NAME (underline family name): STUDENT NUMBER: SIGNATURE: # FACULTY OF SCIENCE FINAL EXAMINATION MATH 141 CALCULUS 2 Examiner: G. Schmidt Date: Tuesday, December 11, 2007 Associate Examiner: W. Brown Time: 9:00 AM - 12:00 AM #### Instructions - 1. Write your name and student number on this examination script. - 2. No books, calculators or notes allowed. - 3. This examination booklet consists of this cover, 10 pages of questions and 2 blank pages (12 numbered pages in all). Please take a couple of minutes in the beginning of the examination to scan the problems. (Please inform the invigilator if the booklet is defective.) - 4. Answer all questions. You are expected to show all your work. All solutions are to be written on the page where the question is printed. You may continue your solutions on the facing page. If that space is exhausted you may continue on the blank pages at the end, clearly indicating any continuation on the page where the question is printed. - 5. Your answers may contain expressions that cannot be computed without a calculator. - 6. Circle your answers where confusion could arise. #### GOOD LUCK! #### Score Table | Problem | Points | Out of | |---------|--------|--------| | 1. | | 8 | | 2. | | 12 | | 3. | | 10 | | 4. | | 10 | | 5. | | 10 | | 6. | | 10 | | 7. | | 10 | | 8. | | 10 | | 9. | | 12 | | 10. | | 8 | | Total: | | 100 | # 1. (total of 8 marks) - (a) (4 marks) Identify $R_n = \sum_{i=1}^n \frac{i}{n^2} e^{-2i/n}$ as a Riemann sum corresponding to a certain definite integral. - (b) (4 marks) Evaluate $\lim_{n\to\infty} R_n$. 2. (total of 12 marks) (a) (6 marks) Find a continuous function f(t) defined for $t \ge 0$ and a positive constant a such that $$1 + \int_{a}^{x^{2}} e^{t} f(t) dt = \ln(1 + x^{2})$$ (Hint: to find f(t) differentiate both sides of the equation with respect to x.) (b) (6 marks) Evaluate $\int_{-3}^{4} |x^2 - 2x - 3| dx$. ## 3. (total of 10 marks) (a) (7 marks) Find the area of the region bounded by the two curves $$x + y^2 = 12$$ and $x - 2y^2 = 0$ (b) (3 marks) Find the average vertical height (measured parallel to the y-axis) of the region considered in (a). 4. (total of 10 marks, 5 for each integral) Evaluate each of the following definite integrals (a) $$\int_2^4 \frac{x^2}{x^2 - x} dx;$$ (a) $$\int_2^4 \frac{x^2}{x^2 - x} dx$$; (b) $\int_1^2 \frac{x^2}{\sqrt{3 + 2x - x^2}} dx$. 5. (total of 10 marks, 5 for each integral) Evaluate each of the following indefinite integrals $$(a) \int x(\ln x)^2 dx;$$ (a) $$\int x(\ln x)^2 dx$$; (b) $\int \frac{(x^2 - 4)^{3/2}}{x} dx$. - 6. (total of 10 marks) (a) (6 marks) Evaluate $\int \frac{3x-7}{(x+1)(x^2+4)} dx$. (b) (4 marks) Check whether the following integral is convergent or divergent and, if possible, find its value (finite or infinite): $\int_2^\infty \frac{3x-7}{(x+1)(x^2+4)} dx$. ## 7. (total of 10 marks) - (a) (5 marks) Find the area of the surface obtained by rotating the arc of the parabola $y = x^2$ lying between x = 0 and x = 1 about the y-axis. (b) (5 marks) Find the volume of the solid obtained by rotating the region - bounded by $y = x^2$, x = 0, x = 1 and the x-axis about x = -2 - 8. (total of 10 marks) Consider the polar curve $r = \theta^2$. - (a) (2 marks) Sketch the curve for the range $0 \le \theta \le 2\pi$. - (b) (4 marks) Find the arc length of the curve from $\theta = 0$ to $\theta = \pi/2$ - (c) (4 marks) Find the area enclosed by the x-axis, the y-axis and the section of the curve from $\theta = 0$ to $\theta = \pi/2$. - 9. (total of 12 marks, 4 for each series) Determine whether each of the following series is convergent or divergent, specifying the tests you use and verifying the conditions which let you apply the test: - (a) $\sum_{k=1}^{\infty} \frac{2^k (k+1)}{k!}$; (b) $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{3/2}}$; (c) $\sum_{k=1}^{\infty} \frac{2 + \sin k}{(k+1)^2}$. 10. (total of 8 marks, 4 for each series) Determine whether each of the following series is absolutely convergent, conditionally convergent or divergent, specifying the tests you use and verifying the conditions which let you apply the test: (a) $$\sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1-\ln k}$$; (a) $$\sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1-\ln k}$$; (b) $\sum_{k=1}^{\infty} (-1)^k \frac{(k+2)^2}{k^2} \cos(\pi/k)$. MATH 141 11 December 11, 2007 Final Examination is printed. MATH 141 12 December 11, 2007 Final Examination