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Abstract

We introduce the convolution product on one-forms that corresponds,
via the Borel and Laplace transforms, to the usual product on functions.
We then introduce Écalle’s notion of endless analytic continuability, and
show that two endlessly continuable forms have endlessly continuable con-
volutions.
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1 Motivation

In the previous lecture, we introduced the Borel transform B and the Laplace
transform L = B−1, which related holomorphic functions defined near a point
p on a Riemann surface X, and holomorphic one-forms on a one-dimensional
vector space T (the tangent space to X at p). We also introduced “formal”
version of these operations, that act on formal power series.
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These operations behaved well with respect to the algebraic structure on
functions. For example, they are linear, and there is a natural compatibility
with differentiation, given by the formula

B(x2∂xf) = tB(t)

Our task in this lecture is describe the compatibility with multiplication with
functions, which is more subtle. It will naturally lead us to certain infinite-
sheeted Riemann surfaces and Écalle’s notion of endless analytic continuation.

2 The convolution product

2.1 Definition of convolution

Recall that if x is a coordinate on the Riemann surface X at p, and t is a global
linear coordinate on our vector space T, the formal Borel transform is given by

B̂

( ∞∑
k=0

akx
k+1

)
=

∞∑
k=0

akt
k

k!
dt.

It takes a power series in X with zero constant term and produce a one-form on
T with formal power series coefficients. Now, formal series have the usual multi-
plication law corresponding to multiplication of functions on X. But one-forms
on T do not have an obvious product; normally forms cannot be multiplied.
On the other hand, since B̂ is an isomorphism, we can transport the product
of functions on X to a product on forms on T. The result is the convolution
product

ω ∗ µ = B̂(L̂ (ω)L̂ (µ))

where L̂ = B̂−1 is the formal Laplace transform. By linearity, this product is
determined completely by what it does to elements of the form tn dt with n ≥ 0,
for which it is easily computed:

(tj dt) ∗ (tk dt) = B̂(L̂ (tj) · L̂ (tk))

= B̂(j!xj+1 · k!xk+1)

= j!k!B̂(xj+k+2)

=
j!k!

(j + k + 1)!
tj+k+1 dt.

In fact, this product may be constructed without reference to the transforms

B̂ and L̂ , using only the fact that T is a vector space. To this end, suppose
that ω and µ are holomorphic forms defined in some disk V ⊂ T containing zero.
Thus we can write ω = f dt and µ = g dt for some holomorphic functions f and
g defined on V. Then the convolution product is given by

ω ∗ µ = h dt
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where

h(t) =

∫ t

0

f(τ)g(t− τ)dτ = t

∫ 1

0

f(tτ)g((1− τ)t) dτ (1)

and the integral is taken along a straight line path from 0 to t in V.

Exercise 1. Prove that this integral formula reproduces the correct formula for
the convolution of tj dt and tk dt.

Remark 1. The product may also be phrased in a coordinate-free manner using
an appropriate pushforward on differential forms; see Appendix A.

2.2 An example: powers of Euler’s series

Let us return to our example of the Euler series

f =

∞∑
k=0

(−1)kk!xk+1

from Lecture 1. Its Borel transform is given by

ω = B̂(f) =

∞∑
k=0

(−1)ktk dt =
dt

1 + t

Here, we have summed the series for |t| < 1, and then extended the resulting
form to all of T by analytic continuation. In so doing, we found that ω has
a pole at t = −1, but it is otherwise single-valued and holomorphic. In other
words, the singular set of ω is given by

sing(ω) = {t = −1} ⊂ T.

Suppose that we wanted to know the Borel transform of f2. In light of our
considerations above, this means that we should look at the convolution product

ω∗2 = ω ∗ ω =
dt

1 + t
∗ dt

1 + t

Using the integral formula for the convolution, and partial fraction decomposi-
tion, we can easily compute the convolution:∫ t

0

1

1 + τ

1

1 + (t− τ)
dτ =

1

t+ 2

∫ t

0

(
dτ

t− τ + 1
+

dτ

τ + 1

)
=

1

t+ 2
(− log(t− τ + 1) + log(τ + 1))|τ=t

τ=0

=
2 log(t+ 1)

t+ 2

We therefore have the simple formula

ω∗2 = B̂(f2) =
2 log(t+ 1)

t+ 2
dt.
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We see immediately that the convolution has produced a new singularity: there
is now a pole at t = −2. But there is a further complication: the form is now
multivalued due the factor log(t+1), which has a branch point at t = −1, where
we originally had the pole. So now the singular set

sing(ω∗2) ⊂ T

consists of the two points t = −1 and t = −2.
Let us denote by T2 the universal cover of T \ sing(ω∗2). Recall that in

general, the construction of the universal cover depends on the choice of base
point, but here we have a canonical choice given by the origin 0 ∈ T. Likewise
ω∗2 has a preferred branch at the origin, determined by the standard branch of
logarithm. In this way, we see that ω∗2 is a canonically defined, single-valued,
holomorphic one-form on the Riemann surface T2. This Riemann-surface has
infinitely many sheets over our original space T.

Continuing in this way to compute the next power, we find

ω∗3 =
(

Li2

(
1
t+2

)
+ Li2(−t− 1)− Li2

(
t+1
t+2

)
+2 log(t+ 2) log(t+ 1) +

π2

12

)
2dt

t+ 3

where

Li2(u) = −
∫ u

0

log(1− w)

w
dw =

∞∑
k=1

uk

k2

is the dilogarithm function. Therefore the singular set of the one-form ω∗3 is
given by the three points where t = −1,−2 and −3. Thus ω∗3 is defined on the
universal cover T3 of T \ sing(ω∗3).

A clear pattern is emerging. The singularity at t = −1 in ω is propagating:
every time we apply the convolution, we end up with a new singularity that is
shifted by −1 from the previous ones, so that the form ω∗n has singularities at
t = −1,−2, . . . ,−n. We obtain a form that is defined on the infinite-sheeted
Riemann surface Tn, which is the universal cover of T \ sing(ω∗n). In order to
work with all possible powers of ω together, we should take the universal cover
T∞ of T \ {−1,−2,−3, . . .}.

The fact that the singularities of ω∗(i+j) are obtained by adding together
the singularities of ω∗i and ω∗j is no coincidence, as we will soon explain.

3 Endless analytic continuation and resurgent
functions

3.1 Endless analytic continuation

We now come to one of the key ideas of resurgence theory: Écalle’s notion
of endless analytic continuation. We will use here only a simplified version,
following [1, 2].
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We want to begin with the germ of a one-form defined in a neighbourhood
of the origin in T, and extend it analytically to all of T. We must therefore
consider paths γ that start at 0 and try to analytically continue the form along
γ. In so doing, we may find that there are certain points in T that we must
avoid. But if we are lucky, these points will form a discrete subset Γ ⊂ T where
the singularities are poles or branch points. In this case we say that the form
has an endless analytic continuation .

More precisely, let Γ ⊂ T be a (possibly infinite) discrete subset of T. In
general, this subset may or may not contain 0 ∈ T, but we will always assume
that 0 ∈ Γ as we will lose no generality by doing so. A path from the origin
that avoids Γ is a smooth path γ : [0, 1]→ T such that

1. γ(0) = 0

2. γ(t) ∈ T \ Γ for t > 0

Two such paths are homotopic when they can be joined by a homotopy that
fixes the endpoints and avoids Γ in the same way; see Figure 1.

Definition 1. For a discrete set Γ ⊂ T, let

T◦Γ =
{paths from the origin avoiding Γ}

homotopies
,

and let
TΓ = T◦Γ ∪ {0̂},

where 0̂ denotes the constant path at the origin in T. We denote by

πΓ : TΓ → T
[γ] 7→ γ(1)

the map that extracts the endpoint of a path.

0

T

Figure 1: Some paths avoiding the discrete set Γ, denoted by the black dots.
The two blue paths are homotopic, but they are not homotopic to the red one.
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Notice, in particular, that

πΓ(T◦Γ) = T \ Γ

and
πΓ(0̂) = 0.

Moreover, if V ⊂ T is a simply-connected open neighbourhood of zero such that
V ∩ Γ = {0}, then by considering the paths from the origin that are completely
contained in V, we obtain a canonical embedding V ⊂ TΓ that sends 0 ∈ V to
0̂ ∈ TΓ. We will identify V with its image in both T and TΓ, the choice being
clear from context.

The following statement is a straightforward consequence of these observa-
tions, and the usual arguments regarding the construction of the universal cover
of a manifold:

Proposition 1. For a discrete subset Γ ⊂ T, there is a unique Riemann surface
structure on TΓ such that the map πΓ : TΓ → T is locally a biholomorphism.
Moreover, TΓ is simply connected.

Definition 2. Let Γ ⊂ T be a discrete subset containing the origin, and let
ω ∈ Ω1(V) be a one-form defined in a neighbourhood V ⊂ T of the origin. We
say that ω is Γ-continuable if it extends to a holomorphic form on the entire
Riemann surface TΓ by analytic continuation.

Definition 3. A one-form ω defined in a neighbourhood of the origin in T has
an endless analytic continuation if there exists a discrete subset Γ ⊂ T such
that ω is Γ-continuable. A formal power series f ∈ C[[x]] is resurgent if it is
Gevrey, and its Borel transform has an endless analytic continuation.

Example 1. The form ω = dt
1+t obtained as the Borel transform of the Euler se-

ries f =
∑∞
k=0(−1)kk!xk+1 is Γ-continuable, where Γ = {t = 0,−1}. Therefore

the Euler series f is resurgent. In fact, ω is already defined on T\{t = −1} and
is thus extended to TΓ simply by pulling back along πΓ.

Example 2. The series

ω =

∞∑
k=0

tk dt

k + 1

defines a holomorphic form in the disk |t| < 1. We claim that it has an endless
analytic continuation. Indeed, it is Γ-continuable, where Γ = {t = 0, 1} ⊂ T.
Indeed we have for |t| < 1 that

Ω = −Log(1− t)dt
t
,

where Log denotes the principle branch of logarithm. The function Log(1− t) is
holomorphic and vanishes at t = 0, so that the ratio t−1Log(1−t) is holomorphic.
Written in this way, it is clear that the form can analytically continued; it has
an infinite branch point of log type at t = 1. If we analytically continue this
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form along a path that wraps n times around the branch point and returns to
the origin, we find the form

ωn = −(Log(1− t) + 2πin)
dt

t

Thus on the other sheets of the Riemann surface TΓ, this form has a pole at the
origin. This example shows why it is helpful to include the origin in the discrete
set Γ.

Example 3 ([2, p. 26]). Recall Stirling’s approximation

log (Γ(z))− 1
2 log(2π)− (z − 1

2 ) log z + z ∼
∞∑
k=1

B2k

2k(2k − 1)z2k−1
=: f

for the classical Γ function (not to be confused with the discrete sets Γ ⊂ T that
we have been considering). Here, the coefficients B2k are Bernoulli numbers,
and the formula defines an asymptotic expansion as z → +∞, i.e. the right
hand side defines an asymptotic expansion f ∈ C[[x]] in the coordinate x = z−1

at infinity.
The Borel transform may be explicitly computed using the generating series

1
2 coth(t/2) =

1

t
+

∞∑
k=1

B2k

(2k)!
t2k−1.

for the Bernoulli numbers, where coth is the hyperbolic tangent. Indeed, a
straightforward calculation using the identity B̂(x2∂xf) = tB̂(f) yields the
formula

ω = B̂(f) =
t coth(t/2)− 2

2t2
dt.

This form has poles for t ∈ 2πiZ but is otherwise single-valued and holomorphic.
Hence ω has endless an endless continuation, so the Stirling series is resurgent.

The exponentiation of the series reads√
z

2π

( e
z

)z
Γ(z) ∼ exp(f) =

∞∑
k=0

fk

k!

Once again, the series on the right hand side is resurgent, and since the Borel
transform kills the constant term, we expect the Borel transform to be given by

B̂(ef − 1) = ω + 1
2ω ∗ ω + 1

3!ω ∗ ω ∗ ω + · · ·

Examining this formula and comparing with our previous calculations, we expect
the singularities of ω to propagate and produce infinitely many branch points.
Indeed this is exactly what happens, with branching where t ∈ πiZ. Justifying
these assertions requires some work; we refer the reader to [2] for a complete
treatment.
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Example 4. The series

g(t) =

∞∑
k=0

t2
k

= 1 + t+ t2 + t4 + t8 + · · ·

clearly converges to define a holomorphic function on the disk |t| < 1. Notice
that

g(1) = 1 + 1 + 1 + 1 + · · · ,

so this function has a singularity at t = 1. But we also have the functional
equation

g(t2) = g(t)− t,

and hence g must also have a singularity t = −1. Continuing in this way with
g(t2k) = g(tk)−tk for k ≥ 2, we see that g has a singularity at every point where
t2k = 1. Such points are dense in the unit circle |t| = 1, so the function g cannot
be extended beyond this disk. (It is an example of a lacunary function , which
means that it has the unit circle as its natural boundary.) Thus, the one-form
g dt does not admit an endless analytic continuation.

These examples point to two key features of endless continuation and resur-
gent series:

1. Not every Gevrey series is resurgent. Indeed, any series whose Borel trans-
form is a lacunary function will not be resurgent. Thus resurgence is not
a property that can simply be read off from the growth of the coefficients;
it must be established by some other means. Typically, it will be a conse-
quence of some additional property that the series satisfies; for example,
the series may solve an analytic differential equation, which puts strong
constraints on the relations between the coefficients.

2. Even if we start with series whose Borel transforms are single-valued, or
have only a couple of singular points, we quickly find many more singular-
ities and branch points when we start performing natural operations on
these series. So working with these infinite-sheeted Riemann surfaces is
absolutely essential if we want to reflect the full algebraic structure of the
series in question.

3.2 Continuation of convolution products

The following fundamental result shows that resurgent series form an algebra.
We shall only sketch the argument here, and refer the reader to [2, Sections
19–21] for more details.

Theorem 1. Suppose that Γ ⊂ T is a discrete subset containing zero. Then the
space Ω1(TΓ) of Γ-continuable forms is closed under convolution if and only if
Γ is closed under addition.
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To see that closure under addition is necessary, consider the convolution of
two forms with simple poles at a and b, generalizing our calculations with the
Euler series. We find

dt

t− a
∗ dt

t− b
=

(∫ t

0

1

τ − a
1

t− τ − b
dτ

)
dt

= (log(1− t/a) + log(1− t/b)) dt

t− (a+ b)

which has a pole at t = a+ b. So if a, b ∈ Γ, we need a+ b ∈ Γ as well.
So the interesting part is to show that if Γ is closed under addition, then any

pair ω, µ ∈ Ω1(TΓ) of Γ-continuable forms must have a Γ-continuable convolu-
tion. That is, if we define their convolution in a small disk V ⊂ T centred at 0
using (1), then we may analytically continue the convolution along any path in
T \ Γ that starts in V.

The first step is to observe that, while the convolution in V is defined by
integrating along rays, it can also be defined by integration along more general
paths. Indeed, if C : [0, 1] → V is a path from 0 to C(1) = t such that t − C
also lies in V, then the coefficient of the convolution product may be written as

h(t) =

∫ 1

0

f(C(τ)) · g(t− C(τ)) · γ′(τ) dτ, (2)

which evidently recovers (1) when C is a ray. One way to ensure that the path
t− C will lie in V is to require that C lies in V and satisfies the equation

C(1− τ) = t− C(τ)

for all τ ∈ [0, 1]. For then the two paths are obtained C and t−C are obtained
from one another simply by reversing the direction of time. Such a path C is
called a symmetric path from 0 to t, because it has 180◦ rotational symmetry

about its midpoint C( 1
2 ) = C(1)

2 , as shown in Figure 2.

0

t
2

t

0

Figure 2: A symmetric path from the origin to t ∈ T

Now suppose that γ is a path in T \ Γ that starts in V. To extend the
convolution product along γ it is enough to show that for every s ∈ [0, 1] we can
find a symmetric path Cs from 0 to γ(s) with the following two properties:
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1. Cs avoids Γ, so that it lies entirely in the domain of ω and µ, and

2. Cs depends smoothly on s.

The situation is illustrated in Figure 3. Once such a family is obtained, the
convolution may be defined at the point t = ts = γ(s) ∈ T \ Γ using the
symmetric path C = Cs to compute the integral (2). It is then easy to see that
the result is really an analytic continuation of the convolution in V.

0

T

V

Cs

C0

C1

γ

Figure 3: A family of symmetric paths, shown in red, whose endpoints follow
the blue curve γ that starts in the disk V. The family starts with the ray C0

and avoids the points of Γ, denoted by the black dots.

In light of these considerations, the theorem essentially reduces to the fol-
lowing geometric fact:

Lemma 1. Suppose that Γ ⊂ T is a discrete set that is closed under addition,
and that γ is a path in T \Γ. Let C0 be the ray from 0 to γ(0), and assume that
C0 avoids Γ. Then there is a smooth family of symmetric paths Cs : [0, 1]→ T
starting from C0 and parametrized by s ∈ [0, 1], such that Cs avoids Γ for all s,
and Cs has γ(s) as its endpoint.

Proof. We construct the paths Cs by flowing the original ray C0 along an s-
dependent vector field Zs. To define this vector field, we choose a smooth
function G : T → [0, 1] that has Γ as its zero locus, i.e. G−1(0) = Γ. We then
define the vector field Z by the formula

Zs(v) =
G(v)

G(v) +G(γ(s)− v)
· γ′(s)

We claim that the denominator G(v) +G(γ(s)− v) is nonvanishing, so that this
vector field is globally well defined. Indeed, if it were to vanish, then since G
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takes on only nonnegative values, we must have G(v) = G(γ(s) − v) = 0. But
then v and γ(s) − v must both lie in Γ. Since Γ is closed under addition, this
would imply that γ(s) ∈ Γ as well, contradicting the assumption that γ lies in
T \ Γ.

We observe that with respect to any norm | · | on T, we have |Zs(v)| ≤ |γ′(s)|
for all v ∈ T. Hence this s-dependent vector field is complete, i.e. its flow exists
for all s ∈ [0, 1]. Applying the flow to the ray C0, we obtain a family of paths
Cs that avoid Γ. The fact that these paths remain symmetric now follows easily
from the identity

Zs(v) + Zs(γ(s)− v) = γ′(s)

and the fact that C0 is symmetric.

A Geometric description of convolution

In this appendix, we give a more geometric construction of the convolution
product. The construction uses the diagram

T× T
a //

p1

||

p2

""

T

T T

where p1, p2 are the projections and a : T × T → T denotes addition in the
vector space T.

Given one-forms ω, µ ∈ Ω1(T), consider the two-form

p∗1ω ∧ p∗2µ ∈ Ω2(T× T).

We claim that the convolution is given by a “pushforward”

ω ∗ µ = a∗(p
∗
1ω ∧ p∗2ω) ∈ Ω1(T),

defined by integrating the two-form over a path in each fibre of a, to get a
one-form on T.

Indeed, suppose that v ∈ T, and that w ∈ TvT ∼= T is a tangent vector at v.
We wish to define the pairing

〈(ω ∗ µ)|v, w〉 ∈ C

To this end, let γ : [0, 1] → T be a path from the origin to v in T. Then γ
defines a path γ̃ in the fibre

a−1(v) = {(u, v − u) ∈ T× T |u ∈ T}

by the formula γ̃ = (γ, v − γ). Indeed, every path in the fibre has this form.
Likewise, we can consider the constant vector field

w̃ = 1
2 (w,w) ∈ T× T
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on T × T, which projects to w along a. Then the convolution of ω and µ
along γ is given by

〈(ω ∗γ µ)|v, w〉 =

∫
γ̃

ιw̃(p∗1ω ∧ p∗2µ) (3)

where ιw̃ denotes the contraction of the vector field w̃ into forms.

Exercise 2. Show that the formula (3) for the convolution along a ray γ directly
recovers the coordinate expression (1).

Now suppose that ω and µ, rather than being globally defined, are defined
only in some open set V ⊂ T containing 0, v ∈ T. Then (3) makes sense as long
as γ : [0, 1] → V is a path from 0 to v with the property that v − γ is also a
path in V. Let us say that such a path is adapted to V.

Exercise 3. Suppose that γs for s ∈ [0, 1] is a smooth family of paths from 0 to
v adapted to V. Show that the convolution

ω ∗γs µ

is independent of s. Hence, the convolution along a path adapted to V depends
only on the homotopy class of the path, where the homotopies are also adapted
to V.
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