, we provide further evidence for the conjecture in the even-dimensional

case:

Theorem 6.8.3. Let (X, σ) be a connected Fano Poisson manifold of dimension 2n. Then

either Dgn2n−2(σ) = X or Dgn2n−2(σ) is a hypersurface in X. Moreover, Dgn2n−4(σ) is

non-empty and has at least one component of dimension ≥ 2n− 3.
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In particular, this result shows that Conjecture 6.1.1 holds for Fano varieties of dimension

four.

The statement about Dgn2n−2(σ) is straightforward: this locus is the zero set of the

section

σn ∈ H0(X,det TX) = H0
(
X, ω−1

X

)
,

so it is an anticanonical hypersurface in X unless σn = 0, in which case Dgn2n−2(σ) is all of

X. If Dgn2n−2(σ) is an irreducible hypersurface, it is a Calabi-Yau variety which turns out

to be highly singular. We expect similar behaviour from the lower-rank degeneracy loci.

Showing that Dgn2n−4(σ) has a component of dimension ≥ 2n− 3 is the difficult part of

the theorem. The main idea of the proof is to exploit the fact that, while the restriction of

ω−1
X to the degeneracy locus Dgn2n−2(σ) is not the normal bundle to the symplectic leaves,

it is a Poisson module—that is, it carries a flat “Poisson connection”. While Bott’s theorem

does not apply directly to Poisson modules, we use the ideas developed in the previous

chapter—particularly the notion of adaptendess—to show that the theorem can be applied

on the singular locus of Dgn2n−2(σ). By bounding the dimension of the latter space, we are

able to bound the dimension of Dgn2n−4(σ), as in Polishchuk’s proof.

Before giving the proof Theorem 6.8.3, we will collect several facts about degeneracy

loci in general. We begin by recalling some results from the standard theory of degeneracy

loci of vector bundle maps in algebraic geometry. We then explain that for Lie algebroids

and Poisson structures, the theory is still useful, but it is nevertheless deficient in several

ways. The basic problem is that the integrability conditions imposed on these structures

mean that the degeneracy loci in question are not the “generic” ones for which the standard

theory is suited. Thus, to prove the theorem, we combine the standard theory with the

extra structure present on Poisson manifolds—particularly the canonical module.

6.2 Degeneracy loci in algebraic geometry

The degeneracy loci of vector bundle maps have been well studied in algebraic geometry.

We give a brief overview here and refer the reader to Chapter 14 in Fulton’s book [58] for

a detailed discussion and several references.

Let X be a complex manifold or smooth algebraic variety, and suppose that E and F
are vector bundles on X. Given a morphism ρ : E → F , we are interested in studying the

locus Dgnk(ρ) in X where the rank of ρ is ≤ k. This locus is described by the zero set of the

section Λk+1ρ. The corresponding ideal is the image of the induced map

Λk+1E ⊗ Λk+1F∨ → OX.

Thus, Dgnk(ρ) is defined locally by the vanishing of the (k + 1)× (k + 1) minors of a local
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matrix representation for ρ. There are obviously inclusions

· · · ⊂ Dgnk−1(ρ) ⊂ Dgnk(ρ) ⊂ Dgnk+1(ρ) ⊂ · · ·

We claim that if Dgnk(ρ) is a strict subset of X, then it is necessarily singular along

Dgnk−1(ρ): indeed, since the question is local, we may pick connections on E and F and

compute

∇(Λk+1ρ) = (k + 1)(∇ρ) ∧ Λkρ,

using the Leibniz rule. We therefore see that the derivative of Λk+1ρ vanishes along

Dgnk−1(ρ). It follows that the Zariski tangent space to Dgnk(ρ) at a point x ∈ Dgnk−1(ρ)

is the entire tangent space of X, and hence Dgnk(ρ) must be singular. Notice, though, that

the singular locus might be strictly larger.

If E = F∨ and ρ is skew-symmetric, defining a section of Λ2F , then the definition of the

degeneracy loci above is not appropriate because it does not lead to reduced spaces: the

basic point is that the determinant of a skew-symmetric matrix is the square of its Pfaffian

and hence the determinant does not generate a radical ideal. We therefore work instead

with the exterior powers ρk ∈ Λ2kF and the corresponding map

Λ2kF∨ → OX.

Since the rank is always even, we concern ourselves only with the degeneracy loci Dgn2k(ρ)

for k ≥ 0. As above, we have Dgn2k−2(ρ) ⊂ Dgn2k(ρ)sing.

Every degeneracy locus has an “expected” codimension in X that depends only on the

ranks of the bundles involved and the integer k. For general maps ρ : E → F the expected

codimension of Dgnk(ρ) is c = (e− k)(f − k), where e and f are the ranks of E and F . For

skew-symmetric tensors ρ ∈ Λ2F , the expected codimension of Dgn2k(ρ) is c =
(
f−2k

2

)
.

If X = Cn and ρ is suitably generic, then the expected codimensions give the actual

codimensions of the degeneracy loci of ρ, and these loci will be reduced. In general, though,

the expected codimension only gives an upper bound on the actual codimension of Dgnk(ρ)

in X. This bound is really a result in commutative algebra: celebrated work of Eagon

and Northcott [48] bounds the depth of the ideal defined by the (k + 1) × (k + 1) minors

of a matrix with entries in a local ring, which in turn bounds the codimension. (One is

essentially counting the number of independent constraints imposed by the minors.) For

the skew-symmetric case, one deals instead with the Pfaffians; this case was described by

Józefiak and Pragacz [86]. We remark that the connection between the properties of the

ideal and the codimension fails when we work over the real numbers because they are not

algebraically closed.

In addition to giving a tight bound on the codimension of the degeneracy loci, one

can define a natural class D̂gnk(ρ) ∈ H2d(Dgnk(ρ) ,Z) in the Borel-Moore homology of
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Dgnk(ρ), where d = dim X − c is the expected dimension of the degeneracy locus. When

dim Dgnk(ρ) = d, this class is just the fundamental class. Moreover, there is a natural

cohomology class Pk ∈ H2c(X,Z) such that

i∗D̂gnk(ρ) = Pk ∩ [X] ∈ H2d(X,Z) .

The class Pk is a polynomial in the Chern classes of the bundles involved. This polynomial

depends on the ranks of the bundles and on k, but is independent of the section ρ. One

can therefore conclude that Dgnk(ρ) is non-empty merely by computing with Chern classes.

The existence of such a polynomial was known to Thom but explicit formulae were given by

Porteous [119] for general bundle maps. Formulae in the skew-symmetric case were given

by Harris and Tu [76] and Józefiak, Lascoux and Pragacz [85].

6.3 Degeneracy loci of Lie algebroids

Although we shall focus primarily on the degeneracy loci of Poisson structures, we begin with

a few remarks about general Lie algebroids. We give some results and examples showing

that the degeneracy loci of Lie algebroids are much more complicated than the standard

theory of degeneracy loci discussed in the previous section might suggest.

Suppose that X is a complex manifold of dimension n and that A is a Lie algebroid on X

that is a rank-r vector bundle. As in Section 2.2, we denote by Dgnk(A) the kth degeneracy

locus of the anchor map A → TX.

Proposition 6.3.1. Suppose that Dgnk(A) is non-empty. Then every reduced component

of Dgnk(A) has dimension ≥ k.

Proof. Suppose that Y is a reduced component of Dgnk(A). Then Y is smooth on an

open dense set U ⊂ Y. Since Dgnk(A) is singular along Dgnk−1(A), it follows that U ∩
Dgnk−1(A) = ∅, and hence the anchor map has rank k on all of U. But Y is an A-invariant

subspace, and hence the image of the anchor AU → TX|U lies in the subbundle TU. Therefore

TU has rank ≥ k and the result follows.

This proposition shows that when the degeneracy loci are reduced, their dimension is a

linear function of k. In contrast, the standard theory of degeneracy loci would tell us to

expect the dimension of Dgnk(A) to be n− (n− k)(r− k), which is a quadratic function of

k.

There is a close relationship between the degeneracy loci of a Lie algebroid and the

properties of the subsheaf of TX defined by the image of the anchor.

Proposition 6.3.2. Let A be a Lie algebroid on X (not necessarily a vector bundle) and

let F ⊂ TX be the image of the anchor map. Suppose that F has rank k and that its double-
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dual F∨∨ ⊂ TX is locally free (a vector bundle). Then every component of Dgnk−1(A) has

dimension at least k − 1.

Proof. The vector bundle F∨∨ is naturally a Lie algebroid on X. Considering the compo-

sition A → F∨∨ → TX of the anchors, we see that Dgnk−1(F∨∨) ⊂ Dgnk−1(A). But the

expected dimension of Dgnk−1(F∨∨) is n − (n − (k − 1))(k − (k − 1)) = k − 1, and hence

every component of Dgnk−1(F∨∨) has dimension at least k − 1.

Similarly, some conclusions can be made in the case when the ranks of A and TX agree:

Proposition 6.3.3. Suppose that rank(A) = dim X = n, so that the expected dimension

of Dgnn−1(A) is n − 1. Suppose further that Dgnn−1(A) is a reduced hypersurface. If

Dgnn−2(A) is non-empty, then each of its components has dimension n− 2.

Proof. Let D = Dgnn−1(A) be the hypersurface, which is defined by the determinant of the

anchor map. Since D is reduced, Saito’s criterion (Theorem 2.3.3), shows that D is a free

divisor and the anchor map gives a canonical identification A ∼= TX(− log D). Therefore,

by Theorem 2.3.8, every component of the singular locus Dsing has dimension n− 2. Since

Dsing is A-invariant, the rank of A along Dsing must be ≤ n − 2, and hence every point

of Dsing lies in Dgnn−2(A). Conversely, every point in Dgnn−2(A) is a singular point of D.

Hence Dsing = Dgnn−2(A) as sets and the conclusion follows.

Remark 6.3.4. Notice that according to the standard theory of degeneracy loci, the expected

dimension of Dgn2n−2(σ) in Proposition 6.3.3 is n− 4. Hence, the standard theory predicts

the wrong dimension in this case.

From these results, one is tempted to conjecture that dim Dgnk(A) ≥ k always, giving a

replacement for the expected dimension in the standard theory of degeneracy loci. However,

this proposal fails even for simple Lie-theoretic examples:

Example 6.3.5. Consider the adjoint action of G = SL(3,C) on its Lie algebra g. The only

orbit of dimension ≤ 2 is the origin 0 ∈ g. Hence for the action algebroid g n g, we have

dim Dgn2(gn g) = 0 < 2. We note, however, that Dgn2(gn g) is not reduced since it is

defined by a collection of cubic polynomials (the coefficients of the map Λ3ad : Λ3g → Λ3g

of trivial bundles over g). Hence there is no contradiction with Proposition 6.3.2.

6.4 Degeneracy loci of Poisson structures

For the rest of the chapter, we restrict our attention to the degeneracy loci of Poisson

structures on complex manifolds, although many of the results we discuss should admit

generalizations to other Lie algebroids as well.

Arguing exactly as in Proposition 6.3.2 for Lie algebroids, we have the following property

of reduced degeneracy loci for Poisson strucutres:
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Proposition 6.4.1. Suppose that (X, σ) is a complex Poisson manifold. Then every reduced

component of Dgn2k(σ) has dimension at least 2k.

In light of this result, it is natural to wonder if every component of Dgn2k(σ) has di-

mension at least 2k whenever it is nonempty, but as in Example 6.3.5, a counterexample is

given by the Lie algebra sl(3,C): its coadjoint orbits are the symplectic leaves of the natural

Poisson structure on the dual, and so the only leaf of dimension less than four is the origin.

In order to deal effectively with the degeneracy loci, it is useful to have some control over

their singularities. To this end, we now describe the Zariski tangent space to a degeneracy

locus of a Poisson structure.

At a point x ∈ X where σ has rank 2k, the kernel of the anchor map N∗x ⊂ T∗xX is

a subspace of codimension 2k and inherits a natural Lie algebra structure as the isotropy

algebra of the Poisson Lie algebroid. The bracket has the following simple description: if

f, g ∈ OX are functions such that σ](df) and σ](dg) vanish at x, then df |x, dg|x ∈ N∗x and

their Lie bracket is given by

[df |x, dg|x] = d{f, g}|x ∈ N∗x.

We have the following result, generalizing [117, Lemma 2.5] for the case of the zero locus:

Proposition 6.4.2. Let (X, σ) be a Poisson manifold. Then the Zariski tangent space to

Dgn2k(σ) at a point x ∈ Dgn2k(σ) \ Dgn2k−2(σ) is given by

TxDgn2k(σ) = (T∗xX/[N∗x,N
∗
x])∨

In particular, Dgn2k(σ) is smooth at x if and only its codimension at x is equal to the

dimension of [N∗x,N
∗
x].

Proof. Choose functions g1, . . . , gr whose derivative form a basis for N∗x and choose more

functions f1, . . . , f2k whose derivatives extend the given basis of N∗X to a basis for all of T∗xX.

The conormal space of Dgn2k(σ) is therefore spanned by expressions of the form

d
(
σk+1(dgi1 ∧ · · · ∧ dgim ∧ dfj1 ∧ · · · ∧ dfjn)

)
|x,

where m + n = 2k + 2. Expanding the derivative using the Leibniz rule, one finds that

such an expression can only be nonzero if each of the functions f1, . . . , f2k appears exactly

once, and in this case the expression reduces to a nonzero constant multiple of d{gi1 , gi2}|x,

which is the Lie bracket on N∗x. Hence the conormal space is spanned by the commutator

subalgebra [N∗x,N
∗
x] and the result follows.

This result allows us to constrain the structure of the Higgs field associated with the

conormal sheaf:
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Proposition 6.4.3. Let (X, σ) be a complex Poisson manifold, and let Y be a smooth

irreducible component of Dgn2k(σ), defined by the ideal I ⊂ OX. Then its conormal sheaf

C = I/I2 is a Poisson module and the corresponding Higgs field

Φ(C) ∈ HomDgn2k(σ)(C, End(C))

is traceless.

Proof. Notice that C is a bundle of Lie algebras and the Higgs field is simply the adjoint

action of C on itself, and we may identify the fibre of C at a point x ∈ Y with the commutator

subalgebra [N∗x,N
∗
x]. Since commutator subalgebras are always unimodular, the adjoint

action of C on itself is traceless, as desired.

This description of the Zariski tangent spaces can be extended to a locally free pre-

sentation of the cotangent sheaf of the degeneracy locus. This presentation is an exact

sequence

Ω2k+2
X |Dgn2k(σ)

φk(σ) // Ω1
X|Dgn2k(σ)

// Ω1
Dgn2k(σ)

// 0,

presenting the forms on Dgn2k(σ) as the cokernel of a vector bundle map φk(σ). This bundle

map is just the dual of the one-jet of σk+1 along the degeneracy locus, but it also has an

interpretation in terms of the canonical Poisson module ωX, as we now explain.

Recall from Section 5.6 the Poisson homology operator

δ = ισd− dισ : Ω•X → Ω•−1
X

and the identity

d ◦ ιk+1
σ = ιk+1

σ ◦ d− (k + 1)ιkσδ.

By definition, the conormal sheaf of Dgn2k(σ) is generated by the restriction of forms in the

image of d ◦ ιk+1
σ : Ω2k+2

X → Ω1
X. Since σk+1 vanishes on Dgn2k(σ), the formula above shows

that it is also generated by the image of ιkσδ. One can easily check that the restriction of

this operator to Dgn2k(σ) is OX-linear, so that we have the

Theorem 6.4.4. Let δ be the Poisson homology operator on a complex Poisson manifold

(X, σ). Then the operator ιkσδ : Ω•X → Ω•−2k−1
X restricts to a vector bundle morphism on the

degeneracy locus Dgn2k(σ), giving an exact sequence

Ω2k+2
X |Dgn2k(σ)

ιkσδ // Ω1
X|Dgn2k(σ)

// Ω1
Dgn2k(σ)

// 0

of coherent sheaves.
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6.5 Degeneracy loci of Poisson modules

In this section, we assume that (X, σ) is a complex Poisson manifold. Recall from Section 5.4

that a Poisson line bundle (L,∇) gives rise to a canonical section σ∇ ∈ H0
(
X,A2

L
)
, that is,

a skew-symmetric bidifferential operator σ∇ : L×L → L2. We now study the degeneracy

loci Dgn2k(σ∇) of the Poisson module—the loci where the exterior powers σk+1
∇ vanish.

These loci provide a new family of Poisson subspaces with the property that the Poisson

module is flat along their 2k-dimensional symplectic leaves.

Remark 6.5.1. One could also think of σ∇ as the Poisson structure induced on the total

space of L∨. If Y is the principal C∗-bundle obtained by removing the zero section of

L∨. Set-theoretically, Dgn2k(σ∇) is the image of the 2kth degeneracy locus of the Poisson

structure on Y under the projection.

The degeneracy loci of σ∇ are closely related with those of the Poisson structure, and

with the notion of adaptedness introduced in Definition 5.3.2:

Proposition 6.5.2. The degeneracy locus Dgn2k(σ∇) of an invertible Poisson module (L,∇)

is a Poisson subspace and is equal to the zero locus of the section

i∗Resk(∇) ∈ H0
(
Dgn2k(σ) ,X 2k+1

X |Dgn2k(σ)

)
,

where i : Dgn2k(σ)→ X is the embedding. In particular, we have inclusions

Dgn2k−2(σ) ⊂ Dgn2k(σ∇) ⊂ Dgn2k(σ) .

Moreover, ∇ restricts to a Poisson module on Dgn2k(σ∇) that is adapted on the open set

Dgn2k(σ∇) \ Dgn2k−2(σ).

Proof. Taking exterior powers of the exact sequence

0→ OX → AL →X 1
X → 0,

we obtain the exact sequence

0→X 2k+1
X → A2k+2

L →X 2k+2
X → 0.

The image of σk+1
∇ in X 2k+2

X is simply σk+1. Hence the zero locus of σk+1
∇ is contained in

Dgn2k(σ), and is given by the vanishing of the section

s = σk+1
∇ |Dgn2k(σ) ∈X 2k+1

X |Dgn2k(σ).
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One readily checks using the definition of σ∇ that s has the form

s = Z ∧ σk|Dgn2k(σ), (6.1)

where Z is a connection vector field for ∇ with respect to any local trivialization. But

then s = i∗Resk(∇) by Remark 5.5.6, and so Dgn2k(σ∇) is the zero locus of i∗Resk(∇), as

claimed. Since s has a factor σk, we have Dgn2k−2(σ) ⊂ Dgn2k(σ∇).

We wish to show that the zero locus of s is a Poisson subspace. Given a function f ∈ OX

and using the identity LZσ = 0, we have

Lσ](df)(σ
k ∧ Z) = (Lσ](df)σ

k) ∧ Z + σk ∧ (Lσ](df)Z)

= −σk ∧LZσ
](df)

= −σk ∧ σ](LZdf)

which vanishes on Dgn2k(σ). It follows that the ideal defining Dgn2k(σ∇) is preserved by all

Hamiltonian vector fields, and hence Dgn2k(σ∇) is a Poisson subspace.

Finally, to see that the module is adapted on Dgn2k(σ∇) \ Dgn2k−2(σ), simply notice

that if at some point x ∈ Dgn2k(σ) we have σkx 6= 0, then Zx lies in the image of σ]x if and

only if Zx ∧ σkx = 0, i.e., x ∈ Dgn2k(σ∇).

Example 6.5.3. Consider the Poisson structure σ = (x∂x + y∂y) ∧ ∂z on the affine space

C3 with coordinates x, y and z. Denote by Z ⊂ C3 the z-axis, given by x = y = 0. The

degeneracy loci of the Poisson structure are Dgn2(σ) = C3 and Dgn0(σ) = Z. Every plane

W containing Z is a Poisson subspace, and W \ Z is a symplectic leaf.

The vector field

U = x∂x

is Poisson, and hence it defines a Poisson module structure on OX by the formula

∇f = −σ](df)⊗ 1 + U ⊗ f.

The degeneracy locus Dgn2(σ∇) is given by the vanishing of the tensor

U ∧ σ = xy∂x ∧ ∂y ∧ ∂z,

and hence Dgn2(σ∇) is the union of the x = 0 and y = 0 planes, which are indeed Poisson

subspaces. We therefore see that the inclusions

Dgn0(σ) ⊂ Dgn2(σ∇) ⊂ Dgn2(σ)

are strict in this case.



Chapter 6. Degeneracy loci 112

6.6 Structural results in small codimension

6.6.1 Codimension one: log symplectic singularities

Let (X, σ) a log symplectic Poisson manifold of dimension 2n in the sense of Section 4.4.

Let D = Dgn2n−2(σ) be the degeneracy divisor of σ which is reduced by definition, but need

not be smooth.

Recall from Theorem 2.3.8 that if D is singular, it will be a free divisor if and only if its

singular locus is Cohen–Macaulay of codimension two in X. We note that this condition need

not be satisfied for general log symplectic manifolds: for example, for the log symplectic

Poisson structures of Feigin and Odesskii [56, 57], illustrated in Figure 6.1 and discussed

in Section 7.6, the degeneracy hypersurface is smooth away from a subset of codimension

three.

Remarkably, the codimension of the singular locus can never be more than three and

thus D is quite close to being free when compared to a general singular hypersurface. Indeed,

in this section we will prove the following

Theorem 6.6.1. Let (X, σ) be a log symplectic Poisson manifold of dimension 2n with

degeneracy locus D = Dgn2n−2(σ), and let W = Dsing be the singular locus of D. Then every

component of W has codimension ≤ 3 in X. Moreover, if every component has codimension

three, then the following statements hold:

1. The fundamental class [W] ∈ H2n−6(X,Z) in the cohomology of X is given by

[W] = c1c2 − c3,

where c1, c2, c3 are the Chern classes of X.

2. The complex

0 // ω2
X

σn∇ // A∨ωX
⊗ ωX

σ]∇⊗1 // AωX
⊗ ωX

σn∇ // OX
// OW

// 0

gives a locally free resolution of OW.

3. W is Gorenstein with dualizing sheaf ω−1
X |W.

The proof, which we delay for a moment, is a direct consequence of the following

Proposition 6.6.2. Let (X, σ) be a log symplectic Poisson manifold of dimension 2n with

degeneracy locus D = Dgn2n−2(σ), and let W = Dsing be the singular locus of D. Then

W = Dgn2n−2(σ∇) is a degeneracy locus of the canonical Poisson module.
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Proof. We apply the description of the one-forms on D from Theorem 6.4.4. In this case, it

amounts to an exact sequence

ωX|D
ιn−1
σ δ // Ω1

X|D // Ω1
D

// 0

The singular locus is therefore canonically identified with the zero locus of the section

ιn−1
σ δ|D ∈ ω−1

X ⊗ Ω1
X|D ∼= X 2n−1

X |D

Since δ : ωX → Ω2n−1
X

∼= X 1
X ⊗ ωX is simply the Poisson connection on ωX, the tensor in

question is given locally by σn−1 ∧ Z where Z is the modular vector field. The singular

locus is therefore defined by the simultaneous vanishing of σn−1 ∧ Z and σn, and hence it

coincides with the degeneracy locus of σ∇ (see Proposition 6.5.2).

Figure 6.1: A three-dimensional cross-section of one of Feigin and Odesskii’s elliptic Poisson
structures on P4. The blue surface represents the degeneracy hypersurface D, which is the
secant variety to an elliptic normal curve. The hypersurface D is foliated by two-dimensional
symplectic leaves, represented here by the black curves. The leaves intersect along the
singular locus of D, which has codimension three in the ambient space.

Proof of Theorem 6.6.1. The proof is now a straightforward application of the standard

theory of degeneracy loci. In this case, the vector bundle is the Atiyah algebroid A = AωX
,

which has rank 2n+ 1. Since A is an extension

0 // OX
// A // X 1

X
// 0,
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we have cj(AL) = cj(X) for all j. The statements about the codimension and fundamental

class then follow from the general theory of skew-symmetric degeneracy loci as in [76, 85, 86].

Locally, we are interested in the vanishing of the submaximal Pfaffians of a (2n + 1) ×
(2n + 1) matrix of functions. The fact that such degeneracy loci are Gorenstein when the

codimension is three, and that the free resolutions have the form in question, was proven

by Buchsbaum and Eisenbud [28]. The global version of the resolution for skew-symmetric

bundle maps is described by Okonek in [113]; we simply apply the formula therein to the

tensor σ∇ ∈ Λ2A, noting that for the Atiyah algebroid A, we have detA ∼= ω−1
X .

Notice that that every free divisor D is a degeneracy locus of the Lie algebroid TX(− log D).

Moreover, Buchsbaum and Eisenbud [28] showed that every codimension three Gorenstein

scheme is the degeneracy locus of a skew form. These observations lead the author to wonder

if there might be a sort of converse for Theorem 6.6.1:

Question 6.6.3. Let (D, 0) be the germ of a reduced hypersurface in C2n and suppose that

the singular locus of D is Gorenstein of pure codimension three. Does there exist a germ of

a log symplectic Poisson structure that has D as its degeneracy divisor?

6.6.2 Codimension two: degeneracy in odd dimension

We now treat the case when X is odd-dimensional, say dim X = 2k + 1 and the Poisson

structure generically has rank 2k.

We have the following straightforward generalization of [117, Theorem 13.1], which deals

with the case when dim X = 3.

Proposition 6.6.4. Suppose that (X, σ) is a Poisson manifold of dimension 2k + 1 and

that Y is a connected component of the degeneracy locus Dgn2k−2(σ) that is smooth of

codimension two. Then the conormal sheaf C ⊂ Ω1
X|Y is a sheaf of abelian Lie algebras, and

ω2
Y
∼= OY.

Proof. The first statement is immediate from Proposition 6.4.3 and the fact that any two-

dimensional unimodular Lie algebra is abelian. Let N∨ ⊂ Ω1
X|Y be the kernel of σ]|Y. Since

C is abelian, the bracket on N descends to an action

N∨/C ⊗ C → C.

Since N∨/C is isomorphic to the kernel of the anchor map Ω1
Y → X 1

Y , it is a line bundle

isomorphic to ωY. We therefore obtain an isomorphism

ωY ⊗ C ∼= C

and the result follows from computing the determinants.
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6.6.3 Codimension three: submaximal degeneracy in even dimen-

sion

Let (X, σ) be a Poisson manifold of dimension 2n. Then the conormal Lie algebra N∗x at

a point x ∈ X where the rank of σ is equal to 2n − 4 is a four-dimensional Lie algebra.

Using this fact, we can constrain the structure of the normal Higgs field at a smooth point

of Dgn2n−4(σ):

Proposition 6.6.5. Let (X, σ) be a Poisson manifold of dimension 2n, let x ∈ Dgn2n−4(σ)

be a smooth point. Then Dgn2n−4(σ) has codimension at most three in X. Let Cx ⊂ T∗xX be

the conormal space. If the codimension of Dgn2n−4(σ) is less than three, then Cx is abelian.

If the codimension is equal to three, then one of the following three statements holds:

1. Cx is abelian.

2. dim([Cx,Cx]) = 1 and Cx is isomorphic to the Heisenberg algebra 〈x, y, z| [x, y] = z〉.

3. dim([Cx,Cx]) = 3 and Cx is isomorphic to sl(2,C).

Proof. Since Dgn2n−4(σ) is smooth at x, our description of the Zariski tangent space in

Proposition 6.4.2 implies that Cx = [N∗x,N
∗
x] is the commutator subalgebra of a four dimen-

sional Lie algebra. The result now follows from the classification of four-dimensional Lie

algebras [110] (see also [1]).

Corollary 6.6.6. Let (X, σ) be a complex Poisson manifold of dimension 2n. Suppose that

Y is an irreducible component of Dgn2n−4(σ) that is reduced. Then the codimension of Y is

at most three.

6.7 Non-emptiness via Chern classes

Our goal in this section is to explain how Chern classes can often be used to verify that degen-

eracy loci are non-empty and bound their dimensions. The methods here differ substantially

from the intersection-theoretic approach typical in the study of degeneracy problems. In-

deed, by examining the different Poisson structures on P3 (see Chapter 8), it is apparent

that there cannot be a universal intersection-theoretic formula for the fundamental classes

of degeneracy loci in the Poisson setting: a generic Poisson structure on P3 vanishes on the

union of a curve and a finite collection of points, but the degree of the curve and the number

of isolated points depend on the particular Poisson structure that is chosen, and so they

cannot be invariants of the underlying manifold.

As a result, new techniques are required. Instead of relying on intersection theory, we

make use of the characteristic classes of Poisson modules. In particular, we give a vanishing

theorem for the characteristic classes of adapted modules, and explain how it may be used
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to construct homology classes in the Poisson singular locus. To do so, we will need to use

some basic results regarding the Borel–Moore homology of complex analytic spaces, which

we presently recall. We refer the reader to [58, Chapter 19] for more details.

If X is a complex analytic space, we denote by H•(X) = H•(X,C) its singular cohomology.

A vector bundle E then has Chern classes

cp(E) ∈ H2p(X) .

We denote by Chern(E) the subring generated by the Chern classes.

Similarly we denote by H•(X) the Borel-Moore homology groups of X with complex

coefficients. These groups satisfy the following properties:

1. If Y ⊂ X is a closed subspace with complement U = X \ Y, then there is a long exact

sequence

· · · // Hj(Y) // Hj(X) // Hj(U) // Hj−1(Y) // · · · (6.2)

2. If dim X = n, then Hj(X) = 0 for j > 2n, and H2n(X) is the vector space freely

generated by the n-dimensional irreducible components of X. Moreover, there is a

fundamental class [X] ∈ H2n(X), which is a linear combination of these generators

with coefficients given by the multiplicities of the components.

3. There are cap products Hj(X)⊗Hk(X)→ Hj−k(X) satisfying the usual compatibilities.

Here, as always, dim X denotes the complex dimension of X.

We have the following analogue of Bott’s vanishing theorem in the case of adapted

Poisson modules:

Theorem 6.7.1. Let (X, σ) be a regular Poisson manifold of dimension n, and suppose that

σ has constant rank 2k. If E is an locally free, adapted Poisson module, then its Chern ring

vanishes in degree > 2(n− 2k):

Chernp(E) = 0 ⊂ Hp(X)

if p > 2(n− 2k).

Proof. Since X is smooth and σ has constant rank, the image of σ defines an involutive

subbundle F ⊂ TX. Since E is an adapted Poisson module, the Poisson connection descends

to a flat partial connection ∇ : E → F∨ ⊗ E along F . Therefore the proof of Bott’s

vanishing theorem [22] applies (substituting E for the normal bundle TX/F) and establishes

the theorem.
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Baum and Bott [9] applied Bott’s vanishing theorem to a singular foliation, obtaining

“residues” in the homology of the singular set that are Poincaré dual to the Chern classes

of the normal sheaf of the foliation. In the same way, we apply Theorem 6.7.1 to a locus Y

on which a Poisson module L is generically adapted, obtaining residues in the homology of

the Poisson singular locus of Y that are dual to the Chern classes of L. Notice that we do

not require Y to be a manifold:

Corollary 6.7.2. Let (Y, σ) be an irreducible Poisson analytic space of dimension n, and let

(L,∇) be a Poisson line bundle. Suppose that the rank of σ is generically equal to 2k and the

module is adapted away from the Poisson singular locus Z = Sing(Y, σ) = Ysing∪Dgn2k−2(σ).

If p > n− 2k, then there is a class Rp ∈ H2n−2p(Z) such that

i∗(Rp) = c1(L)
p ∩ [Y] ∈ H2n−2p(Y) ,

where i : Z→ Y is the inclusion. In particular, if

c1(L)
n−2k+1 ∩ [Y] 6= 0

then Z has a component of dimension ≥ 2k + 1.

Proof. Let Y◦ = Y \ Z be the regular locus. Since ∇|Y◦ is adapted, the previous theorem

informs us that c1(L|Y◦)p = 0, and hence

c1(L|Y◦)p ∩ [Y◦] = 0 ∈ H2n−2p(Y◦) .

Appealing to the long exact sequence (6.2), we find the desired class Rp. If

c1(L)
p ∩ [Y] 6= 0,

it follows that Rp 6= 0, and so the statement regarding the dimension of Z now follows from

the vanishing Hj(Z) = 0 for j > 2 dim Z.

Remark 6.7.3. Under certain non-degeneracy conditions, Baum and Bott relate their ho-

mology classes to the local behaviour of the foliation near its singular set. One therefore

wonders whether there may be a connection between the residue multiderivations defined in

Section 5.5 and the homology classes in the Poisson singular locus. It would be interesting

to clarify this issue.

We say that a Poisson line bundle (L,∇) is ample if the underlying line bundle L is

ample. We are particularly interested in applying Corollary 6.7.2 to ample Poisson modules,

because the positivity of their Chern class implies the nonvanishing of the homology classes

Rp described above, placing lower bounds on the dimensions of certain degeneracy loci.
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Lemma 6.7.4. Let (X, σ) be a projective Poisson variety and let (L,∇) be an ample

Poisson line bundle. Suppose that k > 0, and that Y is a closed, strong Poisson sub-

space of Dgn2k(σ∇) that is not contained in Dgn2k−2(σ). Then the Poisson singular locus

Sing(Y, σ|Y) is non-empty and has a component of dimension ≥ 2k − 1.

Proof. Assume without loss of generality that Y is reduced an irreducible. Since Y is a strong

Poisson subspace of Dgn2k(σ∇), the module ∇ restricts to a Poisson module on Y, and we

have Dgn2k

(
σ∇|Y

)
= Y. Hence the pair (Y,∇|Y) satisfies the hypotheses of Corollary 6.7.2.

Let d be the dimension of Y. Then d ≥ 2k because σ|Y has generic rank 2k. Since k > 0,

we have

0 < d− 2k + 1 < d.

Since L is ample, so is L|Y, and hence

c1(L|Y)
d−2k+1 ∩ [Y] 6= 0 ∈ H2(2k−1)(Y)

Therefore

dim Sing(Y, σ|Y) ≥ 2k − 1,

as required.

Corollary 6.7.5. Let (X, σ) be a projective Poisson variety and let (L,∇) be an ample Pois-

son line bundle. Suppose that Dgn2k(σ∇) is non-empty and has a component of dimension

≥ 2k− 1. Then Dgn2k−2(σ) is also non-empty and has a component of dimension ≥ 2k− 1.

Proof. Select an irreducible component Y′0 of Dgn2k(σ∇) of maximal dimension, and let

Y0 = (Y′0)red be the reduced subspace. For j > 0, select by induction an irreducible

component Y′j of Sing
(
Yj−1, σ|Yj−1

)
of maximal dimension, and let Yj = (Y′j)red. We

therefore obtain a decreasing chain

Y0 ⊃ Y1 ⊃ Y2 ⊃ · · ·

of strong Poisson subspaces of Dgn2k(σ∇), with each inclusion strict.

Since X is Noetherian with respect to the Zariski topology, the chain must eventually

terminate, and so there is a maximal integer J such that dim YJ ≥ 2k − 1. We claim that

the rank of σ|YJ is ≤ 2k− 2. Indeed, if it were not, then YJ would satisfy the conditions of

the previous lemma, and so we would find that YJ+1 is non-empty of dimension ≥ 2k − 1,

contradicting the maximality of J .

Corollary 6.7.6. Suppose that (X, σ) is a projective Poisson analytic space which admits

an ample Poisson line bundle (e.g., a Fano variety), and suppose that there exists a strong

Poisson subspace W ⊂ X of dimension 2k. Then Dgn2k−2(σ) has a component of dimension

≥ 2k − 1.
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Proof. W satisfies the hypotheses of Corollary 6.7.5 for any ample Poisson line bundle.

6.8 Fano manifolds

Suppose that σ is a generically symplectic Poisson structure on a Fano manifold X with

dim X = 2n > 2, and let D = Dgn2n−2(σ) be the hypersurface on which it degenerates.

We claim that D must be singular: indeed, if D were smooth then the Poisson structure on

D would have rank 2n − 2 at every point. In particular, we would have a nonzero section

σn−1 ∈ H0
(
D,X 2n−2

D

)
, but this situation is impossible:

Proposition 6.8.1. Suppose that X is a Fano manifold of dimension n > 2 and that Y ⊂ X

is a smooth anti-canonical divisor, then

H0(Y,X q
Y ) = 0

for 0 < q < n− 1.

Proof. The line bundle ωY is trivial by the adjunction formula We therefore have

X q
Y
∼= Ωn−1−q

Y .

But if 0 < q < n− 1, then 0 < n− 1− q < n− 1, and hence

H0
(

Y,Ωn−1−q
Y

)
∼= H0

(
X,Ωn−1−q

X

)
= 0

by the Lefschetz hyperplane theorem and the following well-known lemma.

Lemma 6.8.2. If X is a Fano manifold then H0(X,ΩqX) = 0 for q > 0.

Proof. By the Hodge decomposition theorem, the space in question is the complex conjugate

of Hq(X,OX), which is Serre dual to Hn−q(X, ωX). But ωX is anti-ample, so the latter space

is zero by Kodaira’s vanishing theorem.

Now, using the non-emptiness of the singular locus, we can deduce the non-emptiness of

the degeneracy locus:

Theorem 6.8.3. Let (X, σ) be a connected Fano Poisson manifold of dimension 2n. Then

either Dgn2n−2(σ) = X or Dgn2n−2(σ) is a hypersurface in X. Moreover, Dgn2n−4(σ) is

non-empty and has at least one component of dimension ≥ 2n− 3.

Proof. If the rank of σ is less than 2n everywhere, then Dgn2n−2(σ) = X, and Dgn2n−4(σ) has

dimension ≥ 2n− 3 by Theorem 6.1.2. So, we may assume that σ is generically symplectic,

i.e., that the section σn ∈ H0
(
X, ω−1

X

)
is non-zero.
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Let D = Dgn2n−2(σ) be the zero locus of σn, which is non-empty of dimension 2n − 1

because X is Fano. By our discussion above, D must be singular. By Proposition 6.6.2,

every component of its singular locus must have dimension at least 2n−3. We are therefore

in the situation of Corollary 6.7.5, and we conclude that Dgn2n−4(σ) is non-empty with a

component of dimension ≥ 2n− 3, as desired.

Corollary 6.8.4. Bondal’s Conjecture 6.1.1 holds for Fano manifolds of dimension four.

We can also obtain some evidence for the conjecture on odd-dimensional projective

spaces. The following result shows, in particular, that for any Poisson structure on P5,

there is at least one point at which the Poisson structure vanishes.

Theorem 6.8.5. Let σ be a Poisson structure on P2k+1 with k ≥ 2. Then Dgn2k−2(σ) has

a component of dimension at least 2k − 1, and Dgn2k−4(σ) is non-empty.

Proof. If the rank of σ is < 2k everywhere, then Dgn2k−2(σ) = P2k+1 and Dgn2k−4(σ) has

a component of dimension ≥ 2k − 3 by Polishchuk’s result (Theorem 6.1.2). So, we may

suppose that the rank of σ is generically equal to 2k.

By Theorem 6.1.2 again, we know that Dgn2k−2(σ) has a component of dimension at least

≥ 2k−1. Let Y be the reduced space underlying an irreducible component of Dgn2k−2(σ) of

maximal dimension. There are two possibilities: either dim Y = 2k−1, or Y is a hypersurface.

If dim Y = 2k− 1, we are in the situation of Lemma 6.8.6 and the theorem holds. So, let us

assume that Y is a hypersurface.

If Y is smooth, then either σ|Y is zero, in which case the theorem is proven, or the degree

of Y is < 4 (see Lemma 7.3.5). In the latter case, Y is Fano of dimension 2k, and hence

Dgn2k−4(σ|Y) has a component of dimension ≥ 2k − 3 by Theorem 6.8.3.

If, on the other hand, Y is singular, then its singular locus Ysing is a strong Poisson

subspace of dimension ≤ 2k − 1. Once again, we are in the situation of Lemma 6.8.6 below

and we conclude that Dgn2k−4(σ) is non-empty.

Lemma 6.8.6. Suppose that σ is a Poisson structure on P2k+1 with k ≥ 2. If there is a

strong Poisson subspace Y ⊂ P2k+1 of dimension ≤ 2k − 1, then Dgn2k−4(σ) is non-empty.

Proof. Assume without loss of generality that Y is reduced and irreducible. If the dimension

of Y is less than 2k− 2, then the rank of σ on Y is at most 2k− 4, showing that Dgn2k−4(σ)

is non-empty. Hence, we may assume that the rank of σ|Y is generically equal to 2k.

If the dimension of Y is equal to 2k− 2, the module ω−1
P2k+1 |Y will be adapted on an open

dense set. We are therefore in the situation of Corollary 6.7.6, and we again conclude that

Dgn2k−4(σ) is non-empty.

Suppose now that dim Y = 2k− 1. If Y is singular, then its singular locus has dimension

at most 2k − 2. Replacing Y with its singular locus, we can argue as in the previous two

paragraphs to conclude that Dgn2k−4(σ) is non-empty.
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It remains to deal with the case when Y is smooth of dimension 2k− 1. In this case, let

∇ be the natural Poisson module structure on ω−1
P2k+1 |Y. Since σk|Y = 0 and Y is strong, the

tensor σk∇|Y defines a section µ ∈ H0
(
Y,X 2k+1

Y

)
of the anticanonical line bundle of Y. If µ is

nonvanishing, then the canonical bundle of Y is trivial and σk−1|Y can be viewed as a global

one-form α ∈ H0
(
Y,Ω1

Y

)
. But h1,0(Y) = 0 by the Barth–Lefschetz theorem [8]. Therefore

σk−1 = 0, contradicting the fact that µ contains a factor of σk−1. We conclude that µ must

vanish on a subspace W ⊂ Y of codimension at most one. But then W is a subspace of

Dgn2k−2(σ∇) of dimension at least 2k − 2, and so we conclude from Corollary 6.7.5 that

Dgn2k−4(σ) is non-empty.



Chapter 7

Poisson structures on projective

spaces

In this chapter, we focus our attention on the geometry of Poisson structures on projective

spaces. In particular, we discuss their cohomology and give constructions of some non-trivial

examples. We do so for several reasons: first and foremost, projective spaces support a wide

variety of interesting examples of Poisson structures, a property that seems to be relatively

rare amongst all projective varieties. Indeed, as we shall see, a smooth hypersurface in

projective space can only admit a Poisson structure if its degree is at most three. Second,

since the algebraic geometry of projective spaces is well understood and fairly simple, we

can hope to make some progress in understanding these examples and their classifications.

Third, as we shall recall, Poisson structures on projective space are intimately connected

with quadratic Poisson structures on vector spaces. The latter are, in some sense, the

simplest class of Poisson structures beyond the Poisson structures on the dual of a Lie

algebra and therefore are of significant interest in their own right. Finally, the quantizations

of Poisson structures on projective spaces is a topic of particular interest in noncommutative

algebraic geometry, a theme we shall explore in Chapter 8.

7.1 Review of Poisson cohomology

We begin with a brief review of Poisson cohomology. Let (X, σ) be a complex Poisson

manifold. In [98], Lichnerowicz observed that the operation

dσ = [σ, ·] : X •
X →X •+1

X

122
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of taking the Schouten bracket of a multivector field with σ gives rise to a complex

0 // OX
dσ // X 1

X

dσ // X 2
X

dσ // · · · ,

called the Lichnerowicz–Poisson complex associated to σ. Up to some signs, this

complex is simply the de Rham complex of the Lie algebroid (Ω1
X, [·, ·]σ, σ]) associated to σ.

Of particular interest are the low-degree pieces of this complex. A function f ∈ OX is

dσ-closed if and only if it is Casimir ({f, g} = 0 for all g ∈ OX). Meanwhile a vector field

Z ∈ X 1
X is dσ-closed if and only if LZσ = 0, i.e., Z is an infinitesimal symmetry of σ—a

Poisson vector field. Meanwhile the exact vector fields are those of the form σ](df) for a

function f ∈ OX—the Hamiltonian vector fields.

The Poisson cohomology of (X, σ) is the hypercohomology

H•(σ) = H•(X •
X , dσ)

of this complex of sheaves; in other words, it is the Lie algebroid cohomology of Ω1
X,σ.

In low degree, the Poisson cohomology groups have natural interpretations: H0(σ) is the

space of global Casimir functions, H1(σ) is the tangent space to the Picard group of σ as in

Corollary 2.5.6, H2(σ) is the space of infinitesimal deformations of (X, σ) as a generalized

complex manifold [70, Theorem 5.5], and H3(σ) controls the obstructions to deformations.

When X is compact we have H0(σ) = C since every holomorphic function is constant.

Let us denote by Aut(σ) the group of holomorphic automorphisms of X that preserve σ,

which by [16] is a complex Lie group. Its Lie algebra aut(σ) is isomorphic to the space of

global Poisson vector fields—i.e., the closed global sections of X 1
X . By Corollary 2.5.6, there

is a natural embedding

aut(σ) ↪→ H1(σ) ,

and if the fundamental group of X is finite—for example, if X is a Fano variety—then this

embedding is an isomorphism, so that H0(σ) can be interpreted as the space of infinitesimal

symmetries of σ.

7.2 Multivector fields in homogeneous coordinates

In this section, we describe how multivector fields on projective space are related to mul-

tivector fields in “homogeneous coordinates”, i.e., multivector fields on the corresponding

vector space. We begin by recalling the Helmholtz-type decomposition of polynomial mul-

tivector fields and quadratic Poisson structures on vector spaces as described in [19, 89, 99],

and then explain the connection with projective space, following Bondal [19].
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7.2.1 Helmholtz decomposition on vector spaces

Let V be a complex vector space of dimension n + 1. Denote by X •
V the space of global

polynomial multivector fields on V. In other words, if we pick linear coordinates x0, . . . , xn

on V, the coefficients of a section of X •
V in these coordinates is required to be a polynomial

function. Identifying polynomials with elements in the symmetric algebra Sym•V∗ of the

dual, we see that there is a natural isomorphism

X k
V
∼=
⊕
j≥0

SymjV∗ ⊗ ΛkV.

We denote by

X k,l
V = Symk+lV∗ ⊗ ΛkV

multivector fields that are homogeneous of weight l for the action of C∗.
Recall that the natural flat connection∇ on Ωn+1

V coming from the standard trivialization

of TV induces the so-called BV operator

δ : X •
V →X •−1

V .

If ω ∈ det V∗ is a constant volume form on V, and P : X •
V → ΩdimV−•

V the corresponding

isomorphism, then

δ = P−1 ◦ d ◦ P

where P is the exterior derivative. Thus δ2 = 0. As shown by Koszul [91], this operator

generates the Schouten bracket in the sense that

[ξ, η] = (−1)|ξ|δξ ∧ η − ξ ∧ δη − (−1)|ξ|δ(ξ ∧ η)

for all ξ ∈ X
|ξ|
V and η ∈ X •

V . We say that a multivector fields ξ ∈ X •
V is divergence-free

or solenoidal if δξ = 0, and write X •
V,sol for the space of solenoidal multivector fields.

Let E ∈ X 1
V be the Euler vector field on V. Thus E =

∑n
j=0 xj∂xj . We abuse notation

and use the same symbol for the operator

E = E∧ : X •
V →X •+1

V

of wedging with E. We say that a multivector field ξ ∈ X •
V is vertical if Eξ = 0, and

denote by X •
V,vert the space of vertical multivector fields. The reason for this terminology is

as follows: let P = P(V) be the projective space of lines in V. Then the vertical multivector

fields are exactly the ones which are killed by the projection V \ {0} → P(V).

The following facts are straightforward consequences of the definitions and the basic

identities satisfied by the bracket:
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Lemma 7.2.1. We have

[X •
V,sol,X

•
V,sol] ⊂X •

V,sol

and

[X •
V,vert,X

•
V,vert] ⊂X •

V,vert

Proposition 7.2.2. We have the identity

δE + Eδ = P−1 ◦LE ◦ P

Proof. The operator P intertwines E with the interior product ιE : Ω•V → Ω•−1
V . The result

then follows from the Cartan formula LE = ιEd+ dιE .

Corollary 7.2.3 ([89]). The space X •
V of polynomial multivector fields on V decomposes

as a direct sum

X •
V = X •

V,sol ⊕X •
V,vert,

Moreover, wedging with the Euler vector field gives an isomorphism

E : X k−1
V,sol →X k

V,vert

for 1 ≤ k ≤ dim V.

Proof. Consider the subspace X k,l
V ⊂ X k

V with k, l ≥ 0. Then P sends W to the subspace

P (W) = Symk+lV∗ ⊗ Λn+1−kV∗ ⊂ Ωn+1−k
V . Therefore P (W) is an eigenspace of LE with

eigenvalue n+ 1 + l > 0, and so we have the identity

(δE + Eδ)|W = (n+ 1 + l)idW,

from which the result follows easily.

By [117, Lemma 4.4], the modular vector field of a Poisson structure σ with respect to

any constant volume form on V is given by −δσ. The following result now follows easily:

Theorem 7.2.4 ([19, 99]). Every homogeneous quadratic Poisson structure σ ∈ X 2,0
V has

a unique decomposition

σ = σ0 + Z ∧ E

where σ0 is a unimodular Poisson structure and Z ∈ X 1,0
V is a divergence-free vector field

such that LZσ0 = 0. In this case, the modular vector field of σ is (dim V)Z.

7.2.2 Multivector fields on projective space

There is a close relationship between the Helmholtz decomposition of multivector fields on

a vector space of dimension n+ 1 and the multivector fields on the corresponding projective
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space P = P(V) of dimension n. Notice that a multivector field ξ ∈ X k
V descends to a

multivector field on P if and only if it is invariant under the C∗ action. This is equivalent

to requiring that the coefficients of ξ be homogeneous polynomials of degree k, i.e. that

ξ ∈ X k,0
V ⊂ X k

V . If ξ is homogeneous but not invariant, then it descends to multivector

field on P with values in a line bundle. We formalize this correspondence as follows.

Denote by OP(−1) the tautological line bundle on P whose fibre over a point W ∈ P is

the line W ⊂ V. Its dual is the hyperplane bundle OP(1), and we set OP(l) = OP(1)⊗l for

l ∈ Z. If E is a holomorphic vector bundle or a sheaf of OP -modules, we set E(l) = E ⊗OP(l)

for l ∈ Z.

Recall that the tangent bundle of P sits in an exact sequence

0 // OP // V(1) // TP // 0,

where V is sheaf of sections of the trivial bundle over P with fibre V. Taking exterior powers

of this sequence and tensoring with OP(l) we obtain the exact sequence

0 // X k−1
P (l) // ΛkV(l + 1) // X k

P (l) // 0.

The cohomology of these sheaves can be obtained from the Bott formulae [21] (see also

[114, p. 8]) using the isomorphism ωP ∼= OP(−n− 1):

Theorem 7.2.5. The Betti numbers of the sheaves of twisted multivector fields on Pn are

given by

hq(Pn,X k
Pn(l)) =



(
k+l+n+1
l+n+1

)(
l+n
n−k
)

if q = 0, 0 ≤ k ≤ n and l > −(k + 1)

1 if l = −(n+ 1) and 0 ≤ q = n− k ≤ n(−(k+l+1)
−(l+n+1)

)(−(l+n+2)
k

)
if q = n, 0 ≤ k ≤ n and l < −(k + n+ 1)

0 otherwise.

In particular, if l > −(n+ 1), the sheaves X •
Pn(l) are acyclic, and so we obtain the short

exact sequence

0 // H0
(
P,X k−1

P (l)
) ι // H0

(
P,ΛkV(k + l)

) π // H0
(
P,X k

P (l)
)

// 0,

of global sections. Since the sections of OP(k + l) are naturally identified with the space
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Symk+lV∗ of homogeneous polynomials of degree k + l, there is a natural isomorphism

H0
(
P,ΛkV(k + l)

) ∼= H0(P,OP(k + l))⊗ ΛkV

∼= Symk+lV∗ ⊗ ΛkV

∼= X k,l
V

with the space of weight-l multivector fields on V. As a result, we obtain a short exact

sequence

0 // H0
(
P,X k−1

P (l)
) ι // X k,l

V

π // H0
(
P,X k

P (l)
)

// 0.

for l > −(n + 1). As we have observed, the kernel of π consists of the vertical multivector

fields X k,l
V,vert, and so we obtain natural isomorphisms

X k,l
V,sol = H0

(
P,X k

P (l)
)

and

X k,l
V,vert = H0

(
P,X k−1

P (l)
)

for l ≥ −n. We therefore have the

Theorem 7.2.6. For a vector space V of dimension n+ 1, there are natural isomorphisms

X •
V,vert

∼= det V ⊕
⊕
l≥−n

H0
(
P,X •−1

P (l)
)

and

X •
V,sol

∼=
⊕
l≥−n

H0(P,X •
P (l)) .

Proof. The polynomial multivector fields X k,l
V have l ≥ −k ≥ −(n+1). Hence the discussion

above works for all k and l except the case k = l = n + 1, which corresponds to the

constant covolumes on V. The latter are all vertical and give a one-dimensional vector space

isomorphic to det V.

In the case k = 2 and l = 0, we see that the decomposition of quadratic Poisson structures

in Theorem 7.2.4 is equivalent to the following result of Bondal and Polishchuk

Corollary 7.2.7 ([19],[117]). There is a natural bijective correspondence between the set

of quadratic Poisson structures on V and the set of pairs (σP , Z) where σP is a Poisson

structure on P(V) and Z ∈ aut(σP) is a global Poisson vector field. In particular, every

Poisson structure on V has a unique lift to a unimodular quadratic Poisson structure on V.
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Suppose that σP is a Poisson structure on P(V). Since OP(n+ 1) ∼= ω−1
P is the canonical

bundle, it is naturally a Poisson module, and hence so is OP(1). Any other Poisson module

structure on OP(1) differs from this one by a Poisson vector field. Hence, as Polishchuk

observes [117, Section 12], there is also a natural bijective correspondence between quadratic

Poisson structures on V and pairs (σP ,∇) of a Poisson structure σP on P(V) together with

σP -module structure ∇ on OP(1).

7.2.3 A comparison theorem for quadratic Poisson structures

We will now explain how this decomposition can be extended to Poisson cohomology. Let

σ ∈X 2,0
V be a quadratic Poisson structure on V. Thus [σ,E] = 0 because σ is homogeneous.

Since every element of X k
V,vert has the form E ∧ ξ for some ξ ∈ X •

V , it follows from the

Leibniz rule that the Poisson differential dσ preserves X •
V,vert. The exact sequence

0 // X •
V,vert

// X •
V

// X •
V,sol

// 0

is therefore an exact sequence of complexes. Moreover, if σ is unimodular, so that σ ∈X 2
V,sol,

this sequence of complexes splits because the solenoidal multivector fields are closed under

the Schouten bracket by Lemma 7.2.1.

Corresponding to σ, we have a Poisson structure σP on P(V) and a Poisson module

structure ∇ on OP(1). If l ≥ −n, then all of the sheaves X k
P(V)(l) are acyclic and the

Poisson cohomology H•(σP ,∇,OP(l)) reduces to the cohomology of the complex

0 // H0(P,OP(l))
d∇σP // H0

(
P,X 1

P (l)
) d∇σP // H0

(
P,X 2

P (l)
)

// · · ·

of global sections. Moreover, it is identified with the Poisson complexes (X •−1,l
V,vert, dσ) and

(X •,l
V,sol, dσ) on V.

We arrive at the following result, comparing the Poisson cohomologies of V and P(V):

Theorem 7.2.8. Let σ be a homogeneous quadratic Poisson structure on the vector space

V of dimension n + 1. Let σP be the corresponding Poisson structure on P(V) and ∇
the corresponding Poisson module structure on OP(l). Then there is a natural long exact
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sequence

0 // H0
poly(σ) //

⊕
l≥−n H0(σP ,OP(l))

ssffffffffffffffffffffff

⊕
l≥−n H0(σP ,OP(l)) // H1

poly(σ) //
⊕

l≥−n H1(σP ,OP(l)) // · · ·

· · · //
⊕

l≥−n Hn(σP ,OP(l)) // Hn+1
poly(σ) // det V // 0

where H•poly(σ) is the polynomial Poisson cohomology (the Poisson cohomology computed

using polynomial multivector fields).

In addition, when σ is unimodular, the connecting homomorphisms vanish and we obtain

isomorphisms

Hkpoly(σ) ∼=


⊕

l≥−n H0(σP ,OP(l)) k = 0⊕
l≥−n Hk−1(σP ,OP(l))⊕

⊕
l≥−n Hk(σP ,OP(l)) 1 ≤ k ≤ n

det V ⊕
⊕

l≥−n Hn(σP ,OP(l)) k = n+ 1.

Notice that the maps in the theorem are compatible with the natural gradings on⊕
l≥−n Hk

(
σP ,OP(l)

)
and Hkpoly(σ). (The latter grading is the one using the action of C∗ on

V by Poisson isomorphisms.)

This theorem may be of use in computing Poisson cohomology. On the one hand, one

might wish to compute the cohomology of a Poisson structure σP on Pn by lifting it to

a unimodular Poisson structure on V and computing the relevant piece of the polynomial

Poisson cohomology. This procedure gives a very explicit finite-dimensional linear algebra

computation, but the dimensions of the vector spaces involved grow very rapidly with the

dimension of V, so a direct assault is difficult without the use of computers.

On the other hand, one might start with a quadratic Poisson structure on V and compute

a piece of its cohomology by using the geometry of the corresponding Poisson structure on

projective space. For example, we can prove the following:

Theorem 7.2.9. Let σ be a homogeneous quadratic Poisson structure on C2d+1 whose rank

is generically equal to 2d. Let f be the homogeneous polynomial of degree 2d+ 1 that is the

coefficient of σd∧E with respect to the standard basis. If f is irreducible, then the following

statements hold:

1. The only linear vector fields preserving σ are constant multiples of the Euler field E.

In particular, σ is unimodular.

2. Every polynomial Casimir function is a polynomial in f , i.e. H0
poly(σ) ∼= C[f ].
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3. There is a natural embedding C[f ] · E ⊂ H1
poly(σ).

4. If l ≥ 0 is an integer such that 2d+ 1|pkl for some prime p, then any divergence-free

Poisson vector field for σ whose coefficients are homogeneous polynomials of degree

l + 1 is necessarily Hamiltonian.

Proof. We consider the corresponding Poisson structure σP on projective space P = P2d,

which is generically symplectic and degenerates along the hypersurface D ⊂ P defined by

f . By Theorem 7.2.8, the first statement reduces to showing that the Poisson structure on

P admits no Poisson vector fields, which was proven in [117, Proposition 15.1]. Since the

modular vector field Z of σ must be linear and divergence-free, it follows that Z = 0 and

hence σ is unimodular.

Furthermore, by Theorem 7.2.8, we may compute the Casimir functions for σ as the

direct sum of the spaces of flat sections of OP(l) with l ≥ 0. Since σP is symplectic on P \D,

any nonzero Poisson-flat section of OP(l) must be non-vanishing away from D. Since D is

reduced and irreducible, every such section must be a power of the section σ2d
P that defines

D. But σdP exactly corresponds to the Casimir function f , giving the second statement. The

third statement follows from the second using Theorem 7.2.8 again.

Finally, by Theorem 7.2.8 once again, the fourth statement can be reduced to the com-

putation to the first Poisson cohomology of OP(l), where it becomes a special case of the

remarkable result [117, Theorems 15.3] of Polishchuk, proved using Galois coverings of the

complement P \ D.

7.3 Projective embedding

Let X be a projective analytic space, and suppose that L is a very ample line bundle on

X. Let V = H0(X,L)
∨

. Thus L defines an embedding X ↪→ P(V). We are interested in the

following

Question 7.3.1. If X has a Poisson structure σX and L is a Poisson module, when does

the embedding space P(V) inherit a Poisson structure that restricts to the given one on V?

One sufficient—but highly restrictive—criterion is as follows:

Proposition 7.3.2. Suppose that X is connected, and that the multiplication map

SymkV∗ → H0
(
X,Lk

)
is an isomorphism for k = 2 and injective for k = 3. Then there is a unique pair (σ,∇)

where σ is a Poisson structure on P(V) and ∇ is a Poisson module structure on OP(V)(1)

such that σ|X = σX and OP(V)(1)|X ∼= L as Poisson modules.
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Proof. A Poisson structure on Pn = P(V) together with a Poisson module structure on

OPn(−1) is equivalent to the specification of a quadratic Poisson structure on V, i.e., a

homogeneous Poisson bracket on the graded ring
⊕

k≥0 H0(D,OD(k)) ∼= Sym•V∗, where

V∗ = H0(X,L). Since this ring is generated over C by elements of degree one, it suffices to

define the bracket

{·, ·} : V∗ × V∗ → Sym2V∗

on elements of degree one and to check that the Jacobiator

J : V∗ × V∗ × V∗ → Sym3V∗

(f, g, h) 7→ {f{g, h}}+ {g{h, f}}+ {h{f, g}}

vanishes. But the Poisson module structure on L induces a homogeneous bracket on the

graded ring
⊕

k≥0 H0
(
X,Lk

)
and our assumptions allows us to transfer this bracket to obtain

the data above on Sym•V∗.

It would be interesting to produce some Poisson structure on projective spaces using this

method, but it is not obvious how find subspaces of Pn that satisfy the constraints of the the-

orem and yet also admit Poisson structures with interesting Poisson modules. Nevertheless,

the result does have some potential applications in classifying Poisson structures:

Corollary 7.3.3. Let D ⊂ Pn be a reduced effective divisor of degree at least four, and let

σ and η be Poisson structures on Pn for which D is a Poisson divisor. Then σ = η if and

only if they have the same linearization along D.

Proof. Since D is a Poisson divisor, there is unique σ-module structure ∇ on OPn(D) for

which the inclusion OPn → OPn(D) is a morphism of Poisson modules. The normal bun-

dle ND = OPn(D)|D therefore inherits the structure of a Poisson module, and this Poisson

module on D is exactly the linearization of σ. Since the degree of D is at least four, the pre-

vious proposition applies and hence the map that sends the pair (σ,∇) to the corresponding

Poisson module structure on ND is injective.

Proposition 7.3.4. Let σ be a Poisson structure on Pn with n ≥ 4, and suppose that D is

a smooth Poisson divisor of degree d ≥ 4. Then σ = 0.

Proof. The following lemma show that D admits no Poisson structures. Hence a Poisson

module structure on ND is specified uniquely by a vector field on D. But the proposition also

show that D admits not global vector fields, and hence the linearization of σ is identically

zero. By the previous corollary, σ itself must be zero.

Lemma 7.3.5. Let D ⊂ Pn be a smooth hypersurface of degree d. Then

H0
(
D,X k

D

)
= 0
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for 0 < k < d− 1.

Proof. We have X k
D
∼= Ωn−1−k

D ⊗ω−1
D
∼= Ωn−1−k

D (n+ 1−d) by the adjunction formula. Now

apply the following lemma with q = n− 1− k and l = n+ 1− d.

Lemma 7.3.6. Let D ⊂ Pn be a smooth hypersurface of degree d > 1. Then

H0(D,ΩqD(l)) = 0

for q < n− 1 and l ≤ q.

Proof. For l ∈ Z, consider the restriction exact sequence

0 // ΩqPn(l − d) // ΩqPn(l) // ΩqPn(l)|D // 0.

Using the Bott formulae (see [21] or [114, p. 8]) we have hp(Pn,ΩqPn(l)) = 0 for p + q < n

and l ≤ q. We conclude that

Hp(D,ΩqPn(l)|D) = 0, for p+ q < n− 1 and l < q. (7.1)

The exact sequence

0 // N∨D // Ω1
Pn |D // Ω1

D
// 0

and the identification N∨D ∼= OD(−d) give the exact sequence

0 // Ωq−1
D (l − d) // ΩqPn(l)|D // ΩqD(l) // 0

for l ∈ Z. By repeated use of the corresponding long exact sequence and Equation 7.1, we

find a sequence of injections

H0(D,ΩqD(l)) ↪→ H1
(

D,Ωq−1
D (l − d)

)
↪→ · · · ↪→ Hq(D,OD(l − qd))

for q < n−1 and l ≤ q. But the rightmost group vanishes for d > 1 by the Kodaira–Nakano

vanishing theorem, giving the result.

7.4 Poisson structures on Pn admitting a normal cross-

ings anticanonical divisor

The structure of anticanonical Poisson divisors on projective space is heavily constrained

by the following theorem of Polishchuk:
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Theorem 7.4.1 ([117, Theorem 11.1]). Suppose that σ is a nonzero Poisson structure on

Pn and that D ⊂ Pn is an anti-canonical Poisson divisor that is the union of m smooth

components with normal crossings. Then m ≥ n− 1.

It follows that we must have

D = H + D′

where H = H1 + · · ·+Hn−3 is a union of hyperplanes, and D′ = D1 + . . .+Dk is a degree-four

divisor with at least two components. Hence the only possibilities for the degrees (d1, . . . , dk)

of the components of D′ are (1, 1, 1, 1), (1, 1, 2), (1, 3) and (2, 2).

Definition 7.4.2. A Poisson structure on Pn has normal crossings type (d1, . . . , dk)

if it admits a normal crossings anti-canonical Poisson divisor that is the union of n − 3

hyperplanes and k ≥ 2 smooth components of degrees d1 ≤ . . . ≤ dk.

Remark 7.4.3. For P3, each of the four normal crossings types gives an irreducible component

in the space of Poisson structures; see Chapter 8.

Notice that if D is a normal crossings anticanonical divisor, then it is free, and Saito’s

criterion (Theorem 2.3.3) gives det TPn(− log D) = ω−1
Pn (−D) ∼= OPn . We conclude that

X 2
Pn(− log D) ∼= Ωn−2

Pn (log D), and hence, after a choice of trivialization for ω−1
Pn (−D), a

Poisson structure of normal crossings type is uniquely determined by a logarithmic (n− 2)-

form satisfying an appropriate integrability condition. The complete description of such

Poisson structures will be the subject of future work by the author; for now, we give some

examples of type (1, 1, 1, 1) and (1, 3):

Example 7.4.4. If we choose homogeneous coordinates x0, . . . , xn, any bracket of the form

{xi, xj} = λijxixj

with λij = −λji ∈ C for 0 ≤ i, j ≤ n is a Poisson bracket, and induces a Poisson structure of

normal crossings type (1, 1, 1, 1) on Pn. Such a bracket is sometimes called log canonical

or skew polynomial .

Example 7.4.5. Suppose that x0, . . . , x4 are linear coordinates on C5 and f is a homogeneous

cubic polynomial. The two-form

α̃ = 3
dx0

x0
∧ dx1

x1
− dx0

x0
∧ df
f

+
dx1

x1
∧ df
f

is invariant under the action of C∗ and the interior product ιEα̃ with the Euler vector field

is zero. Hence α̃ descends to a two-form α on P4 with logarithmic singularities along the

divisor D = H0 + H1 + Y, where H0 and H1 are the hyperplanes corresponding to x0 and x1,

and Y is the cubic hypersurface defined by f . The two-form α is closed and has rank two.
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It therefore defines a Poisson structure on P4 by the formula

{g, h} = 〈dg ∧ dh ∧ α, µ〉

where µ is any fixed element of the one-dimensional space of sections of ω−1
P4 (−D). This

Poisson structure generically has rank two. The rational functions
x3
0

f and
x3
1

f on P4 are

Casimir, and hence the symplectic leaves are the surfaces in the net spanned by the triple

planes 3H0 and 3H1 and the cubic Y.

7.5 Poisson structures associated with linear free divi-

sors

Recall from Section 2.3 that a free divisor in a complex manifold X is a hypersurface Y ⊂ X for

which the sheaf X 1
X (− log Y) of logarithmic vector fields is locally free. When X = Cd+1 there

is a special class of free divisors—the linear free divisors [66]—for which TCd+1(− log Y)

has a basis made up out of d+1 homogeneous linear vector fields. It follows immediately from

Saito’s criterion (Theorem 2.3.3) that Y must be homogeneous degree d+ 1, and therefore

its projectivization D = P(Y) ⊂ Pd is an anticanonical divisor for which X 1
X (− log D) is a

globally trivial vector bundle.

The divergence-free vector linear vector fields tangent to Y form a Lie algebra of dimen-

sion d, which is identified with the space g = H0
(
Pd,X 1

X (− log D)
)

of global logarithmic

vector fields on Pd. Therefore, g is a Lie algebra of dimension d which acts faithfully on

Pd. Hence, for any element γ ∈ Λ2g of rank 2k with [γ, γ] = 0 (a triangular r-matrix; see

Example 4.2.5), we obtain a nonzero Poisson structure on Pd of generic rank 2k. In par-

ticular, if d = 2n is even and we find an r-matrix of rank 2n, then we obtain a generically

symplectic Poisson structure σ on P2n whose degeneracy hypersurface is the free divisor:

Dgn2n−2(σ) = D.

Linear free divisors in Cd+1 for d ≤ 3 were classified in [66]. For d = 2, there are two

isomorphism types: the hypersurfaces with equations of the form xyz = 0 or (y2 +xz)z = 0.

The corresponding generically symplectic Poisson structures on P2 are the ones for which

the cubic curve of zeros is the union of three lines in general position or the union of a

smooth conic and a tangent line, illustrated in Figure 7.1.

Work in progress of B. Pike gives a conjectural classification of linear free divisors in

C5. We thank him for sharing his work with us. Using his list, one can construct many

examples of log symplectic Poisson structures on P4. We close this section by exploring one

such example, which is similar in spirit to the normal crossings type (1, 3), except that the

cubic hypersurface is singular. In contrast to the example of type (1, 3) given in the previous

section, this Poisson structure is generically symplectic.
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(a) xyz = 0 (b) (y2 + xz)z = 0

Figure 7.1: Log symplectic Poisson structures on the projective plane associated with linear
free divisors in C3.

Example 7.5.1. Let x1, . . . , x5 be coordinates on C5. The zero set of the homogeneous

quintic polynomial

f = x3x5(x1x
2
3 − x3x4x5 + x2x

2
5)

defines a linear free divisor Y ⊂ C5. A straightforward calculation using Saito’s criterion

(Theorem 2.3.3) shows that the linear vector fields

Z1 = x3∂x2
+ x5∂x4

Z2 = 4x1∂x1
− 6x2∂x2

− x3∂x3
− x4∂x4

+ 4x5∂x5

Z3 = x5∂x1 + x3∂x4

Z4 = −6x1∂x1 + 4x2∂x2 + 4x3∂x3 − x4∂x4 − x5∂x5

together with the Euler vector field

E =

5∑
i=1

xi∂xi

form a global basis for TC5(− log Y). One readily computes that the only nontrivial Lie

brackets between the vector fields are

[Z2, Z1] = 5Z1

and

[Z4, Z3] = 5Z3.

As a result, the bivector field Z1 ∧Z2 +Z3 ∧Z4 is a quadratic Poisson structure on C5. The
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elementary brackets have the form

{x1, x2} = 4x2x5 − 4x1x3 {x3, x5} = 0

{x1, x3} = 4x3x5 {x2, x5} = 4x3x5

{x1, x4} = 6x1x3 − 4x1x5 − x4x5 {x2, x4} = 6x2x5 − 4x2x3 − x3x4

{x1, x5} = −x2
5 {x2, x3} = −x2

3

{x4, x5} = 4x2
5 − x3x5 {x3, x4} = x3x5 − 4x2

3.

Let us denote by σ the corresponding Poisson structure on P4. Then σ is generically

symplectic and degenerates along the hypersurface D = Dgn2n−2(σ) = P(Y) ⊂ P4. This

hypersurface is the union D = H1 ∪H2 ∪W of the two hyperplanes H1,H2 defined by x3 = 0

and x5 = 0, and the singular cubic W defined by x1x
2
3−x3x4x5+x2x

2
5 = 0. The set-theoretic

singular locus of W is the intersection of H1 and H2

The hyperplanes H1 and H2 are strong Poisson subspaces. Moreover W ∩ H1 is also a

strong Poisson subspace, and is the union of the plane defined by the ideal (x3, x2) and the

triple plane defined by (x3, x
3
5). A similar description holds for W ∩ H2.

The Poisson vector fields for this Poisson structure are readily computed: since D is a

strong Poisson subspace, every Poisson vector field must be tangent to D and must therefore

be a linear combination of Z1, Z2, Z3 and Z4. Using the bracket relations, one easily verifies

that the only linear combinations that annihilate σ are the linear combinations Z1 and Z3.

Hence

H1(σ) = aut(σ) = C 〈Z1, Z3〉

is an abelian Lie algebra of dimension two. This Lie algebra integrates to an action of C2 on

P4 by translations, and so the closure of the orbit through a point p ∈ P4 \D is a two-plane

P2
p ⊂ P4. From the form of the Poisson structure, we see that this two-plane is coisotropic.

In particular, its intersection with the symplectic manifold P4 \ D is Lagrangian.

If we let G = Gr(3, 5) be the Grassmannian parameterizing projective two-planes in P4,

there is a two-dimensional subvariety V ⊂ G consisting of two-planes to which Z1 and Z2

are tangent. We therefore have a rational map

Φ : P4 99K V

which sends a point p ∈ P4\D to the closure of its C2-orbit, giving a Lagrangian fibration.

7.6 Feigin–Odesskii elliptic Poisson structures

In this section, we apply our methods to Poisson structures on projective space associated

with elliptic normal curves. Let X be an elliptic curve, and let E be a stable vector bundle



Chapter 7. Poisson structures on projective spaces 137

over X of rank r and degree d, with gcd(r, d) = 1. Feigin and Odesskii [56, 57] have explained

that the projective space Pd−1 = P(Ext1
X(E ,OX)) inherits a natural Poisson structure; see

also [118] for a generalization of their construction.

For the particular case when E = L is a line bundle of degree d, the projective space is

Pd−1 = P(H1(X,L∨)) = P(H0(X,L)
∨

)

by Serre duality. Hence X is embedded in Pd−1 as an elliptic normal curve of degree d by

the complete linear system associated to L.

The vector space H1(X,L∨) inherits a homogeneous Poisson structure [19, 56]. This

homogeneous Poisson structure has a unique homogeneous symplectic leaf of dimension

2k + 2, given by the cone over the k-secant1 variety Seck(X) [56]—that is, the union of all

the k-planes in Pd−1 which pass through k + 1 points on X (counted with multiplicity). It

follows that the induced Poisson structure σ on Pd−1 has rank 2k on Seck(X) \ Seck−1(X),

and so

Dgn2k(σ) ∩ Seck+1(X) = Seck(X)

for all k < (d− 1)/2. When d = 2n+ 1 is odd, we have the equality

Seck(X) = Dgn2k(σ)red

of the underyling reduced schemes, because σ is symplectic on P2n \ Secn−1(X). When d is

even, though, Dgn2k(σ) may have additional components. For example, when d = 4, the

Poisson structure on P3 vanishes on the elliptic curve X ⊂ P3 together with four isolated

points [117]. We believe that Seck(X) is always a component of Dgn2k(σ) and that the latter

scheme is reduced; see Conjecture 7.6.8.

The secant varieties have been well-studied:

Theorem 7.6.1 ([65, §8]). The secant variety Seck(X) enjoys the following properties:

1. Seck(X) has dimension

dim Seck(X) = 2k + 1

and degree

deg Seck(X) =

(
d− k − 2

k

)
+

(
d− k − 1

k + 1

)
.

2. Seck(X) is normal and arithmetically Gorenstein. Its dualizing sheaf is trivial.

3. Seck(X) \ Seck−1(X) is smooth.

1We warn the reader that our index k differs from other sources.
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Remark 7.6.2. Since Seck(X) is contained in Dgn2k(σ), we have that

dim Dgn2k(σ) ≥ 2k + 1

for 2k < d− 1 in accordance with Conjecture 6.1.1. Indeed, Bondal cited these examples as

motivation for his conjecture.

With this information in hand, we can now make a conclusion about the singular scheme

of the highest secant variety of an odd-degree curve:

Theorem 7.6.3. Let X ⊂ P2n be an elliptic normal curve of degree 2n + 1, and let Y =

Secn−1(X), a hypersurface of degree 2n+1. Then the singular subscheme Ysing of Y is a (2n−
3)-dimensional Gorenstein scheme of degree 2

(
2n+2

3

)
whose dualizing sheaf is OYsing (2n+1).

Proof. By the discussion above, Y is the reduced scheme underlying the degeneracy locus

Dgn2n−2(σ), which is an anti-canonical divisor. Since the degree of ω−1
P2n is 2n+ 1, we must

have Y = Dgn2n−2(σ) as schemes. The singular subscheme is supported on the subvariety

Secn−2(X), which has codimension three in P2n. By Theorem 6.6.1, Ysing is Gorenstein with

dualizing sheaf given by the restriction of ω−1
P2n
∼= OPn(2n+1). Its fundamental class is given

by c1c2 − c3, where cj is the jth Chern class of P2n. But cj has degree
(

2n+1
j

)
, and hence

one obtains the formula for the degree of Ysing by a straightforward computation.

Corollary 7.6.4. In the situation of the previous theorem, Ysing is not reduced. Its geo-

metric multiplicity (that is, the length of its structure sheaf at the generic point) is equal to

eight.

Proof. The reduced scheme underlying Ysing is Secn−2(X). Using the formula in Theo-

rem 7.6.1, we find that the degree of Ysing is eight times that of Secn−2(X), and the result

follows.

We now return to the case when d is arbitrary and study the modular residues:

Proposition 7.6.5. The modular residue

Reskmod(σ) ∈ H0
(

Dgn2k(σ) ,X 2k+1
Dgn2k(σ)

)
induces a non-vanishing multiderivation on Seck(X) ⊂ Dgn2k(σ), in accordance with the fact

that the dualizing sheaf of Seck(X) is trivial.

Proof. Because ωPd−1
∼= OPd−1(−d), the tautological bundle is a Poisson module. With

respect to this Poisson module structure, the residues of OPd−1(−1) are non-zero multiples

of the residues of ωPd−1 . We may therefore work with OPd−1(−1) instead of ωPd−1 .

Let V = H1(X,L∨) so that Pd−1 = P(V). Let V′ be the total space of the tautological

bundle OPd−1(−1) and let π : V′ → Pd−1 be the projection. Being the total space of an
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invertible Poisson module, V′ is a Poisson variety. For a subscheme Y ⊂ Pd−1, the preimage

π−1(Y) in V′ is a Poisson subscheme if and only if Y is a Poisson subscheme of Pd−1 and

∇|Y is a Poisson module. (This fact follows from the definition of the Poisson bracket on V′

in Section 5.4.)

The key point is that the blowdown map V′ → V is a Poisson morphism; see Re-

mark 7.6.6. Let Y = Seck(X) \ Seck−1(X) and Y′ = π−1(Y). Then the blowdown identifies

Y′ \ 0 with the cone over Y in V, which is a 2k-dimensional symplectic leaf of the Poisson

structure. Hence Y′ \ 0 is a symplectic leaf in V′. In particular, it is a Poisson subvariety,

and so Y ⊂ Pd−1 is a Poisson subscheme to which OPd−1(−1) restricts as a Poisson mod-

ule. It follows that the residue is tangent to Y. By Remark 6.5.1, the residue is actually

non-vanishing on Y.

To conclude that the residue gives a non-vanishing multiderivation on all of Seck(X),

we note that the sheaf X 2k+1
Seck(X) is reflexive. We know from Theorem 7.6.1 that Seck(X) is

normal and Seck−1(X) = Seck(X) \Y has codimension two, so it follows that the residue on

Y extends to a non-vanishing multiderivation on all of Seck(X).

Remark 7.6.6. The fact that the blowdown is a Poisson morphism in this case is not obvious;

we sketch the proof here. One can that the canonical lift of a Poisson structure on P(V)

to a unimodular Poisson structure on V as in Corollary 7.2.7 is given by blowing down the

Poisson structure on the total space of OPd−1(−1) obtained from the canonical module as

in the proof of the Proposition 7.6.5.

On the other hand, the Poisson structures of Feigin and Odesskii have been proven

to be unimodular as a consequence of their invariance under the action of the Heisenberg

group [115]. Therefore Bondal’s theorem implies that they must coincide with the Poisson

structure obtained from the blow-down.

Remark 7.6.7. This proposition shows that in every dimension, there are examples of Poisson

manifolds whose modular residues are all nonzero. We therefore argue that these residues

provide a possible explanation for the dimensions appearing in Bondal’s conjecture. Since

these residues are non-vanishing on the secant varieties, it may be reasonable to expect the

degeneracy loci of Poisson structures to be highly singular Calabi-Yau varieties.

We close with a conjecture regarding the degeneracy loci of the Feigin-Odesskii Poisson

structures:

Conjecture 7.6.8. The degeneracy loci of the Feigin-Odesskii Poisson structures on Pd−1

are reduced.

Evidence. We focus on the case of Poisson structures on P(H1(X,L∨)) for L a line bundle

of degree d.

According to Proposition 7.6.5, the modular residue on every degeneracy locus Dgn2k(σ)

is non-trivial. This is a sort of genericity condition on the one-jet of σk+1, and hence it may
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be reasonable to expect that the zero scheme of σk+1 is reduced. For d = 2n + 1 an odd

number, the degeneracy divisor Dgn2n−2(σ) is always reduced, as we saw in Theorem 7.6.3.

In general, though, the non-triviality of the residue is not sufficient to conclude that Dgn2k(σ)

is reduced.

We also have explicit knowledge in low dimensions: for d = 3, the zero locus is the

smooth cubic curve X ⊂ P2, which is the reduced anti-canonical divisor.

For d = 4, the formulae in [112, 115] show that the two-dimensional symplectic leaves

form a pencil of quadrics in P3 intersecting in a smooth elliptic curve. The zero scheme of

the Poisson structure is reduced and consists of the elliptic curve, together with four isolated

points [117]. (We shall see this Poisson structure again in the next Chapter 8.

For d = 5, we checked using Macaulay2 [68] and the formulae in [112, 115] that the

degeneracy loci are reduced.



Chapter 8

Poisson structures on P3 and

their quantizations

In this chapter, we study the geometry of Poisson structures on P3 and their quantizations.

We relate Cerveau and Lins-Neto’s celebrated classification [34] of degree-two foliations

on P3 and use their classification to give normal forms for unimodular quadratic Poisson

structures on C4. These normal forms are generic in the sense that their GL(4,C)-orbits

form a dense, Zariski open set in the space of all unimodular quadratic Poisson structures

on C4.

Remarkably, the quantizations of these Poisson structures can be described explicitly.

We give presentations for the corresponding noncommutative algebras in terms of generators

and relations. We believe that these algebras (or degenerations thereof) describe all of the

deformations of the classical, commutative P3 as a noncommutative projective scheme in the

sense of Artin and Zhang [5], provided that the deformation takes place over an irreducible

base; see Conjecture 8.2.2.

Finally, we focus our attention on a particular family of Poisson structures arising from

group actions associated with rational normal curves in projective space, generalizing one of

the Cervea–Lins Neto families to arbitrary dimension. Using the universal deformation for-

mula of Coll, Gerstenhaber and Giaquinto [39], we are able to describe many features of the

quantizations in terms of equivariant geometry. In particular, we show that the Schwarzen-

berger bundles [126]—the classic examples of rank-n vector bundles on Pn—deform to bi-

modules over the quantization, and that the corresponding quantum version of P12 contains

a quantum version of the Mukai–Umemura threefold [111].

Throughout this chapter V ∼= C4 will be a four-dimensional complex vector space, and

P3 = P(V) its projectivization.

141
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8.1 Foliations and the Cerveau–Lins Neto classification

Let σ ∈ H0
(
P3,X 2

P3

)
be a Poisson structure on P3. Using the isomorphism

X 2
P3
∼= Ω1

P3 ⊗ ω−1
P3
∼= Ω1

P3(4),

we may view σ a one-form α ∈ H0
(
P3,Ω1

P3(4)
)

with values in the line bundle OP3(4). The

integrability condition for σ is equivalent to the requirement that α ∧ dα = 0, i.e., that the

kernel of α defines an integrable distribution; this distribution exactly defines the foliation

of P3 by the symplectic leaves of σ.

The set of integrable one-forms is an algebraic subvariety of H0
(
P3,Ω1

P3(4)
)
. In [34],

Cerveau and Lins Neto describe the irreducible components of this variety under the ad-

ditional assumption that α vanishes on a curve, and give formulae for the one-forms in

homogeneous coordinates. The result is the following

Theorem 8.1.1 ([34]). The variety parametrizing integrable OP3(4)-valued one-forms on P3

whose singular locus is a curve has six irreducible components, called L(1, 1, 1, 1), L(1, 1, 2),

R(2, 2), R(1, 3), S(2, 3) and E(3).

The first four components are of normal crossings type in the sense of Definition 7.4.2

and were proven to be irreducible components by Calvo-Andrade [30], but S(2, 3) and E(3)

have rather different flavours: S(2, 3) is obtained by pulling back a foliation of P2 along a

linear projection, and E(3) is associated with the geometry of twisted cubic curves.

Loray, Touzet and Pereira [101] recently gave a similar description of the spaces of Poisson

structures on Fano threefolds of Picard rank one. Among the other examples is a Poisson

structure on the Mukai–Umemura threefold that we shall discuss briefly in Section 8.9 in this

chapter. As a consequence, they verified that every Poisson structure on P3 is a degeneration

of a Poisson structure vanishing on a curve and therefore arrived at the following

Theorem 8.1.2 ([101]). The variety parametrizing Poisson structures on P3 has the same

six irreducible components as the Cerveau–Lins Neto classification.

Figure 8.1 illustrates the six different families of Poisson structures on P3 by displaying

some symplectic leaves, together with some curves on which the Poisson structure vanishes.

If we work in homogeneous coordinates x0, x1, x2, x3 on C4, we may view the one form α

on P3 as a one-form on C4 with homogeneous cubic coefficients that is integrable (dα∧α = 0)

and horizontal (ιEα = 0 for the Euler vector field E). Let ω = dα be its derivative. Then

the formula

{f, g} =
df ∧ dg ∧ ω

dx0 ∧ dx1 ∧ dx2 ∧ dx3

defines a Poisson bracket on C4; up to rescaling by a constant, it is the canonical unimodular

lift of σ specified by Theorem 7.2.8. In this way, we obtain the following
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L(1, 1, 1, 1) L(1, 1, 2)

R(2, 2) R(1, 3)

E(3) S(2, 3)

Figure 8.1: Real slices of Poisson structures on P3, one from each irreducible component
in the classification. The blue surfaces represent symplectic leaves, while the red curves
represent one-dimensional components of the zero locus.
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Corollary 8.1.3. The space of unimodular Poisson structures on C4 has the same six

irreducible components as the Cerveau–Lins Neto classification.

Notice that since GL(4,C) acts on C4 by linear automorphisms, it also acts on the space

of unimodular quadratic Poisson structures. In this chapter, we give normal forms for the

generic unimodular quadratic Poisson structures and their quantizations. By analyzing each

of the six components separately in Section 8.3 through Section 8.8, we shall prove the

Theorem 8.1.4. Every unimodular quadratic Poisson structure on C4 is a degeneration of

one of the normal forms given in Table 8.1.

By a degeneration, we mean that the Poisson structure lies in the closure of the GL(4,C)-

orbit of one of the normal forms in the table. It would be interesting to give a complete

classification classify all of the degenerations:

Problem 8.1.5. Complete the classification of unimodular quadratic Poisson structures on

C4 by studying the degenerations of the normal form.

We remark that while this classification deals with Poisson structures over C, it may be

used to to deduce the classification over R. Indeed, the specification of a quadratic Poisson

structure on R4 is the same as the specification of a quadratic Poisson structure on C4

together with an anti-holomorphic Poisson involution C4 → C4. We therefore pose another

Problem 8.1.6. Give a classification of unimodular quadratic Poisson structures on R4

using the normal forms in Table 8.1.

See also the related computations in [88], where the non-unimodular case is studied.

Just as the real Lie algebras sl(3,R) and so(3,R) are not isomorphic over R but nevertheless

have isomorphic complexifications, we expect that some of the irreducible components in

the classification, such as R(2, 2), will split into multiple different components over the real

numbers.

8.2 Quantization of quadratic Poisson structures

Recall that if A is a commutative algebra equipped with a Poisson bracket {·, ·}, then a

deformation quantization of the bracket is a deformation of the commutative product on A

to a non-commutative associative “star product”

f ?~ g = fg + ~{f, g}+O(~2),

depending on a deformation parameter ~. In this case {·, ·} is called the semi-classical

limit of the noncommutative deformation.
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Table 8.1: Normal forms for generic unimodular quadratic Poisson structures on C4

Type Poisson brackets Parameters

L(1, 1, 1, 1)

{xi, xi+1} = (−1)i(ai+3 − ai+2)xixi+1

a0 + a1 + a2 + a3 = 0{xi, xi+2} = (−1)i(ai+1 − ai+3)xixi+2

i ∈ Z/4Z

L(1, 1, 2)

{x0, x1} = 0

c0, c1, λ ∈ C
{x0, x2} = c0x0x2 {x1, x2} = −c1x1x2

{x0, x3} = −c0x0x3 {x1, x3} = c1x1x3

{x2, x3} = (c0 − c1)
(
x2

0 + λx0x1 + x2
1 + x2x3

)
+2c0x

2
0 − 2c1x

2
1

R(2, 2)

{x0, x1} = (a3 − a2)x2x3 {x2, x1} = x0x3

a1 + a2 + a3 = 0{x0, x2} = (a1 − a3)x3x1 {x3, x2} = x0x1

{x0, x3} = (a2 − a1)x1x2 {x1, x3} = x0x2

R(1, 3)

{x3, xi} = 0 bij = bji, i, j ∈ Z/3Z
{xi+1, xi} = νx2

i+2 − λxi+1xi +
∑2
j=0 bijxjx3 det(bij) = 1

i ∈ Z/3Z λ ∈ C

S(2, 3)

{xi, x3} = x2
i + xi(bixi+1 + cixi−1) + dixi+1xi−1 bi−1 + ci+1 + 2 = 0

{xi, xj} = 0 di ∈ C
i, j ∈ Z/3Z i ∈ Z/3Z

E(3)

{x0, x1} = 5x2
0 {x1, x2} = x2

1 + 3x0x2

none{x0, x2} = 5x0x1 {x1, x3} = x1x2 + 7x0x3

{x0, x3} = 5x0x2 {x2, x3} = 7x1x3 − 3x2
2
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Suppose that A = Sym•V∗ is the ring of algebraic functions on a vector space V. The

Poisson bracket {·, ·} is compatible with the grading on A exactly when it is homogeneous

quadratic; in this case we want to deform A as a graded algebra. According to the philosophy

of noncommutative projective geometry, we should interpret the result as a homogeneous

coordinate ring for a quantum version of the projective space P(V). We refer the reader to

the works [4, 5, 19, 18, 62, 133] for an introduction to this viewpoint. In particular, [4, 19]

give the classification of quantum deformations of the projective plane P2.

Instead of deforming the product on Sym•V∗ directly, we could view Sym•V∗ as a quotient

of the tensor algebra
⊗• V∗ by the ideal generated by the quadratic relations Λ2V∗ ⊂ V∗⊗V∗,

and deform the relations to a new subspace I~2 ⊂ V∗ ⊗ V∗. In so doing, we must be careful

to ensure that the resulting graded algebra A~ is isomorphic as a vector space to Sym•V∗.

In other words, we want the composition

Sym•V∗ →
⊗•

V∗ → A~

to be an isomorphism. Then, we can transport the product on A~ to a star product on

Sym•V∗ in a canonical way, and speak of its semi-classical limit.

Recall that the Hilbert series of a graded algebra A =
⊕∞

k=0 Ak is

HA(t) =

∞∑
k=0

dimC(Ak)tk.

For the polynomial ring in n + 1 variables we have H(t) = 1
(1−t)n+1 . Thus, for a quadratic

Poisson structure, we wish to deform the quadratic relations without changing the Hilbert

series of the resulting ring. In this case, we certainly require that dimC I~2 = dimC Λ2V∗ =(
dimV

2

)
, but this restriction is not sufficient since there may still be too many relations in

higher degree. However, the Koszul deformation principle indicates that, at least for

formal deformations, we only need to worry about the dimensions of the space of relations

of degree ≤ 3 [47].

This situation may be formalized as follows. For a vector space V, consider the space

PS(V) ⊂ Sym2V∗ ⊗ Λ2V of quadratic Poisson structures. This space is a cone defined by a

collection of homogeneous quadratic polynomials (the coefficients of the Schouten bracket).

For k ∈ N, let Gk = Gr
(
dk, (V∗)⊗k

)
be the Grassmannian parametrizing dk-planes in

(V∗)⊗k, where

dk = (dim V∗)k − dim SymkV∗

is the dimension of the space of degree-k relations for the symmetric algebra. Consider the

subvariety QA(V) ⊂ G2 × G3 consisting of pairs (I2, I3) such that

I3 ⊃ I2 ⊗ V∗ + V∗ ⊗ I2
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Thus, we require that all of the relations defined by I2 lie in I3; this prevents I2 from defining

an ideal that is too big to produce the correct Hilbert series. Clearly, the symmetric algebra

defines a special point c ∈ QA(V). A (formal) neighbourhood of c in QA(V) therefore

parametrizes the deformations of the polynomial ring Sym•V∗ to a noncommutative graded

algebra with the same Hilbert series. Bondal [19] notes that the tangent cone of QA(V) at

c is naturally identified with PS(V), but the connection is much deeper. In fact, Kontsevich

proved the following result as a consequence of his formality theorem:

Theorem 8.2.1 ([90]). Let V be a C-vector space. Then there is a canonical GL(V)-

equivariant isomorphism between the formal neighbourhoods of 0 ∈ PS(V) and c ∈ QA(V).

Kontsevich conjectures that this formal isomorphism converges, at least in a small neigh-

bourhood of 0. However, even if it does converge, it is given by a formal power series that

appears to be very difficult to compute. So, it is not clear how to obtain an explicit descrip-

tion of the quantizations using this approach.

In this chapter, we attempt to describe the quantizations directly in the case when

V = C4, corresponding to quantum deformations of P3. Instead of using Kontsevich’s

formula, we use the intuition gained from a good understanding of the Poisson geometry.

As a result, we arrive at the list of algebras shown in Table 8.2, giving honest (not formal)

deformation quantizations for the generic unimodular quadratic Poisson structures on C4.

In light of Theorem 8.2.1 and Theorem 8.1.4, we make the following

Conjecture 8.2.2. Let P3
nc be a noncommutative projective scheme in the sense of [5] that

arises as flat deformation [102] of the classical, commutative P3 over an irreducible base.

Then P3
nc is isomorphic to Proj(A), where A is a quadratic algebra that is a degeneration of

one of the algebras in Table 8.2.

Many of the algebras presented here have already appeared in the literature. Others may

be less familiar, although their ring-theoretic properties do not appear to be particularly

unusual. We pay special attention to the “exceptional” Poisson structure E(3), and use a

formula of Coll, Gerstenhaber and Giaquinto to study the quantization in terms of equiv-

ariant geometry. As a result, we are able to construct quantum analogues of the famous

Schwarzenberger bundles [126], which played an important historical role as early examples

of indecomposable rank-n vector bundles on Pn.

Up to now, we have ignored one key point: to make the correspondence between Poisson

structures on Pn and quadratic Poisson structures on Cn+1 bijective, we need to impose

the additional constraint that the quadratic Poisson structure be unimodular: the canoni-

cal module ωCn+1 must be trivial as a Poisson module. Dolgushev [44] showed that under

Kontsevich’s quantization, unimodular Poisson structures correspond precisely to Calabi–

Yau algebras in the sense of Ginzburg [60]. Since, according to Theorem 7.2.4, the difference

between the non-unimodular lifts and the unique unimodular ones is controlled by a Poisson
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Table 8.2: Quantum deformations of P3

Type Quantization Parameters

L(1, 1, 1, 1) Skew polynomial ring xixj = pijxjxi pij = p−1
ji ∈ C∗

L(1, 1, 2)

x1x0 = x0x1

p0, p1 ∈ C∗, λ ∈ C

x2x0 = p−1
0 x0x2

x3x0 = p0 x0x3

x2x1 = p1 x1x2

x3x1 = p−1
1 x1x3

x3x2 = p−1
0 p1 x2x3 + (p1 − p0)(x2

0 + λx0x1 + x2
1)

+(1− p2
0)x2

0 + (p2
1 − 1)x2

1

R(2, 2) Four-dimensional Sklyanin algebra [131]

R(1, 3) Central extension of a three-dimensional Sklyanin algebra [95]

S(2, 3) Ore extension of C[x0, x1, x2] by a derivation

E(3)

[x0, x1] = 5x2
0

none

[x1, x2] = 3x0x2 + x2
1 − 3

2x0x1

[x0, x2] = 5x0x1 − 45
2 x

2
0

[x1, x3] = 7x0x3 + x1x2 − 3x0x2 − 5
2x

2
1 + 5x0x1

[x0, x3] = 5x0x2 − 45
2 x0x1 + 195

2 x2
0

[x2, x3] = 7x1x3 − 77
2 x0x3 − 3x2

2 + 21
2 x1x2 − 77

2 x0x2

vector field (an infinitesimal graded automorphism), we expect that for a given deforma-

tion of the homogeneous coordinate ring of Pn, there should be a Calabi–Yau algebra that

presents the same quantum projective scheme in the sense of [5]. Moreover, we expect this

Calabi–Yau algebra to differ from the given one by a graded twist, as studied in [122].

8.3 The L(1, 1, 1, 1) component

Poisson geometry

Choose four planes D1, . . . ,D4 ⊂ P3 in general position. Then the union D = D1 + · · ·+ D4

is normal crossings and is therefore a free divisor. The space h = H0
(
P3,X 1

P3(− log D)
)

of

vector fields tangent to D is a three-dimensional abelian Lie algebra; it is a Cartan subalgebra

of the Lie algebra g = H0
(
P3,X 1

P3

) ∼= sl(4,C) of vector fields on P3.

Notice that X 1
P3(− log D) is identified with the trivial bundle h ⊗ OP3 , and hence the

natural map Λ2h→ H0
(
P3,X 2

P3(− log D)
)

is an isomorphism in this case. Since h is abelian,

we see that every bivector field tangent to D is Poisson.

Let Y ⊂ Gr(3, g) be the closure of the space of Cartan subalgebras in g. Since all

Cartan subalgebras differ by conjugation by elements of SL(4,C), the space Y is irreducible.
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There is a tautological rank-three vector bundle E → Y whose fibre at h ∈ Y is Λ2h. Let

X = P(E) be its projectivization, and L = OP(E)(−1) the tautological line bundle. Then the

construction above defines a C∗-equivariant map φ : Tot(L)→ PS
(
P3
)
. Since X is projective

and irreducible, the image of φ is a closed, irreducible conical subvariety in the vector space

H0
(
P3,X 2

P3

)
.

Definition 8.3.1. The image of φ is the the component L(1, 1, 1, 1) in the space of Poisson

structures on P3.

The infinitesimal symmetries of the generic Poisson structures in this component are

readily computed:

Lemma 8.3.2. Suppose that r ∈ Λ2h is generic, in the sense that none of the roots of g lie

in the kernel of r] : h∗ → h. Then the first Poisson cohomology group is given

aut(σ) = H1(σ) = h.

Proof. Since h is three-dimensional, we may write r = e1 ∧ e2 for some e1, e2 ∈ h. Let us

decompose

g = h⊕
⊕
β∈J

gβ

into its root spaces. Since [σ, h] = 0, it remains to show that if ξ =
∑
β∈J ξβ is a sum of

elements with nonzero roots and [σ, ξ] = 0 then ξ = 0. But we have

Lξ(e1 ∧ e2) = [ξ, e1] ∧ e2 + e1 ∧ [ξ, e2]

=
∑
β∈J

ξβ ∧ (β(e2)e1 − β(e1)e2)

=
∑
β∈J

r](β) ∧ ξβ

where r] : h∗ → h is the contraction with r. If this sum vanishes, then by linear indepen-

dence, so must every summand. But r](β) 6= 0 for any β by assumption and hence we must

have ξβ = 0 for all β, as required.

Corollary 8.3.3. The map φ is generically one-to-one.

We obtain the normal form for these Poisson structures as follows: choose homoge-

neous coordinates x0, . . . , x3 so that Di is the vanishing set of xi. Then the one-form

α ∈ H0
(
P3,Ω1

P3(4)
)

may be written in homogeneous coordinates as

α = x0x1x2x3

3∑
i=0

ai
dxi
xi
,
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where a0, . . . , a3 ∈ C are constants with
∑3
i=0 ai = 0. A straightforward computation of the

Poisson brackets in these coordinates yields the normal form in Table 8.1.

We claim that generically, the only isomorphisms between pairs of these normal forms

come from permutations of the coordinates. Indeed, provided that the Poisson structure is

generic in the sense of the lemma, any automorphism must preserve the Cartan subalgebra

h. Since all of the elements of h are infinitesimal symmetries, we may identify Aut(σ) with

the Weyl group, which exactly acts by permuting the coordinates.

Since the space of parameters in this normal form is three-dimensional, we conclude

that the dimension of the moduli space in the neighbourhood of a generic normal form is

three, and we therefore have a canonical identification of the tangent space H2
(
P3, σ

)
to the

moduli space with Λ2h.

Computing the dimension of the third cohomology group using the fact that the Euler

characteristic is −4, we arrive at the following

Proposition 8.3.4. If σ ∈ L(1, 1, 1, 1) is generic in the sense of Lemma 8.3.2, then

H0
(
P3, σ

)
= C

H1
(
P3, σ

)
= h ∼= C3

H2
(
P3, σ

)
= Λ2h ∼= C3

and H3
(
P3, σ

)
is 5-dimensional.

Quantization

From the form of the Poisson brackets, it is clear that the quantizations should be skew poly-

nomial rings—that is, algebras with four degree-one generators x0, x1, x2, x3 and quadratic

relations xixj = pijxjxi, where pij = p−1
ji . If we take pi,i+1 = e(−1)i(ai+3−ai+2)~, and

pi,i+2 = e(−1)i(ai+1−ai+3)~ for i ∈ Z/4Z, then the semiclassical limit ~ → 0 recovers the

normal form for the Poisson bracket. This product is essentially the Moyal–Vey quantiza-

tion [108, 140].

8.4 The L(1, 1, 2) component

Poisson geometry

Choose homogeneous linear polynomial f0, f1 ∈ V∗ and a homogeneous quadratic form

g ∈ Sym2V∗. Choose a0, a1, b ∈ C and define a one-form on V by

α = f0f1g

(
a0
df0

f0
+ a1

df1

f1
+ b

dg

g

)
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Then α is integrable. Moreover, ιEα = 0 if and only if a0 + a1 + 2b = 0. Allowing

the polynomials f0, f1 and g as well as the coefficients a1, a2 and b to vary, we obtain a

subvariety of H0
(
P3,X 2

P3

)
and its closure is the irreducible component L(1, 1, 2) in the space

of Poisson structures.

Let σ be the Poisson structure on P3 associated with the above data. Then the planes

D0,D1 ⊂ P3 defined by f0 and f1, and the quadric surface Q ⊂ P3 defined by g are Poisson

subspaces.

If f0, f1 and g are generic, then the union D = D0 + D1 + Q will be a normal crossings

divisor whose singular locus is the union of the line D0∩D1 and the two plane conics D0∩Q

and D1 ∩ Q. If the coefficents a0, a1 and b are all nonzero, then these three rational curves

are precisely the irreducible components of the zero locus of σ, and they all intersect at the

two points {p, q} = D0 ∩ D1 ∩ Q.

Let us now describe the normal form for such a Poisson structure. Requiring that Q be

smooth is equivalent to requiring that g be non-degenerate. Generically, g−1 will restrict

to a nondegenerate form on the span of f1 and f2. By adjusting the coefficients a0, a1 and

b, we may rescale f1 and f2 so that the inner products are g−1(f1, f1) = g−1(f2, f2) = 1

and g−1(f1, f2) = λ ∈ C. We may then find coordinates x0, . . . , x3 on V so that f1 = x0,

f2 = x1 and

g = x2
0 + λ

2x0x1 + x2
1 + x2x3.

To compute the bracket from the one-form, we need to pick a constant volume form ω =

Cdx0 ∧ · · · ∧ dx3 ∈ det V∗. Setting c0 = C−1(a0 − b), c1 = C−1(a1 − b) and computing the

Poisson brackets using this normal form leads directly to the formulae in Table 8.1.

Quantization

Consider the algebra A = C 〈x0, x1, x2, x3〉 /I, where I is the homogeneous ideal generated

by the quadratic relations

x1x0 = x0x1

x2x0 = p−1
0 x0x2

x3x0 = p0 x0x3

x2x1 = p1 x1x2

x3x1 = p−1
1 x1x3

x3x2 = p−1
0 p1 x2x3 + F

for p0, p1 ∈ C∗ and λ ∈ C. Here

F = (p1 − p0)(x2
0 + λx0x1 + x2

1) + (1− p2
0)x2

0 + (p2
1 − 1)x2

1.
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This algebra was found in conversations with Ingalls and Van den Bergh; the author thanks

them for their interest and for explaining the proof of the proposition below.

The relations for A were obtained by a somewhat ad hoc procedure: since, for the most

part, the Poisson brackets have a similar form to the brackets for L(1, 1, 1, 1) case, we may

guess that most of the relations should look like relations in a skew polynomial algebra. The

only nontrivial relation to be added is the one corresponding {x2, x3}, which was obtained

by examining the explicit form of the Poisson bracket. As a result, there may be a more

natural set of relations that gives an equivalent quantum P3; for example, we have not

determined if the algebra presented here is Calabi–Yau. Nevertheless, we may verify that it

has the correct Hilbert series:

Proposition 8.4.1. The monomials xi0x
j
1x
k
2x

l
3 with i, j, k, l ≥ 0 form a basis for A as a

C-vector space. In particular, the Hilbert series of A is HA(t) = 1
(1−t)4 .

Proof. The proof is a straightforward appeal to Bergman’s diamond lemma [12]. The given

monomials are reduced words with respect to the lexicographical ordering, and the relations

are written so that the leading term appears on the left hand side. There are no inclusion

ambiguities, and the overlap amibiguities come from the expressions x2x1x0, x3x1x0 x3x2x0

and x3x2x1. We note that x0F = Fx0 in A since x0 and x1 commute. Moreover, x0F is a

linear combination of reduced words.

It is now straightforward to verify that these ambiguities resolve. For example, we can

reduce x3x2x0 in two different ways. The first reduction is

(x3x2)x0 = (p−1
0 p1 x2x3 + F )x0

= p1x2x0x3 + x0F

= p−1
0 p1x0x2x3 + x0F,

while the second is

x3(x2x0) = p−1
0 x3x0x2

= x0x3x2

= x0(p−1
0 p1x2x3 + F )

= p−1
0 p1x0x2x3 + x0F,

which agrees with the first. Similar calculations show that the other overlap ambiguities

resolve.

Notice that when p0 = p1 = 1, we recover the relations for the (commutative) poly-

nomial ring. We therefore conclude that the family of algebras A gives a flat deformation

of C[x0, x1, x2, x3] over the parameter space (p0, p1) ∈ (C∗)2. If we set p0 = e~c0 and



Chapter 8. Poisson structures on P3 and their quantizations 153

p1 = e~c1 then the semiclassical limit ~→ 0 recovers the normal form of the Poisson struc-

ture described in the previous section. We have therefore obtained the desired deformation

quantization.

8.5 The R(2, 2) component

Poisson geometry

Choose a pair of homogeneous quadratic forms g1, g2 ∈ Sym2V∗ and define a one-form on V

by

α = g1 dg2 − g2 dg1.

Then α is integrable and ιEα = 0. Clearly α depends only on the element g1 ∧ g2 ∈
Λ2Sym2V∗. Converting the two-form dα to a bivector field via an element of det V we obtain

a unimodular quadratic Poisson structure.

Let G = Gr
(
2,Sym2V∗

)
be the Grassmannian of two-planes in Sym2V∗. Over G there is

a tautological line bundle L whose fibre at a plane W ⊂ Sym2V∗ is the line Λ2W ⊗ det V.

The construction above therefore gives rise to a C∗-equivariant map φ : Tot(L) → PS
(
P3
)
.

Since G is projective, its image is closed.

Definition 8.5.1. The image of φ is the irreducible component R(2, 2) of PS
(
P3
)
.

If σ ∈ R(2, 2) is given by a pair of quadratic forms g1, g2, then the elements of the pencil

spanned by g1 and g2 are quadric surfaces in P3 that give the closures of the symplectic

leaves. If the pencil is generic, all but four of these surfaces will be smooth, and the base

locus will be an elliptic normal quartic curve X ⊂ P3. Furthermore, each of the four singular

members Q0, . . . ,Q3 will have a single isolated singularity. Let pi ∈ Qi be the singular point.

Then the zero locus of σ is given by

Dgn0(σ) = X ∪ {p0, p1, p2, p3}

Polishchuk [117] showed that every Poisson structure vanishing on an elliptic normal curve

in P3 is necessarily of this form.

Let us assume that the quadratic form g1 describes one of the singular members of

the pencil, and that g2 describes a smooth one. Thus rank(g)1 = 3 and a well-known

result in linear algebra says that, provided that the pair is suitably generic, we may choose

coordinates on V such that

g1 = λ1x
2
1 + λ2x

2
2 + λ3x

2
3

g2 = x2
0 + x2

1 + x2
2 + x2

3.
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The Poisson structure is determined by a tensor of the form (g1∧g2)⊗µ ∈ Λ2Sym2V∗⊗det V.

By absorbing an overall constant into the definitions of λ1, λ2 and λ3, we may assume that

µ = ∂x0 ∧∂x1 ∧∂x2 ∧∂x3 . A change of variables xi 7→ tixi for 1 ≤ i ≤ 3, where ti =
√

λ1λ2λ3

λi

replaces this tensor with

g′1 ∧ g′2 ⊗ µ

where

g′1 = x2
1 + x2

2 + x2
3

g′2 = x2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3

Now we note that we can add an arbitrary multiple of g′1 to g′2 without changing the Poisson

tensor. In this way, we may assume without loss of generality that a1 + a2 + a3 = 0. We

may now compute the Poisson bracket by the formula

{f1, f2} =
df1 ∧ df2 ∧ dg′1 ∧ dg′2
dx0 ∧ dx1 ∧ dx2 ∧ dx3

giving the normal form in Table 8.1. The resulting Poisson algebra is the famous Skylanin

bracket [131]. Its Poisson cohomology has recently been computed by Pelap [116].

Quantization

The quantizations of the generic Poisson structures in this component are the Skyanin

algebras [131], introduced by Sklyanin in the same paper as the Poisson brackets. The

relations are given in Table 8.2. The algebas have been well studied: for example, they

are known to be regular and Calabi–Yau [17, 132, 137] and various modules have been

constructed that correspond to the projective geometry of the elliptic curve [96, 134].

8.6 The R(1, 3) component

Poisson geometry

Given a linear form f ∈ V∗ and a cubic form g ∈ Sym3V∗, we obtain an integrable horizontal

one-form

α = 3gdf − fdg

on V. Let G = Gr
(
2,Sym3V∗

)
be the Grassmannian of three-planes in G. Thus G parametrizes

pencils of cubic surfaces in P(V). Let X ⊂ G× P(V∗) be the closed subvariety consisting of

pairs (W,H) of a cubic pencil and a plane in P3 such that 3H ∈ W. There is a tautological

line bundle L over X whose fibre at (W,H) is W/3H ⊗ ann(H) ⊗ det V, where ann(H) ⊂ V∗
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is the space of linear functional vanishing on H. Viewing g as an element of W/H3 and f

as an element of ann(H), the formula above gives rise to a canonical C∗-equivariant map

φ : Tot(L)→ PS
(
P3
)
. Since X is projective, the image of this map is closed.

Definition 8.6.1. The image of φ is the component R(1, 3) of PS
(
P3
)
.

Let X ⊂ P3 be the surface defined by g and H ⊂ P3 the plane defined by f . Then the

elements of the pencil |X+3H| are Poisson subspaces. If g is generic, so that X and X∩H are

smooth, then X and H intersect in an elliptic curve Y ⊂ H of degree three. Polishchuk [117]

showed that every Poisson structure vanishing on Y is of this form.

We obtain the normal form for this family as follows: we may choose homogeneous

coordinates x0, x1, x2 for the plane H so that the restriction of g to this subspace is given

by the Hesse form
ν
3 (x3

0 + x3
1 + x3

2)− λx0x1x2

for some ν, λ ∈ C. Extend these coordinates to coordinates on V by adding the linear form

f = x3 that vanishes on H. Then

g = ν
3 (x3

0 + x3
1 + x3

2)− λx0x1x2 +Q(x0, x1, x2)x3 + L(x0, x1, x2)x2
3 + Cx3

3

for L and Q homogeneous of degrees 1 and 2, respectively, and C ∈ C. Provided that Q

and L are suitably generic, a coordinate change of the form xi 7→ xi + tix3 for 0 ≤ i ≤ 2

allows us to assume that L = 0, i.e., that g has the simpler form

g = ν
3 (x3

0 + x3
1 + x3

2)− λx0x1x2 +Q′(x0, x1, x2)x3 + Cx3
3.

(A similar argument was used in [95] to find normal forms in the quantum case.) Since Cx3
3

is an equation for 3H, it may be subtracted from g without changing the Poisson structure.

Hence, we may assume that

g = 1
3 (x3

0 + x3
1 + x3

2)− λx0x1x2 +Q(x0, x1, x2)x3

without loss of generality. Let us write

Q′(x0, x1, x2) = 1
2

2∑
i,j=0

bijxixj

for bij ∈ C with bij = bji. Once again, the Poisson structure is determined by the additional

data of an element of det V, but the only effect of changing this element is to rescale the

bracket, and we may absorb this effect into a rescaling of g. Thus the normal form in
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Table 8.1 can be obtained by the formula

{xi, xj} =
dxi ∧ dxj ∧ dg ∧ dx3

dx0 ∧ dx1 ∧ dx2 ∧ dx3

with g as above. Now we note that a coordinate change of the form x3 7→ tx3 for some

t ∈ C∗ allows us to set the determinant of the matrix (bij) equal to some fixed constant,

which we can take to be one. This restriction gives the parametrization in the table.

Quantization

Since x3 is a Casimir element for the Poisson bracket on C[x0, x1, x2, x3] (i.e., {x3, ·} = 0),

the bracket is a central extension of a Poisson bracket on C[x0, x1, x2]. Correspondingly, the

quantization should be a regular algebra that is an extension of a quantum P2 by a central

element of degree one. Such algebras were classified in [95, Theorem 3.2.6], where one sees

that the relations in the algebra have are similar in form to the Poisson brackets.

8.7 The S(2, 3) component

Poisson geometry

The twisted one-forms on P3 that define the Poisson structures of type S(2, 3) are obtained

by pulling back a section of Ω1
P2(4) along a linear projection P3 → P2. Notice that since

ωP2 ∼= OP2(−3), we have Ω1
P2(4) ∼= X 1

P2(1) and hence the foliation on P2 may equivalently

be thought of as the action of an OP2(1)-valued vector field Z ∈ H0
(
P2,OP2(1)

)
.

Let E = OP2 ⊕OP2(1). Then Z defines a map OP2 →X 1
P2 ⊗OP2(1), which we view as a

nilpotent operator

Z : E →X 1
P2 ⊗ E ,

making the pair (E , Z) a co-Higgs bundle. We refer the reader to the thesis of Rayan [121]

for a detailed discussion of co-Higgs bundles on P2. We interpret the Higgs field as defining

a Poisson module structure on E for the zero Poisson structure on P2. As a result, we

obtain a Poisson structure on the projective bundle P(E) → P2 that projects to the zero

Poisson structure on P2. Blowing down the section P(OP2(1)) ⊂ P(E) we obtain a Poisson

structure P3, and every Poisson structure of type S(2, 3) arises in this manner.

If Z is chosen generically, its orbits in P2 will be non-algebraic (see Example 2.9.1).

Furthermore, since c2(TP2(1)) = 7, a generic section Z will vanish at exactly seven points.

A computation in sheaf cohomology shows that these seven points determine Z up to rescal-

ing [32].

It follows that in the generic situation, the Poisson structure on P(E) vanishes on exactly

seven fibres. Since the Higgs field has an upper-triangular form with respect to the splitting
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E = OP2 ⊕OP2(1), the only other component of the zero locus is the section P(OP2(1)) that

we blow down. As a result, the Poisson structure on P3 has non-algebraic symplectic leaves

and its zero locus is the union of 7 lines that all intersect at a single point p ∈ P3.

This construction has the following interpretation in homogeneous coordinates: let

x0, x1, x2 be homogeneous coordinates on C3. Then Z corresponds to a divergence-free

vector field X on C3 whose coefficients are quadratic polynomials. Now extend the coordi-

nates to C4 by adding the variable x3. Then corresponding unimodular Poisson structure

on C4 has the form X ∧ ∂x3 . In particular, {xi, xj} = 0 for 0 ≤ i, j ≤ 2.

To obtain the normal form for the Poisson bracket, it is enough to find a normal form

for X on C3. Let us write

X = q0∂0 + q1∂1 + q2∂2

for homogeneous quadratic polynomials q0, q1, q2. By applying a linear automorphism, we

may assume that Z vanishes at the points [1, 0, 0], [0, 1, 0], [0, 0, 1] ∈ P2. Correspondingly,

the coefficients of E∧X must vanish on the lines through (1, 0, 0), (0, 1, 0) and (0, 0, 1). Here,

as above, E is the Euler vector field. Using these constraints, a straightforward calculation

shows that qi must have the form

qi = aix
2
i + xi(bixi+1 + cixi−1) + dixixi−1

where the indices are taken modulo three. Generically, we have ai 6= 0 for all i. Applying

a coordinate transformation of the form xi 7→ tixi with ti ∈ C∗ and we may assume that

ai = 1 for all i. Then the requirement that X be divergence-free imposes the equations

bi−1 + ci+1 + 2 = 0

in the table. The remaining Poisson brackets are given by {xi, x3} = Z(xi).

Quantization

The quantization of these Poisson structures is easily obtained. Recall that if A is a C-

algebra and Y : A → A is a derivation, then the Ore extension A[t;Y ] is the algebra

whose underlying vector space is the polynomial ring A[t], with the relation

tr − rt = Y (r)

for r ∈ A. For the present situation, the ring A is the polynomial ring C[x0, x1, x2], and

the derivation is the quadratic vector field X. The algebra is given by the Ore extension

C[x0, x1, x2][x3;X], which gives a deformation quantization of the Poisson structure X∧∂x3
.

The semiclassical limit is obtained by rescaling X to zero.
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8.8 The E(3) component

Poisson geometry

The final component in the classification is the one that Cerveau and Lins–Neto call the

exceptional component E(3). It is part of a larger class of Poisson structures on projective

space that we will discuss in the next section, so we shall delay a detailed discussion of its

geometry. For now, we simply explain the normal form for the Poisson bracket, which is

easily extracted from the original paper [34]. Let x0, . . . , x3 be linear coordinates on C4 and

define the vector fields

X = x1∂x1
+ 2x2∂x2

+ 3x3∂3

Y = 4x0∂x1 + 4x1∂x2 + 4x2∂x3 .

A straightforward computation using the identity [Y,X] = Y shows that the quadratic

bivector field

σ = Y ∧ (X − 5
4E)

is a unimodular Poisson structure and gives the brackets in Table 8.1. Every Poisson struc-

ture in the E(3) component is a degeneration of this one.

Quantization

We leave a discussion of the quantization to Section 8.10, where it will be obtained as part

of a larger class. It will follow from the general discussion that the E(3) algebra with the

relations given in Table 8.2 has the same Hilbert series as the polynomial ring.

8.9 Poisson structures and rational normal curves

In this section, we discuss a generalization of the E(3) Poisson structure to projective spaces

of higher dimension, in the spirit of [31].

Consider the group G ⊂ Aut
(
P1
)

consisting of projective transformations that preserve

the point ∞ ∈ P1. Then G ∼= C∗ n C is the group of affine transformations of the com-

plex line C ⊂ P1, which is a two-dimensional non-abelian Lie group. Its Lie algebra

g ⊂ H0
(
P1,X 1

P1

)
has a basis U, V ∈ g with bracket relation [V,U ] = V . Here V is the

generator of translations—a section of H0
(
P1,X 1

P1(−2 · ∞)
)
.

Throughout this section, we shall deal with a complex manifold X equipped with an

infinitesimal action ρ : g ⊗ OPn → X 1
X and refer to X as a g-space . We note that since

Λ3g = 0, the bivector field

σ = ρ(V ∧ U) ∈ H0
(
X,X 2

X

)
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will always be a Poisson structure.

The main example we have in mind is as follows: we view Pn as the nth symmetric power

of the projective line P1. Thus, a point in Pn is a degree-n divisor D ⊂ P1. The action

of G on P1 induces an action G × Pn → Pn, and a corresponding infinitesimal action ρ :

g⊗OPn →X 1
Pn . For n ≥ 2, this action has orbits of dimension 0, 1 and 2. Correspondingly

the bivector field σ = ρ(V ∧ U) ∈ H0
(
Pn,X 2

Pn
)

is non-zero and defines a Poisson structure

on Pn whose rank is generically equal to two. The case n = 3 recovers the E(3) Poisson

structure in the Cerveau–Lins Neto classification.

For general X, the anchor map of the Poisson structure factors as

Ω1
X → g⊗OX →X 1

X

and both maps are morphisms of Lie algebroids on X. We immediately have the following

observation:

Proposition 8.9.1. Let X be a g-space. Then every g-invariant subspace is a Poisson

subspace. Moreover, the rank of σ at a point x ∈ X is equal to two if and only if the orbit of

g through x is two-dimensional. Otherwise, the rank is zero.

Furthermore, any g-equivariant sheaf on X (i.e., a module over the Lie algebroid g⊗OX)

is a Poisson module. In particular, all of the natural bundles, such as TX, are Poisson

modules.

For the case when X = Pn is a symmetric power of the projective line, we have a number

of privileged Poisson subspaces: if 0 ≤ j, k ≤ n and jk ≤ n, then there is a natural map

µj,k : Pj → Pn

D 7→ kD + (n− jk)∞

These maps are clearly G-equivariant and therefore the image ∆j,k = µj,k(Pj) ⊂ Pn is a

Poisson subspace. If k = 0 and j > 0, then the image is the single point n · ∞ ∈ Pn, but if

k > 0 this map is a k-Veronese embedding of Pj into a linear subspace of Pn. For example,

the subspace ∆j,1 is a j-plane Pj ⊂ Pn, and the curve ∆1,j is a rational normal curve inside

this j-plane. One readily verifies that the zero locus of σ is the union ∆1,1 ∪ · · · ∪∆1,n of

these rational curves. The situation for n = 3 is illustrated in Figure 8.2.

The description of the two-dimensional symplectic leaves is somewhat more involved.

The case n = 3 is described as follows: consider the rational map

C : (P1)3 99K P1

defined by the formula

C(x, y, z) =
x− z
y − z

,
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∆2,1

∆1,1

∆1,2

∆0,0

∆1,3

Figure 8.2: Poisson subspaces for the Poisson structure E(3) on P3. The plane ∆2,1 ={
p+ q +∞

∣∣ p, q ∈ P1
}

is a Poisson subspace that is generically symplectic. This plane con-

tains the conic ∆1,2 =
{

2 · p+∞
∣∣ p ∈ P1

}
and the line ∆1,1 =

{
p+ 2 · ∞

∣∣ p ∈ P1
}

, which

meet at the single point ∆0,0 = {n · ∞}. The twisted cubic curve ∆1,3 =
{

3 · p
∣∣ p ∈ P1

}
meets these two curves at the same point where it has a high-order tangency, and the union
of the three curves is the zero locus of the Poisson structure.

which takes the cross-ratio of the four points (x, y, z,∞). The level sets of this function

are preserved by the G-action, but C is not invariant under the action of the symmetric

group on (P1)3 and therefore does not descend to a rational map P3 99K P1. To remedy this

problem, we use the j-invariant

j : P1 → P1

defined by

j(λ) = 28 (λ2 − λ+ 1)3

λ2(1− λ)2
,

which has the property that j ◦ C actually is invariant under symmetrization. Hence, it

descends to a rational map P3 99K P1 of degree six—that is, a pencil of sextic surfaces

in P3. The irreducible components of the surfaces in this pencil give the closures of the

two-dimensional symplectic leaves of σ.

In higher dimension, there are several other special subspaces. For example, if D ⊂ P1

is a divisor of degree twelve whose points form the vertices of a regular icosahedron, then

the closure of the Aut
(
P1
)
-orbit of D is a smooth, g-invariant Fano threefold X ⊂ P12 called

the Mukai–Umemura threefold [111]. It therefore inherits a Poisson structure, as observed

in [101].

We may also construct some natural Poisson modules on Pn as follows: consider the

symmetrization map

π : Pn−1 × P1 → Pn

(D, p) 7→ D + p.

This map is clearly equivariant with respect to the G-actions on these varieties. It therefore

defines an n : 1 branched covering of Pn that is a Poisson map. Since, by definition the

action of G stabilizes∞ ∈ P1, the subspace Y = Pn−1×{∞} ⊂ Pn−1×P1 is G-invariant, and
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∆

P1×{∞}

{∞}×P1

ψ

2 : 1

∆1,2

∆1,1

P1 × P1 P2

Figure 8.3: The divisor P1×{∞} ⊂ P1×P1 is a Poisson subspace and hence OP1×P1(0, 1) is
a Poisson module. Pushing the tensor powers of this module down to P2, we obtain Poisson
module structures on the Schwarzenberger bundles.

hence the line bundle L = OPn−1×P1(Y) ∼= OPn−1×P1(0, 1) is G-equivariant. The pushforward

π∗(Lk) = Ekn is therefore a rank-n G-equivariant vector bundle on Pn, giving rank-n Poisson

module. These bundles are the Schwarzenberger bundles defined in [126]. The situation for

n = 2 is illustrated in Figure 8.3.

Finally, we note that the infinitesimal symmetries of the Poisson structure are easily

determined:

Proposition 8.9.2. Every Poisson vector field for the Poisson structure σ on Pn is a scalar

multiple of the generator ρ(V ) of translations:

H1(Pn, σ) = C {ρ(V )} ⊂ H0
(
Pn,X 1

Pn
)
.

Moreover, ρ(U) is a Liouville vector field, i.e.

Lρ(U)σ = −σ.

Proof. By the discussion in Section 4.3, any Poisson vector field must preserve the irreducible

components of the zero locus of σ. In particular, such a vector field must preserve the rational

normal curve ∆1,n ⊂ Pn. But it is known (see [59, p. 154]) that the only vector fields on

Pn that preserve the rational normal curve are those that arise from the action of Aut
(
P1
)
,

i.e., the vector fields that lie in the image of the Lie algebra homomorphism H0
(
P1,X 1

P1

)
→

H0
(
Pn,X 1

Pn
)
. Now the elements U, V ∈ g may be extended to a basis for H0

(
P1,X 1

P1

)
by

adding a generator W with [W,U ] = W and [V,W ] = 2U . It remains to determine which

linear combinations of U, V,W bracket trivially with V ∧ U . A straightforward calculation

using the bracket relations shows that the only such linear combinations are multiples of V

alone and also shows that ρ(U) is Liouville.
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8.10 The Coll–Gerstenhaber–Giaquinto formula

Let A be a commutative C-algebra on which the Lie algebra g = C{U, V } from the previous

section acts by derivations. We define an associative product

A[[~]]⊗C A[[~]]→ A[[~]]

by the formula

f ? g =

∞∑
k=0

~kV k(f) ·
(
U

k

)
(g) = fg + ~V (f)U(g) +O(~2) (8.1)

where (
U

k

)
=

1

k!
U(U − 1) · · · (U − k + 1).

This product was introducted by Coll, Gerstenhaber and Giaquinto in [39], and we refer to

it as the CGG formula. Its semi-classical limit is the Poisson structure {f, g} = V (f)U(g)−
U(f)V (g) defined by the bivector V ∧ U . Notice that if B is another algebra on which

g acts and φ : A → B is a g-equivariant ring homomorphism, then the induced map φ̃ :

A[[~]]→ B[[~]] is also a ring homomorphism with respect to the star products. Similarly, if

M is an A-module on which g acts by derivations, then M[[~]] inherits the structure of an

A[[~]]-bimodule via the formulae

f ? m =

∞∑
k=0

~k(f) ·
(
U

k

)
(m)

and

m ? f =

∞∑
k=0

~k(m) ·
(
U

k

)
(f)

for f ∈ A[[~]] and m ∈ M[[~]], and g-equivariant module maps M → N define bimodule

homomorphisms M[[~]]→ N[[~]].

As it stands, the power series is merely formal, while we seek actual, convergent defor-

mations. However, there is a useful criterion that can be used to guarantee convergence.

Recall that a derivation of Z : A→ A is locally nilpotent if for every a ∈ A there exists a

k ∈ N such that Zk(a) = 0. The following observation is immediate from the CGG formula

(8.1):

Lemma 8.10.1. If the derivation V ∈ g acts locally nilpotent on A, then the CGG formula

for f ? g truncates to a polynomial in ~ for any f, g ∈ A, i.e., it defines a map

A⊗C A→ A[~].
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Evaluation at a particular value ~ ∈ C then gives an associative product

?~ : A⊗C A→ A.

We denote the corresponding deformed ring by A~. If, in addition, M is an A-module on

which g acts by derivations and V ∈ g acts locally nilpotently on M, then M becomes an

A~-bimodule M~.

We are interested in the geometric situation in which A =
⊕∞

k=0 H0
(
X,L⊗k

)
is the homo-

geneous coordinate ring of a projective variety X with respect to a very ample, g-equivariant

line bundle L. Correspondingly, A is a finitely generated graded ring and each grading com-

ponent Ak = H0
(
X,L⊗k

)
is a finite-dimensional C-vector space—i.e., A is finitely graded .

Notice that the grading components are also preserved by the action of g. We therefore

have a further decomposition

Ak =
⊕
λ∈C

Aλk

into generalized eigenspaces for the action of U ∈ g. The commutation relation [V,U ] = V

guarantees that V sends Aλk to Aλ−1
k , and hence V acts nilpotently on Ak, so that it acts

locally nilpotently on all of A.

Moreover, we obtain an R-filtration F•Ak defined by

FsAk =
⊕

Reλ≤s

Aλk

with FsAk ⊂ FtAk for s ≤ t, and this filtration is preserved by the action of g. It follows

from the CGG formula that if f ∈ F sA and g ∈ F tA then

f ?~ g = fg mod Fs+t−1A.

Thus A~ is an R-filtered ring whose associated graded ring is isomorphic to A itself. In

particular, if A is generated by
⊕n

k=0 Ak, then the deformed ring A~ is also generated by⊕n
k=0 Ak, and similar statements hold for other ring-theoretic properties; for example if A

is a domain, then so is A~.

By applying these observations to the case when A = C[x0, x1, x2, x3] is the homogeneous

coordinate ring of P3 with the action of g described in the previous section, we obtain the

quadratic algebra in Table 8.2, giving a quantization of the E(3) Poisson structure. The

specific relations shown are obtained by setting ~ = 1. In fact, corresponding to the fact

that the Poisson structure can be rescaled using the flow of the Liouville vector field U , any

value of ~ 6= 0 will produce an isomorphic algebra:

Proposition 8.10.2. Let A be a finitely graded algebra on which g acts by homogeneous
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derivations. Then the C-linear map U : A→ A exponentiates to an algebra isomorphism

etU : A~ → Ae
−t~

for all t ∈ C, so that the quantizations for different values of ~ 6= 0 are all isomorphic.

Proof. We have the identity

etU (Wf) = (etadUW )(etUf)

for all W ∈ g and f ∈ A. Since [U, V ] = −V , we have etadUV = e−tV , giving the

commutation rules

etUV k = e−ktV ketU

and

etU
(
U

k

)
=

(
U

k

)
etU .

The result now follows from a direct calculation using the CGG formula (8.1).

The nice thing about the universality of the CGG formula is that it allows us to promote

all of the equivariant geometry to quantum geometry. For example, the formula for the

product immediately gives the following

Proposition 8.10.3. Let X be a projective variety on which g acts, and let L be a very

ample line bundle that is g-equivariant. Let A =
⊕∞

k=0 H0
(
X,L⊗k

)
be the corresponding

homogeneous coordinate ring. If Y ⊂ X is a g-invariant subspace, then the homogeneous ideal

I =
⊕∞

k=0 H0
(
X, IYL⊗k

)
⊂ A is a two-sided ideal for the deformed product ?~. Similarly, if E

is a g-equivariant sheaf then corresponding graded A-module M(E) =
⊕∞

k=0 H0
(
X, E ⊗ L⊗k

)
is a bimodule for the product ?~.

In particular, for the case X = Pn described in the previous section, we see that all of

the embeddings µj,k : Pj → Pk define two-sided ideals in A~. In particular, we have the full

flag

∆0,1 ⊂ ∆1,1 ⊂ · · · ⊂ ∆n−1,1 ⊂ Pn

of linear g-invariant subspaces. If we choose homogeneous coordinates such that ∆j,1 is the

zero locus of (xn, . . . , xj+1), we obtain a regular sequence (xn, xn−1, . . . , x0) of elements in

A~ whose factor ring is the ground field C. One can also verify that the points on the curve

∆1,1 ∪ · · · ∪∆n,1, which is the zero locus of the Poisson structure, give rise to point modules

in the sense of [4].

As discused in the previous section, there are various other interesting features of the

g-equivariant geometry. For example, the Mukai–Umemura threefold X ⊂ P12 is g-invariant

and hence we obtain a quantization of its homogeneous coordinate ring, which is a bimodule
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over the quantized homogeneous coordinate ring of P12. Similarly, since the Schwarzenberger

bundles are g-equivariant the corresponding graded modules M(Ekn) =
⊕∞

j∈Z H0
(
Pn, Ekn(j)

)
quantize to bimodules. It would be interesting to study these modules in more detail—for

example, to write down explicit presentations.
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[56] B. L. Fĕıgin and A. V. Odesskĭı, Sklyanin’s elliptic algebras, Funktsional. Anal. i

Prilozhen. 23 (1989), no. 3, 45–54, 96.

[57] , Vector bundles on an elliptic curve and Sklyanin algebras, Topics in quantum

groups and finite-type invariants, Amer. Math. Soc. Transl. Ser. 2, vol. 185, Amer.

Math. Soc., Providence, RI, 1998, pp. 65–84.

[58] W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer

Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Math-

ematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],

vol. 2, Springer-Verlag, Berlin, 1998.

[59] W. Fulton and J. Harris, Representation theory, Graduate Texts in Mathematics, vol.

129, Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.

[60] V. Ginzburg, Calabi-Yau algebras, math/0612139.

[61] L. Giraldo and A. J. Pan-Collantes, On the Singular Scheme of Codimension

One Holomorphic Foliations in P3, Internat. J. Math. 21 (2010), no. 7, 843–858,

0812.3369.

[62] P. D. Goetz, The noncommutative algebraic geometry of quantum projective spaces,

ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–University of Oregon.
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no. Numero Hors Serie, 257–271. The mathematical heritage of Élie Cartan (Lyon,
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