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Abstract

We introduce the Stokes automorphism, which controls the jump in a
Borel sum as we cross a singular ray. It has a natural logarithm, called the
alien derivative. Using complex powers of the Stokes automorphism, we
introduce a whole family of summation operators that interpolate between
the two lateral summations. This allows us to assign unambiguous real-
valued sums to power series with real coefficients.
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1 Motivation: real-valued summations

In the previous lecture, we introduced the Borel summation procedure, which
takes a (summable) resurgent series f and produces a function. This procedure
depends on a choice of tangent direction α ∈ SpX in our Riemann surface. As
long as the ray is nonsingular for f , the sum sαf gives a well-defined germ of a
function, defined in a sectorial neighbourhood with an opening angle of π.

But when α is a singular direction, there were two different sums sα± which
correspond to taking the Laplace transform along contours in T which pass just
to the left or right of α. This led to an ambiguity in the summation: sα+

6= sα− .
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When the Borel transform had simple singularities, we found that the ambiguity
could be computed in terms of further Borel sums:

(sα− − sα+)f = sα+

( ∞∑
k=1

fke
−ak/x

)

where the coefficients ak are precisely the coordinates of the singularities of the
Borel transform in T, and the coefficient series fk are dictated by the structure
of the singularities (the minor and the residue); we will be more precise below.

In many applications, we will be trying to obtain a real-valued function, such
as the solution of a differential equation on the real-line, or the expectation value
of some observable in a quantum field theory. Hence the series f in question will
have real coefficients, and we will want to obtain a real-valued sum by taking our
Borel sum along the positive real axis. But in many interesting cases, the real
axis will turn out to be a singular direction for the problem, and the resulting
sums will be not only ambiguous, but also complex-valued.

For example, consider the series f = −
∑∞
k=0 k!(x/a)k+1 with a > 0. Then

the Borel transform is given by

ω = B̂(f) =
dt

t− a
∈ Ω1(TΓ).

In this case, the positive real axis is a singular direction. The left and right
Borel sums can be easily computed by integrating along contours α± that stick
to the positive real axis except for small semi-circles that avoid the singularity
at t = a. By sending the radius of the semi-circle to zero, we easily get the
following expression:

sα±f =

∫
α±

e−t/xdt

t− a
= P.V.

∫ ∞
0

e−t/xdt

t− a
∓ πie−a/x

where the real part

f0 = Re(sα±) = P.V.

∫ ∞
0

e−t/xdt

t− a

is independent of the contour, and is given by the Cauchy principal value of the
integral.

This happens more generally: when we apply the lateral summations to
a real series, we will always get answers that are complex conjugates of one
another. This suggests one way to cure the problem: whenever we try to sum
up a real-valued series, we should simply take the real part Re(sα+

) = Re(sα−).
The result is both unambiguous and real, which seems to solve both of our
problems at once.

But this simple solution fails a crucial test: it behaves poorly with respect
to multiplication. To see this, we note that since sα± are built directly from the
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Borel and Laplace transforms, they are algebra homomorphisms. Thus, in our
example, we have

sα±(f2) = (sα±(f))2

= (f0 ∓ πie−a/x)

= f2
0 ∓ 2πiea/x − π2e−2a/x,

and taking the real part, we find

Re(sα±f
2) = f2

0 − π2e−2a/x.

This result is evidently different from

Re(sα±f)2 = f2
0 .

Thus the naive operation of taking the real part Re(sα±) is not an algebra
homomorphism.

Our aim in this lecture is to discuss Écalle’s solution to the problem via
“alien calculus”. The basic idea is to produce a summation procedure that is
somehow halfway in between the two lateral sums, but it more clever than just
taking an average.

2 Stokes automorphisms and alien calculus

2.1 The Stokes automorphism and median summation

In Lecture 5, we introduced the algebra of resurgent symbols R(A) in a sector
A ⊂ SpX. Elements of this algebra are formal expressions of the form

f = f0 +
∑

06=v∈Γ

fve
−t(v)/x =

∑
v∈Γ

fve
−t(v)/x

where the coefficients fv ∈ ÔX,p
∼= C[[x]] are simple resurgent functions, and

the sum is taken over a discrete subset Γ ⊂ T, chosen so that the exponentials
e−t(v)/x for v ∈ Γ \ {0} decay in the sector A. We denote by R0 ⊂ R(A) the
subalgebra consisting of resurgent symbols that have no exponential terms, i.e.
for which f = f0 ∈ C[[x]].

We can extend the Borel sum for formal power series to all resurgent symbols
by the expression

sα±f =
∑
v∈Γ

(sα±fv)e
−t(v)/x,

assuming that all of the Borel sums exist and the resulting series of functions
converges.

The relation between left and right sums of a resurgent symbol is rather com-
plicated, since there are contributions from the ambiguities in the Borel sums
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for all of the different series fv. We will now set some notational conventions
for keeping track of these contributions.

First, we observe that every vector v ∈ T \ {0} determines an operator Sv,
which acts on the algebra R0 of simple resurgent functions; the action Sv ·f on a
simple resurgent function f ∈ R0 is determined as follows. First, take the Borel
transform ω = B̂(f). By assumption, ω has an endless analytic continuation
away from some discrete set sing(ω) ⊂ T of singularities. Denote by γ the
homotopy class of a path from the origin to v that is obtained by following the
ray from 0 to v, but making a small detour to the right of all of the points of
sing(ω). We can then extract the residue Resγω and the minor ωγ , as described
in Section 1.4 of Lecture 5. Using these data, we define the action

Sv · f = 2πiResγω + L̂ (ωγ) ∈ R0 ⊂ C[[x]]

where L̂ = B̂−1 is the formal Laplace transform. Notice that

Sv · f = 0

if ω has no singularity at v. In particular, if f is a convergent series, then ω will
be entire, and hence Svf = 0 for all v.

Now let
f =

∑
v∈Γ

fve
−t(v)/x

be a resurgent symbol. It follows immediately from Proposition 3 in Lecture 5
that the jump in the Borel sum of f along a ray α in T may be computed as
follows:

sα−f − sα+f =
∑
v∈Γ

(sα−fv − sα+fv) · e−t(v)/x

= sα+

∑
v∈Γ

∑
w∈α

Sw(fv)e
−t(v+w)/x.

This equation has many terms, but we notice that it has the following basic
structure:

sα− = sα+
◦ (1 + δα)

where

δα =
∑
w∈α

e−t(w)/xSw : R(A)→ R(A) (1)

is the operator that extracts the formal contributions from all the singularities
along the ray α. The key point about δα is that it only ever adds exponentially
small corrections, so it is “small” in an appropriate sense. We have

(1 + δα)f = f + (higher order terms),
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so that we hope to be able to recover f from (1 + δα)f . Indeed, this is the case;
as we shall see, the linear operator

Sα = 1 + δα ∈ End(R(A))

is, in fact, an algebra automorphism. It is called the Stokes automorphism
or the crossing automorphism . In fact, we will see that an operator Sν

α can
be defined for any complex exponent ν, not just ν = −1.

2.2 The alien derivative

In order to construct the powers Sν
α for ν ∈ C, we will use the formula

Sν
α = exp(ν logSα),

which means that we need to define a logarithm for Sα. But we have written

Sα = 1 + δα,

and so the obvious thing to do is to apply the Taylor expansion for the logarithm:

log(1 + δα) =

∞∑
n=1

(−1)n+1δnα
n

Equivalently, we could use the Newton binomial series

(1 + δα)ν =

∞∑
n=0

ν(ν − 1) · · · (ν − n+ 1)

n!
δnα.

Fortunately, there is no problem with the convergence of these series. The
reason is that, for a fixed resurgent symbol f ∈ R(A), and a fixed w ∈ T, the
coefficient of e−t(w)/x in δnαf will vanish for n sufficiently large. This happens
because the points of Γ and the singular sets of the coefficients fv are discrete.
As we take higher and higher powers of δα, the locations of the singularities add
together, moving further and further from the origin.

Exercise 1. Verify this claim.

Remark 1. The convergence of the sum can also be formalized by introducing
a convenient topology on the algebra R(A), designed so that e−t(w)/x is small
when w ∈ T is large. This topology is not analytic in nature (i.e. there are no
norms or estimates involved); it is a purely algebraic device for keeping track
of the order of exponentials, similar to the so-called adic topology on the ring
of formal power series, or the topology on the Novikov ring used in symplectic
topology. Details can be found, for example in [2, Section 2.4.2].

From the fact that Sα = 1+δα is an algebra automorphism, it follows easily
that the logarithm

∆α = log(Sα) = log(1 + δα)
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is a derivation, i.e. it satisfies the Leibniz rule

∆α(fg) = ∆α(f)g + f∆α(g).

Thus ∆α acts on R(A) like a derivative. But notice that it acts trivially on any
convergent series f ∈ OX,p = C{x} ⊂ C[[x]] because the Borel transform of such
a series has no singularities. This means that we cannot write the operator ∆α

as a usual derivative operator u(x)∂x. For this reason, Écalle calls ∆α the alien
derivative in the direction α.

2.3 Alien derivatives of the Euler series

To get a feeling for how alien derivatives works, let us compute some derivatives
explicitly in the case of the Euler series

f = −
∞∑
k=0

k!(x/a)k+1,

with a > 0, whose Borel transform is

ω =
dt

t− a
.

The singularity operator Sw for w ∈ T acts on f by extracting the residue:

Swf =

{
2πi t(w) = a

0 otherwise

Thus when α is the ray defining the positive real axis in the coordinate t, we
have

δαf = 2πi e−a/x.

The coefficient of the exponential is the constant 2πi, which is holomorphic, and
hence we have δnαf = 0 for n > 1. This gives the alien derivative

∆αf = δαf − 1
2δ

2
αf + 1

3δ
3
αf − · · · = 2πi e−a/x,

while all higher derivatives vanish.
Now we can compute the derivatives of arbitrary powers of f using the

derivation property:

∆αf
k = kfk−1∆αf = 2πikfk−1e−a/x.

But it is also instructive to compute the alien derivative of f2 directly. As we
saw in Lecture 4, its Borel transform is given by

B̂(f2) = ω ∗ ω =
2 log(1− t/a) dt

t− 2a
.
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There are now two singularities, at the points w, 2w ∈ T where t = a and t = 2a.
In order the compute the contribution from the point w, we must compute the
minor (ω ∗ ω)w, which means that we must write

ω ∗ ω = g(t− a) log(t− a) dt

and extract the coefficient 2πig(t) dt which measures the branching of ω ∗ ω at
w. We evidently have

(ω ∗ ω)w =
4πi dt

t− a
,

which has formal Laplace transform given by

Sw · f2 = 4πif

Meanwhile, the singularity at 2w contributes the residue

Swf
2 = 2πi · Res2w(ω ∗ ω) = 2πi · 2 log(−1) = −4π2

Notice that, in order to get the correct sign for log(−1), we must make sure to
stay on the correct sheet of the Riemann surface of log(1− t/a), passing just to
the right of the singularity at w as we analytically continue to the point 2w.

Putting these calculations together with the appropriate exponential factors,
we obtain

δα(f2) = Sw(f2)e−a/x + S2w(f2)e−2a/x

= 4πife−a/x − 4π2e−2a/x.

Now δ2
α acts nontrivially, giving

δ2
α(f2) = 4πiδα(f)e−a/x = −8π2e−2a/x

Hence the first alien derivative is given by

∆α(f2) = δα(f2)− 1
2δ

2
α(f2) + · · ·

=
(

4πife−a/x − 4π2e−2a/x
)
− 1

2 (−8π2e−a/x)

= 4πife−a/x

= 2f∆αf,

as expected. Thus we see how the contributions of the different singularities
arising from the convolution product are precisely cancelled, in order to make
the Leibniz rule work.

2.4 The median summation

Now that we have defined the powers Sν
α of the Stokes automorphism, we may

define not just the left and right Borel sums, but in fact a whole family of
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summation operators, where we first apply a power of the Stokes operator to
change the resurgent symbol before we sum. We thus obtain the summation
operators

sνα = sα+
◦Sν

α

depending on the complex parameter ν ∈ C. Since any power of Sα is an
algebra automorphism, these operators are compatible with products:

sνα(fg) = sνα(f)sνα(g)

as functions in appropriate sectorial neighbourhoods. This family of operators
interpolates between the left and right Borel sums: we have s0

α = sα+
, while

s1
α = sα+

◦Sα = sα− by definition of the Stokes operator.
Applied to the Euler series, we find using our calculations in the previous

section that

Sν
αf = exp(ν∆α)f

= f + (ν∆α)f + 1
2ν∆2

αf + · · ·
= f + ν · 2πie−a/x

for all ν ∈ C. Therefore

sναf = sα+(f + ν · 2πie−a/x)

= (sα+
f) + ν · 2πie−a/x

=

(
P.V.

∫ ∞
0

e−t/xdt

t− a
− πie−a/x

)
+ ν · 2πie−a/x

= f0 +
(
ν − 1

2

)
2πie−a/x

where f0 denotes the Cauchy principal value integral. We discover two interest-
ing facts:

1. By varying the parameter ν, we are able to obtain all possible solutions
of the ODE

x2∂x = af + x,

of which f is the unique formal solution. (We studied the case a = −1 in
Lecture 1.)

2. When ν = − 1
2 , the sum of the series is real-valued:

s1/2
α f = P.V.

∫ ∞
0

e−t/xdt

t− a

These observations are not accidents. Indeed, the Stokes automorphism
Sα is compatible not just with products, but also with the derivative operator,
thanks for the compatibility between differentiation and Borel transforms. What
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this means is that if f satisfies some differential equations—linear or nonlinear—
then its Borel sums sναf must satisfy the same differential equation.

The second observation is an instance of the following general result about
the median summation operator

smed
α = sα+

◦S1/2
α = sα− ◦S−1/2

α ,

which lies halfway between the left and right sums:

Theorem 1 (Écalle). The median summation operator assigns real-valued sums
to real-valued series, provided that the summation converges.

For a sketch of the proof, see [1, Section 7].
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