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Abstract

We introduce the notion of a real oriented blowup as convenient way
to study functions defined in angular sectors in Riemann surfaces. We ex-
amine holomorphic functions that have exponential growth in sectors and
prove the Fragmen–Lindelöf principle. We then recall Poincaré’s notion
of an asymptotic expansion, and show that every formal power series is
the asymptotic expansion of a holomorphic function defined in a sector.
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1 The importance of directions

Recall that our aim is to study functions defined by expansions such as

f =

∞∑
k=0

∞∑
j=0

ajkx
kecj/x.

They have two main pieces: essential singularities due to the exponentials, and
power series expansions that are typically divergent. Our goal in this lecture is
to look at these two pieces individually.
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Before we begin in earnest, let us recall that in the previous lecture, we
solved the differential equation

x2f ′ = x− f

using the series

f =

∞∑
k=0

(−1)kk!xk+1,

We were able to “resum” the series for to get a solution of the ODE in the
complex domain x ∈ C, but there was a caveat: there was a certain special
direction in which we could not resum the series, namely the negative real axis
x < 0. We found that along this axis, the function had a branch cut, and that
the two branches differed by a multiple of the function

g = e1/x,

which has an essential singularity at the origin. This was an example of a general
rule:

The sum of a divergent series will depend on the “direction”
in which take the sum.

But functions with essential singularities also often have characteristic direc-
tions. Indeed, let us consider the function g above. Let us use polar coordinates

x = reiθ = r(cos θ + i sin θ)

so that

g = exp

(
cos θ − i sin θ

r

)
In particular,

|g| = exp(r−1 cos θ).

Imagine that r → 0 along a ray of fixed angle θ. Then there are three quite
distinct possibilities:

1. cos θ > 0, in which case g →∞ very rapidly as r → 0

2. cos θ < 0, in which case g → 0 very rapidly as r → 0

3. cos θ = 0, in which case g = exp(±i/r) has unit modulus, but oscillates
very wildly as r → 0.

So the plane is naturally divided into two open regions—the left and right
half-planes—on which the function grows or decays very rapidly. These regions
are bounded by rays on which the function oscillates wildly. More generally,
the behaviour of the function exp(1/xk) with k ∈ Z>0 divides the plane into
sectors of total angle π/k, and the function alternates between growing rapidly
and decaying rapidly in each of these regions, as shown in Figure 1.
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Figure 1: Contour plots of the functions f = e1/x
k

for 1 ≤ k ≤ 4. The magnitude
is indicated by the brightness, while the phase is indicated by the colour.

We would like to think of these sectors as being like open neighbourhoods
of the point p in which we have some understanding of the function. But as
it stands, such sectors are not really open neighbourhoods in the traditional
sense, as none of them contains a ball centred at p. What’s happening is that
the sector defined by a condition θ ∈ (a, b) on the angular coordinate, but
this condition does not define an open neighbourhood of 0, because the polar
coordinate representation

x = reiθ

is ambiguous when r = 0. To resolve this confusion, we now introduce the
notion of a real-oriented blowup.
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2 Real oriented blowups

2.1 Tangent rays

Let X be a Riemann surface and let p be a point in X. We denote by TpX the
tangent space of X at p. A tangent ray at p is a subset α ⊂ TpX of the form

α = {rv ∈ TpX | r > 0}

where v ∈ TpX is some fixed nonzero tangent vector. We denote by SpX the
set of tangent rays at p. If we choose a coordinate x at p, then every ray will
point in the direction of a unique unit modulus number x = eiθ, and so SpX is
(non-canonically) isomorphic to the standard circle

SpX ∼= S1 =
{
eiθ
∣∣ θ ∈ [0, 2π)

}
Notice that if we change the coordinate to

u = aeiµx+ bx2 + · · ·

with a > 0, then the identification of SpX with S1 undergoes a rotation by
the angle µ. Hence there is no privileged direction “θ = 0” at p, but the
term “clockwise direction” still makes sense, and we can still talk about the
angle formed by two rays α1, α2 ∈ SpX: starting from α1, we move around SpX
counter-clockwise until we reach α2. In so doing we always traverse an angle
less than 2π, which gives a meaning to the expression

|α1 − α2| ∈ [0, 2π)

as shown in Figure 2. Evidently, we have

|α2 − α1| = 2π − |α1 − α2|.

Definition 1. Let p be a point in the Riemann surface X. A sector at p is an
open subset A ⊂ SpX bounded by two distinct rays. We denote by (α1, α2) the
sector that starts from α1 and goes around the circle counter-clockwise to α2.
The angle of a sector A = (α1, α2) is the angle

|A| = |α2 − α1| ∈ (0, 2π)

determined by its endpoints.

2.2 Real oriented blowup

We now take a point p ∈ X in our Riemann surface. The real oriented blowup
of X at p is the space obtained by deleting p and replacing it with the set of
rays through p:

[X : p] = (X \ {p})
∐

SpX
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Figure 2: The angles formed by two rays in the tangent space TpX, and the
corresponding points and sectors in the circle SpX

We claim that the set [X : p] naturally has the structure of a Riemann surface
with boundary

∂[X : p] = SpX

Thus points on the boundary correspond to tangent rays at p. See Figure 3 for
an illustration. Indeed, if x = reiθ is a local system of polar coordinates, then
[X : p] is parametrized locally by the coordinates

(r, θ) ∈ [0,∞)× (−π, π)

and the boundary is given by the locus r = 0. There is a natural map

[X : p]→ X,

called the blowdown , that is the identity away from p, and contracts SpX to p.
It is given in coordinates by the obvious formula

(r, θ) 7→ reiθ.

With the real oriented blowup in hand, we may now make the

Definition 2. Let p be a point in the Riemann surface X. An open set

U ⊂ X \ {p} = [X : p] \ SpX

is a sectorial neighbourhood of p if it is connected, and its closure intersects
the boundary SpX in an open sector A ⊂ SpX. This sector is then called the
opening of U.

For example, Figure 4 shows a sectorial neighbourhood of the origin in com-
plex line X = C.
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[X : p] X

TpX

SpX

Figure 3: The real oriented blowup of the Riemann surface X at p, and a point
on the boundary corresponding to a ray in the tangent space at p.

A

[C : 0] U C U

0

Figure 4: An open sectorial neighbourhood U of 0 ∈ C with opening A.

3 Functions with exponential growth

3.1 Basic definitions

For the rest of the lecture, we will be concerned with properties of holomorphic
functions that are defined in sectorial neighbourhoods of a point, starting with
functions that have exponential growth. We will make use of the standard
notation from complex geometry: if U ⊂ X is an open set of a Riemann surface,
then O(U) denotes the set of holomorphic functions on U.

Let x = reiθ be a coordinate on X near p and suppose that U is a sectorial
neighbourhood of p with opening A ⊂ SpX. We say that a holomorphic function
f ∈ O(U) has exponential type in the direction α ∈ A if we can find
constants τ ∈ R and C > 0, and a sectorial subneighbourhood U′ ⊂ U whose
opening contains α, such that

|f | ≤ Ceτ/r

on U′. Thus the growth of the function f is at most exponential as we approach
the point p in the direction α.
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Exercise 1. Show that this condition depends only on the function f and the
direction α, not on the coordinate x.

In order to measure the growth rate of f in the direction α, we consider the
quantity

τ(α) = inf
C>0,U′3α

{
τ ∈ R

∣∣∣ |f | ≤ Ceτ/r on U′
}

Thus τ(α) is the smallest exponent required to bound f as we approach p in
the direction α. We then say that f has exponential type

τ(α)

r

in the direction α. We say that f decays exponentially in the direction α
if τ(α) < 0. The exponential type depends continuously on the direction α, and
has a coordinate-invariant meaning on the boundary circle SpX of the blowup,
as follows:

Exercise 2. Using polar coordinates x = reiθ on the blowup [X : p], let ∂r be
the outward-pointing radial vector field. Its restriction to the boundary gives a
section of the normal bundle of the boundary:

[∂r|SpX] ∈ Γ(SpX,NSpX).

By replacing the symbol 1
r above with this normal vector field, show that the

exponential type of a function may be naturally viewed as a section of the
normal bundle.

More generally, we could have functions of exponential type τ/rβ for β > 0,
which are bounded by exponentials of the form

|f | ≤ Ceτ/r
β

Their exponential types can be interpreted as sections of the bundle (NSpX)β of
βth densities. The basic example is as follows:

Example 1. Let X = C with the standard coordinate x = reiθ. And let U be a
sectorial neighbourhood of the origin. Let b, β > 0 be constants and consider
the function

exp(−b/xβ),

defined on U using a choice of branch of xβ . We have

Re(x−β) = r−β cos(θβ)

so that
| exp(−b/xβ)| = exp(−b cos(θβ)/rβ).

Evidently this function has exponential type

−b cos(βθ)

rβ
∈ Γ(SpX,N

β
SpX

)

It decays exponentially in the region where cos(βθ) is positive, and grows expo-
nentially where cos(βθ) is negative. Figure 5 shows the exponential type of the
functions exp(1/xk) for small integer values of k.
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Figure 5: Contour plots of the functions e1/x
k

for 1 ≤ k ≤ 3 and the corre-
sponding exponential types. The latter are given by cos(kθ)/rk; the arrows
point outwards in the regions where the function is blowing up and inwards
where it is decaying.

In this course we, will mainly deal with the case in which the exponential
growth is like exp(τ/r), therefore:

Unless we explicitly declare otherwise, we will assume that
“exponential type” means that the growth is like exp(τ/r),
i.e. β = 1.

3.2 The Fragmen–Lindelöf principle

Notice an important fact about the function exp(τ/x): the regions in which
it blows up or decays exponentially are sectorial neighbourhoods of angle π.
In particular, the function cannot decay in any sector of opening bigger than
π. That this observation holds true for any function of exponential type is
the content of the following Fragmen–Lindelöf principle, which we will state
momentarily.

The proof of this principle is a consequence of the classical maximum prin-
ciple : if f is a holomorphic function on a bounded region U that extends con-
tinuously to the boundary ∂U, then

sup
U
|f | ≤ sup

∂U
|f |.

The other half of the Fragmen–Lindelöf principle, For functions of exponential
type, a similar statement holds within sufficiently small sectorial neighbour-
hoods:

Theorem 1 (Fragmen–Lindelöf principle). Let X be a Riemann surface and let
p be a point in X. Let U be a bounded sectorial neighbourhood of p with opening
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A, and let f ∈ O(U) be a holomorphic function. Then the following statements
hold

1. (Maximum principle) Suppose that |A| < π, that f is of exponential type,
and that f extends continuously to ∂U \ A. Then

sup
x∈U
|f(x)| ≤ sup

∂U\A
|f |

2. If |A| > π and f decays exponentially in all directions of A, then f = 0.

Proof. We follow [1, p. 134–135]. It is evidently sufficient to prove the state-
ments when U lies in the domain of a coordinate x = reiθ centred at p. We may
further assume that A is centred along the positive real axis in this coordinate.
The strategy for both statements is to apply the classical maximum principle
to a family of functions that limits to our given function f , and whose modulus
is controlled.

For the first statement, choose constants β, b > 0 such that

1 < β < π/|A|.

This is possible because |A| < π. Then the function exp(−b/xβ) has exponential
type

−b cos(βθ)

rβ

and cos(βθ) is positive on all of A, so that the function decays. Now f is of

exponential type τ(θ)/r for some τ . Therefore fe−b/x
β → 0 as r → 0 because

r−β blows up more rapidly than r−1. So even though f may not extend contin-

uously to the sector A ⊂ ∂U, the function fe−b/x
β

does extend; its value on A
is zero. The result now follows by applying the classical maximum principle to

the function fe−b/x
β

and sending b→ 0+.
For the second statement, notice that we may assume that U has the form

U =
{
reiθ

∣∣∣ r ∈ (0, R) and θ ∈
(
− |A|2 ,

|A|
2

)}
,

i.e. that it is a sector bounded by straight rays with radius R > 0 and opening A.
Indeed, any other sectorial neighbourhood of p with opening at least π contains
a subneighbourhood of this form, and by analytic continuation, it is enough to
show that the function vanishes on such a subneighbourhood.

We set
β =

π

|A|
< 1

and consider the function exp(λ/xβ) for λ > 0, which has exponential type

λ cos(βθ)

rβ
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Now the boundary of U consists of the sector A, the two rays of angles θ = ± |A|2
and length R, and the arc of fixed radius R between these two rays. By construc-
tion, the function exp(λ/xβ) has unit modulus along the two rays. Moreover,

since β < 1, and f decays exponentially, the function feλ/x
β

decays to 0 on A.
The result now follows easily by applying the classical maximum principle to

feλ/x
β

and taking λ→∞.

4 Asymptotic expansions

4.1 Poincaré’s definition and its basic properties

Suppose that U is a sectorial neighbourhood of p with opening A ⊂ SpX, and
that x is a coordinate at p whose domain contains U. Suppose that f ∈ O(U)
is a holomorphic function defined in this region.

Following Poincaré, we say that f is asymptotic to the power series∑∞
k=0 akx

k in U, and write

f ∼
∞∑
k=0

akx
k

if for every sectorial subneighbourhood U′ ⊂ U whose opening is strictly smaller
than A, and for every N ∈ Z>0 there exists a constant C > 0 such that∣∣∣∣∣f(x)−

N∑
n=0

anx
n

∣∣∣∣∣ ≤ C|x|N+1.

In other words, the series is a good approximation to the function near p. For
any N ∈ Z>0, we may evidently write

f(x) =

N∑
n=0

akx
k + xN+1φ(x)

where φ is holomorphic in U and bounded near the opening A. Notice, in
particular, f has a limit as we approach the boundary sector A:

lim
x→0

f(x) = a0

In other words, from the point of view of this sector, the function has a well-
defined value at p. We will see shortly that an asymptotic expansion, if it exists,
is unique. However, the expansion does not uniquely determine the function.

Definition 3. We denote by Õ(U) ⊂ O(U) the functions that admit an asymp-
totic expansion in the sectorial neighbourhood U of p.

Example 2. If f is a holomorphic function defined in an actual neighbourhood
p (rather than a sectorial one), then f is asymptotic to its Taylor series.
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Example 3. Let U be the right half-plane Re(x) > 0, viewed as a sectorial
neighbourhood of the origin. Consider the function f = e−1/x defined in this
region. Then f decays exponentially in this sector, and hence it vanishes more
rapidly than any polynomial as x→ 0 in U. It follows that

f = e−1/x ∼ 0

in U. Hence f and 0 have the same expansion. But outside of U, the function f
admits no asymptotic power series expansion whatsoever. Indeed, for Re(x) < 0
the function blows up and so it has no limit as x → 0. Meanwhile, along the
imaginary axis, this function is oscillating wildly, so it doesn’t have a limit as
x→ 0 along the imaginary axis either.

We now establish some basic properties of asymptotic expansions:

Exercise 3. Show that the set Õ(U) ⊂ O(U) of holomorphic functions that
admit asymptotic expansions is closed under linear combinations and products,
i.e. it is a subalgebra of O(U).

Exercise 4. Show that the existence of an asymptotic expansion of f is inde-
pendent of the chosen coordinate.

Proposition 1. If f ∈ Õ(U) has an asymptotic expansion

f ∼
∞∑
k=0

akx
k

then its differential df = f ′(x)dx also has an asymptotic expansion

df ∼

( ∞∑
k=1

kakx
k−1

)
dx.

Proof. We follow [1, p. 130]. Suppose we are given a proper subneighbourhood
U′ ⊂ U. We need to establish the bound∣∣∣∣∣f ′(x)−

N∑
k=1

kakx
k−1

∣∣∣∣∣ < CxN

as x→ 0 in U′. For this we write

f(x)−
N∑
k=1

akx
k = xN+1φ(x)

where φ is a bounded holomorphic function. We compute

f ′(x)−
N∑
k=1

kakx
k−1 = xN ((N + 1)φ+ xφ′)
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Since we know that φ is bounded, it is enough to show that xφ′ is also bounded.
But Cauchy’s formula gives

φ′(x) =
1

2π

∫
γx

φ(y)dy

(y − x)2

where γx is a circle of arbitrary radius R(x) centred about x, and hence

|x||φ′(x)| ≤ |x| · 1

2π
|γx| ·

supγx |φ|
R(x)2

=
|x|
R(x)

sup
γx

|φ|.

We leave it to the reader to verify that the circles can be chosen so that, as
x → 0, the radius R(x) decreases linearly and supγx |φ| is globally bounded.
Thus |xφ′| is bounded and the result follows.

Remark 1. At this point, we must issue an important warning: differentiation
of asymptotic series fails if we work with functions on R instead of holomorphic
functions in open sectors. (Notice that the proof relied heavily on our ability to
draw circles in the complex plane, so that we could use the Cauchy formula.)

For example, consider the function

f = e−1/x cos(e1/x)

on the real line x ∈ R. Since cos is bounded and e−1/x decays rapidly, this
function is asymptotic to 0 as x→ 0+. Differentiating, we find

f ′ = x−2e−1/x cos(e1/x)− x−2 cos(e1/x).

Now, the first term remain asymptotic to zero, but the second term blows up in
magnitude and oscillates wildly as x→ 0, so the function cannot be asymptotic
to any power series. The reason for the problem is best seen by returning to the
complex plane; a contour plot is shown in Figure 6. The function behaves in
a very complicated manner on either side of the real axis, so we are unable to
produce an asymptotic expansion in any sectorial neighbourhood of the axis.

4.2 Existence of asymptotic expansions

Now that we know that it is possible to take derivatives of asymptotic ex-
pansions, it is straightforward to determine which functions admit asymptotic
expansions:

Proposition 2. Let U be a sectorial neighbourhood of a point p in a Riemann
surface. A function f ∈ O(U) admits an expansion in U if and only if all of its
derivatives are bounded in any proper subsector U′ ⊂ U. In this case, we have

an = lim
x→0

1

n!
f (n)(x).

Proof. Similar to Taylor’s theorem; see e.g. [1, p. 130].
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Figure 6: A contour plot of the function e−1/x cos(e1/x).

Corollary 1. The asymptotic expansion of a given function f , if it exists, is
unique.

What this means is that there is a canonically defined map

Õ(U)→ C[[x]],

which extracts the asymptotic expansion of a function with respect to the co-
ordinate x. The kernel of this map consists of all functions that vanish faster
than any polynomial as x→ 0.

Because of the expression for the coefficients in Proposition 2, this procedure
behaves like a Taylor expansion under changes of coordinate. It may therefore
be viewed more invariantly as a map

Õ(U)→ ÔX,p

where OX,p is the formal completion of the structure sheaf of X at p.
Evidently, the expansion depends only on the germ of a function near the

opening A ⊂ ∂U. Hence for any sector, we have a map

Õ(A)→ ÔX,p

where Õ(A) is the set of germs of functions that admit asymptotic expansions
in a sectorial neighbourhood of p with opening A.

We can therefore state the problem of resummation of divergent series as
follows:

Given a formal power series f̂ and a sector A, find a function
that has f̂ as its asymptotic expansion along A.
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In posing this problem, it is important that we work in sectors, which have
opening angles less than 2π by definition. If we instead try to solve the problem
for a function defined in a whole punctured disk around p, we encounter an
obstruction. Indeed, any function that is defined on a punctured disk at p,
and which admits an asymptotic expansion at p, is necessarily bounded on the
whole disk. But the Riemann removable singularity theorem implies that such
a function is holomorphic at p, and so its asymptotic expansion is simply its
Taylor expansion, which converges. Thus it is impossible to resum any divergent
series on a whole disk. However, it is always possible find sums in sectors:

Proposition 3. Every formal power series may be realized as the asymptotic
expansion of a function defined in a sectorial neighbourhood of a point p ∈
X. Moreover, the opening A ⊂ SpX of such a neighbourhood may be chosen
arbitrarily. Put differently, the expansion map gives an exact sequence

0 // Õ0(A) // Õ(A) // ÔX,p
// 0

for all sectors A, where Õ0(A) denotes the functions that vanish faster than any
polynomial.

Proof. Choose a coordinate x = reiθ near p. Without loss of generality, we may
assume that x is defined in a disk of radius 1 and that A is the sector (−θ0, θ0)
bisected by the real axis. Therefore |A| = 2θ0.

Suppose given a series

f̂ =

∞∑
k=0

akx
k

We wish to find a function f that is asymptotic to f near 0. The series, will not,
in general, converge. But we claim that it is possible to construct a convergent
series by adding exponentially small corrections:

f =

∞∑
k=0

akx
k(1− e−bk/x

β

).

This series will then define a holomorphic function that has f̂ as its asymp-
totic series, since the exponentially small corrections do not alter its asymptotic
expansion.

In order to see that such a series exists, we choose the constant β so that

β|A| < π. Then the function e−b/x
β

has exponential type

−b cos(βθ)

rβ
,

so that it decays in all directions of A, provided that b > 0. Using Taylor’s
theorem we obtain for any ε > 0 an estimate of the form

|1− ez| ≤ C(ε)|z|,
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for | arg(z)| < π
2 − ε and C(ε) > 0. We therefore have∣∣∣akxk(1− e−bk/x

β

)
∣∣∣ ≤ C bk|ak||x|k|x|β

Hence the series will converge so long as we choose the coefficients bk to decay
sufficiently rapidly as k →∞.

Now that we know that all power series are asymptotic expansions, the
problem is that there will be many functions that have a given asymptotic
expansion. So a better way of stating the problem is as follows:

Given a formal power series f̂ and a sector A, find a func-
tion that has f̂ as its asymptotic expansion along A, and is
uniquely specified by some additional condition.

For example, we might want our resummation procedure to be compatible with
additional operations, such as multiplication and differentiation of functions. In
algebraic terms, we wish to find a natural splitting of the exact sequence

0 // Õ0(A) // Õ(A) // ÔX,p

vv
// 0

at least for some sufficiently nice subalgebra of ÔX,p. This is the goal that we
will be working towards in the coming lectures.
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