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Abstract

We show that there are two (isomorphic) full subcategories of the category
of locally convex topological vector spaces—the weakly topologized spaces and
those with the Mackey topology—that form ∗-autonomous categories.

RÉSUMÉ. On montre qu’il y a deux sous-catégories (isomorphes) pleines de
la catégorie des espaces vectoriels topologiques localement convexes—les espaces
munis de la topologie faible et ceux munis de la topologie de Mackey—qui forment
des catégories ∗-autonomes.

1 Introduction

From the earliest days of category theory, the concept of duality has been important.
For almost as long, it has been recognized that certain categories had a very interesting
and useful property: that the set of morphisms between two objects could be viewed
in a natural way as an object of the category. Such a category is called closed. If there
is also a tensor product, it is called a closed monoidal, or autonomous category. The
two notions come together in the concept of a ∗-autonomous category in which the
set of morphisms from any object to a fixed dualizing object gives a perfect duality.
See [Barr, 1979] for details and some examples.

Let K denote either the real or complex number field, which will be fixed through-
out. Let TVS denote the category of locally convex topological vector spaces over K.
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A space E will be said to be weakly topologized if it has the weakest possible topology
for its set of continuous linear functionals. We denote by Tw the full subcategory of
TVS of weakly topologized spaces. A space E will be said to have a Mackey topology
if it has the strongest possible topology for its set of continuous linear functionals.
We denote by Tm the full subcategory of spaces with a Mackey topology.

Let T denote one of the two categories Tw or Tm. We will show that if E and F
are two spaces in T the set of continuous linear maps E−→F has in a natural way the
structure of an object of T. We denote this object E−◦F . It gives T the structure of
a closed category. We will also show that if we define E∗ = E−◦K the natural map
E−→E∗∗ is an isomorphism for every object E of T. Thus T has the structure of a
∗-autonomous category [Barr, 1979]. See the conclusions of Theorem 2.1 for the full
definition of ∗-autonomous.

It is well known and easy that given a locally convex space E there is a weakest
topology on the underlying vector space of E that has the same functionals as E. We
call this space σE. The identity function E−→σE is continuous, but not generally
an isomorphism. It is also well known, but not so easy, that there is a strongest such
topology. We give what we believe to be a new proof of this fact in the appendix, 4.3.
We denote by τE the resultant space. This time it is the direction τE−→E that is
continuous and an isomorphism if and only if E is a Mackey space.

The main tool used in proving this is the category of pairs described in Section 2.
The pairs, although not the category, were introduced by Mackey in his PhD thesis
(published in [Mackey, 1945]).

A very early and more complicated version of the theory exposed here appeared
in [Barr, 1976a,b]. A general theory appeared in [Barr, 1979]. A substantial simplifi-
cation of the general theory can be found in [Barr, 1999] and the present paper is an
exposition of the special case as it applies to locally convex vector spaces. A similar
result in the category of balls has appeared in [Barr & Kleisli, 1999].

2 The category of pairs

In this section, no topology is assumed on the vector spaces. If V and W are two
vector spaces (possibly infinite dimensional), we denote by hom(V,W ) the vector
space of linear transformations between them and by V ⊗W the tensor product over
K.

A pair is a pair V = (V, V ′) of vector spaces together with a pairing, that is a



bilinear map 〈−,−〉:V ×V ′−→K or, equivalently, a linear map 〈−,−〉:V ⊗V ′−→K.
We make no assumption of non-singularity at this point. If V and W = (W,W ′) are
pairs, a morphism f: V−→W is a pair (f, f ′) where f :V −→W and f ′:W ′−→V ′ are
linear transformations such that 〈fv, w′〉 = 〈v, f ′w′〉 for all v ∈ V and w′ ∈ W ′.

There are two other equivalent definitions for morphisms. If we denote by V ⊥ the
vector space dual hom(V,K), then a pairing 〈−,−〉:V ×V ′−→K induces a homomor-
phism V −→V ′⊥ and another one V ′−→V ⊥. We will use these arrows freely without
explanation. If (V, V ′) and (W,W ′) are pairs, then a pair of arrows f :V −→V ′ and
f ′:W ′−→V ′ gives an arrow (f, f ′): (V, V ′)−→(W,W ′) if and only if either, and hence
both, of the following squares commute:

V ′⊥ W ′⊥-
f ′⊥

V W-
f

? ?
W⊥ V ⊥-

f⊥

W ′ V ′-f ′

? ?

(∗∗)

If V and W are pairs, it is clear that any linear combination of morphisms is a
morphism and so we can let hom(V,W) denote the vector space of morphisms of V
to W.

It is clear that if V = (V, V ′) is a pair, so is V∗ = (V ′, V ) with pairing given by
〈v′, v〉 = 〈v, v′〉. This is called the dual of V. The definition of morphism makes it
clear that f = (f, f ′) is a morphism V−→W if and only if f∗ = (f ′, f): W∗−→V∗ is
one. Since the duality preserves linear combinations, it follows that hom(V,W) ∼=
hom(W∗,V∗).

Because the categorical structure of the category of pairs was first investigated by
P.-H. Chu [1979], this category of pairs is usually denoted Chu = Chu(Vect, K).

Now we are in a position to give one of the main definitions of this note. If V and W
are pairs, we denote by V−◦W the pair (hom(V,W), V ⊗W ′) with pairing 〈(f, f ′), v⊗
w′〉 = 〈fv, w′〉 = 〈v, f ′w′〉. We denote by K the pair (K,K) with multiplication as
pairing.

2.1 Theorem For any pairs U, V, W we have

1. hom(K,V−◦W) = hom(V,W);

2. U−◦(V−◦W) ∼= V−◦(U−◦W);



3. V−◦W ∼= W∗−◦V∗;

4. V∗ = V−◦K.

See 4.1 for the proof.
The conclusions of this theorem constitute the formal defnition of ∗-autonomous

category.

2.2 Separated and extensional pairs

A pair (V, V ′) is said to be separated if for each v 6= 0 in V , there is a v′ ∈ V ′ such that
〈v, v′〉 6= 0. We say that the pair is extensional if (V ′, V ) is separated. The reason
for the name “separated” is clear. The word “extensional” refers to the characteristic
property of functions that two are equal if their values at every argument are the
same.

2.3 TheoremLet V = (V, V ′) and W = (W,W ′) be separated and extensional.
Then so are V ∗ and V−◦W.

This is obvious for V ∗; see 4.2 for the proof for V−◦W.
The full subcategory of separated, extensional pairs has been widely denoted chu =

chu(Vect, K).

2.4 Corollary The category chu is ∗-autonomous.

By refering to Diagram (∗∗) above, we see that if W is separated, the right hand
arrow of the left hand diagram is injective and then for a given f ′:W ′−→V ′ there
is at most one f :V −→W making the left hand square commute. Thus in that case
f ′ determines f uniquely, if it exists. Dually, we see that if V is extensional, then f
determines a unique f ′, if there is one. If V and W are each separated and extensional,
then either of f or f ′ determines the other uniquely, if it exists.

2.5 The tensor product

Most autonomous categories also have a tensor product. In fact, all ∗-autonomous
categories do.



2.6 Theorem A ∗-autonomous category has a tensor product, adjoint to the in-
ternal hom, given by E ⊗ F = (E−◦F ∗)∗.
Proof. We have, for objects E, F , and G,

(E ⊗ F )−◦G = (E−◦F ∗)∗−◦G ∼= G∗−◦(E−◦F ∗)
∼= E−◦(G∗−◦F ∗) ∼= E−◦(F −◦G)

which is the internal version of the characteristic property of the tensor product. By
applying hom(−, K), we see that hom(E ⊗ F,G) ∼= hom(E,F −◦G), which is the
external version.

3 Weak spaces and Mackey spaces

If E is a topological vector space, let |E| denote the underlying vector space and
E⊥ = hom(E,K) denote the discrete space of continuous linear functionals on E.
Then TE = (|E|, E⊥), with pairing given by evaluation, is an object of chu. It is
extensional by definition. Assuming E is locally convex, there are, by the Hahn-
Banach Theorem, enough continuous linear functionals to separate points, and so
TE is also separated. Thus T is the object function of a functor T : TVS−→ chu.

3.1 Theorem The functor T has a right adjoint R and a left adjoint L, each of
which is full and faithful. The image of R is the category of weak spaces and the
image of L is the category of Mackey spaces, each of which is thereby equivalent to
chu. Thus the categories of weak spaces and Mackey spaces are equivalent—in fact
isomorphic—and each inherits a ∗-autonomous structure from chu.

See 4.5 for the proof.

3.2 Explicit description of the internal hom

The proof actually gives a description of the internal hom functors. In the weak case,
E−◦F can be described as follows. For each element e ∈ E and continuous linear
functional φ:F −→K, define a linear functional (φ, e): hom(E,F )−→K by (φ, e)(f) =
φ(f(e)). Then E−◦F is the vector space hom(E,F ) equipped with the weak topology
for all the (φ, e).

If E and F are Mackey spaces, then the internal hom in the Mackey category,
which we will denote E−−−◦τ F , is given by E−−−◦τ F = τ(E−◦F ).



4 Appendix: the gory details

4.1 Proof of Theorem 2.1

We begin with

1. An arrow K−→V−◦W consists of an arrow f :K −→ hom(V,W) together with
an arrow f ′:V ⊗W ′−→K such that for λ ∈ K, v ∈ V , and w′ ∈ W ′,

〈f(λ), v ⊗ w′〉 = 〈λ, f ′(v ⊗ w′)〉 = λf ′(v ⊗ w′)

Since everything is K-linear, it is sufficient that this hold when λ = 1, which
reduces to

〈f(1), v ⊗ w〉 = f ′(v ⊗ w〉) (∗)
If we write f(1) = g = (g, g′): V−→W, then (∗) becomes 〈g, v⊗w′〉 = f ′(v⊗w′).
But 〈g, v ⊗ w′〉 is defined to be 〈g(v), w′〉 = 〈v, g′(w′)〉. Thus any such f is
determined by a unique g: V−→W by the formulas f(1) = g and f ′(v ⊗ w′) =
〈g(v), w′〉 = 〈v, g′(w′)〉.

2. The definition gives that

U−◦(V−◦W) = U−◦(hom(V,W), V ⊗W ′) = (hom(U,V−◦W), U ⊗ V ⊗W ′)

and similarly, V−◦(U−◦W) = (hom(V,U−◦W), V ⊗ U ⊗ W ′). Thus it is
sufficient to show that hom(U,V−◦W) ∼= hom(V,U−◦W). What we will
do is analyze the first of these and see that is symmetric between U and V.
A homomorphism f = (f, f ′): U−→V−◦W is determined by an arrow f :U
−→ hom(V,W) and an arrow f ′:V ⊗ W ′−→U ′ subject to certain conditions
that we will deal with later. For u ∈ U , let f(u) = g(u) = (g(u), g′(u))
where g(u):V −→W and g′(u):W ′−→V ′ such that for all v ∈ V and w′ ∈ W ′,
〈g(u)(v), w′〉 = 〈v, g′(u)(w′). Moreover, the compatibility condition on f is that

〈u, f ′(v ⊗ w′)〉 = 〈f(u), v ⊗ w′〉 = 〈g(u)(v), w′〉 = 〈v, g′(u)(w′)〉

If we now identify the map g:U −→ hom(V,W ′) with a map we will still call
g:U ⊗ V −→W ′ and similarly for the map g′:U ⊗W ′−→V ′, we see that a map
U−→V−◦W is determined by three maps g:U ⊗ V −→W ′, g′:U ⊗W ′−→V ,



and f ′:V ⊗W ′−→U subject to the condition that for all u ∈ U, v ∈ V , and
w′ ∈ W ′

〈u, f ′(v ⊗ w′)〉 = 〈g(u⊗ v), w′〉 = 〈v, g′(u⊗ w)〉
which is symmetric between U and V.

3. As above, it is sufficient to show that hom(V,W) ∼= hom(W∗,V∗). But if f =
(f, f ′): V−→W is a morphism, it is purely formal to see that f∗ = (f ′, f): W∗

−→V∗ is also a morphism.

4. We have that

V−◦K = (hom(V,K), V ⊗K) ∼= (hom(V,K), V )

so it is sufficient to show that hom(V,K) ∼= V ′. A morphism V−→K is given
by a pair (φ, v′) where φ:V −→K and φ′:K −→V ′ such that for all v ∈ V and
λ ∈ K, 〈φ(v), λ〉 = 〈v, φ′(λ)〉. If we write v′ = φ′(1), this equation becomes
λφ(v) = λ〈v, v′〉 or φ = 〈−, v′〉. Thus a morphism is completely determined by
the element v′ ∈ V ′. Conversely, such an element determines a unique morphism
V−→K.

4.2 Proof of Theorem 2.3

Let us write U = (U,U ′) = V−◦W. Then U = hom(V,W) and U ′ = V ⊗W ′. We
begin by proving it is separated. Let (f, f ′): V−→W. Assuming (f, f ′) 6= 0, there is
an element v ∈ V with f(v) 6= 0 and then, since W is separated, there is an element
w′ ∈ W ′ with 〈f(v), w′〉 6= 0. But 〈(f, f ′), v ⊗ w′〉 = 〈f(v), w′〉.

For proving extensionality, it will simplify the notation to show that V−◦W∗ is
extensional. We need to show that for any element

∑n
i=1 vi ⊗ wi ∈ V ⊗W , there is

a morphism (f, f ′): (V, V ′)−→(W ′,W ) such that
∑〈wi, fvi〉 =

∑〈vi, f ′wi〉 6= 0. Let
V0 and W0 be the (finite dimensional) subspaces of V and W generated by v1, . . . , vn
and w1, . . . , wn, respectively. The inclusion i:V0−→V induces V ⊥−→V0

⊥. Composed
with V ′−→V ⊥ we get a linear transformation i′:V ′−→V ⊥ for which

V0
⊥ V0

⊥-
id

V ′ V ⊥-p

?

i′

?

i⊥



commutes. Here p:V ′−→V ⊥ is the transpose of the structure map. This com-
mutation means that (i, i′): V0 = (V0, V0

⊥)−→V is a morphism. There is a simi-
lar morphism W0−→W and hence W∗−→W0

∗. Together they induce a morphism
hom(V,W∗)−→ hom(V0,W

∗
0). We will then complete the argument by showing that

the latter map is surjective and that there is an (f0, f
′
0) ∈ hom(V0,W

∗
0) such that∑〈wi, f0vi〉 6= 0.

Since
∑
vi⊗wi 6= 0 in V ⊗W , it is certainly non-zero in V0⊗W0 and so there is a

map g:V0 ⊗W0 such that
∑
g(vi ⊗wi) 6= 0. This transposes to a map f0:V0−→W0

⊥

for which
∑〈wi, f0vi〉 6= 0. Then (f0, f0

⊥) is the required map.
In order to show that hom(V,W∗)−→ hom(V0,W

∗
0) is surjective, it is sufficient to

show that V0−→V and W0−→W are split monics. We do this for V0−→V. First I
claim that the composite

V ′
p−−→V ⊥ i⊥−−−→V0

⊥

is surjective. If not, it factors through a proper subobject of V0
⊥ which has the form

V1
⊥, where V0−→V1 is a proper quotient mapping. But then the injection V0 )−→V

)−→V ′⊥ factors through the proper surjection V0−→→V1, which is impossible. Now let
j:V0

⊥−→V ′ be a right inverse to i⊥ ◦ p. Then the square

V0
⊥ V ⊥-

p ◦ j

V0
⊥ V ′-j

?

id

?

p

obviously commutes. This means that if j′:V −→V0
⊥⊥ ∼= V0 is the double transpose

of p ◦ j, then (j, j′): V−→V0 is a morphism, one that evidently splits (i, i′).

4.3 The existence of the Mackey topology

Although it is a standard fact of the theory of locally convex vector spaces that the
Mackey topology exists, it is normally proved by defining it as the topology of uniform
convergence on compact subsets of the dual with the weak topology. Here we give a
proof that does not involve looking inside the space at all.

Let {Ei | i ∈ I} range over the set of all topological vector spaces for which
TEi = TE, that is that |Ei| = E and hom(Ei, K) = Hom(E,K). Thus σE = σEi,



for each i ∈ I. Among the Ei is E itself. Now form the pullback

σE
∏
i∈I σEi-

τE
∏
i∈I Ei-

? ?

Of course,
∏
i∈I σEi = (σE)I , but we prefer to leave it in this form since it makes the

right hand map evident. Since E is among the Ei, the bottom map, and hence the
top map, is, up to isomorphism, a subspace inclusion. The space τE has, obviously,
the supremum of the topologies on the Ei, but representing it by this pullback allows
us to use arrow-theoretic reasoning. At this point, we require the following.

4.4 Proposition Let {Fi | i ∈ I} be a family of locally convex spaces. Then the
natural map

∑

i∈I
hom(Fi, K)−→ hom

(∏

i∈I
Fi, K

)

is an isomorphism.

Proof. Let U denote the open unit disk of K. That is, either the open unit disk of the
complex plane or the open interval (−1, 1) of the real numbers. If F is a topological
vector space, it is easy to see that a linear functional φ:F −→K is continuous if and
only if φ−1(U) is open. If φ:F =

∏
Fi−→K is a continuous linear functional, φ−1(U)

is open and hence there is a finite subset J ⊆ U and an open 0-neighborhood Vj ∈ Fj
for j ∈ J such that

φ−1(U) ⊇ ∏

j∈J
Vj ×

∏

i∈I−J
Fi

In particular, φ (
∏
i∈I−J Fi) ⊆ U . Since U contains no non-zero subspace, it follows

that φ (
∏
i∈I−J Fi) = 0. Thus φ is defined modulo F0 =

∏
i∈I−J Fi. That means there

is a linear functional ψ:
∏
j∈J Fj −→K that composed with the projection gives φ.

Moreover, ψ−1(U) ⊇ ∏
j∈J Vj which implies that ψ is continuous. The category of

topological vector spaces is additive, so that finite sums and products coincide. Thus,



as J ranges over the finite subsets of I,

hom

(∏

i∈I
Fi, K

)
∼= colim

J
hom

(∏

i∈J
Fi, K

)
∼= colim

J
hom

(∑

i∈J
Fi, K

)

∼= colim
J

∏

i∈J
hom (Fi, K) ∼= colim

J

∑

i∈J
hom (Fi, K)

∼=
∑

i∈I
hom (Fi, K)

Now we return to the proof of the existence of the Mackey topology. A linear
functional φ: τE−→K extends by the Hahn-Banach theorem, to an element

ψ ∈ hom

(∏

i∈I
Ei, K

)
∼=
∑

i∈I
hom(Ei, K)

∼=
∑

i∈I
hom(σEi, K) ∼= hom

(∏

i∈I
σEi, K

)

which restricts in turn to σE, which has the same continuous linear functionals as E.
Thus every continuous linear functional on τE is also continuous on E. Since E is
one of the factors in

∏
Fi, it follows that the identity function is continuous from τE

−→E. Finally, suppose that E ′−→ τE is a bijection with a strictly finer topology. If
there is no continuous functional on E ′ that is discontinuous on E, then E ′ would be
among the Ei and hence has a coarser topology than τE.

4.5 The proof of Theorem 3.1

Recall that Tw and Tm denote the full subcategories of the category of locally convex
vector spaces consisting of the weak and the Mackey spaces, respectively. We begin
by defining R: chu−→Tm by letting R(V, V ′) be the vector space V with the weak
topology given by V ′. That is, V is topologized as a subset of KV ′ . It is clear that
evaluation at every element of V ′ gives a continuous linear functional on R(V, V ′).
On the other hand, it follows from the Hahn-Banach theorem and Lemma 4.4 that
for every continuous linear functional φ:V −→K, there is a finite set of elements v′1,
v′2, . . . , v′n ∈ V ′ such that for all v ∈ V ,

φ(v) = 〈v, v′1〉+ 〈v, v′2〉+ · · ·+ 〈v, v′n〉



but then for v′ = v′1 + v′2 + · · · + v′n, φ(v) = 〈v, v′〉. Thus TR(V, V ′) = (V, V ′). If we
define L(V, V ′) = τR(V, V ′), it also follows that TL = Id. If E is a weakly topologized
topological vector space, then E has the weak topology for its set of continuous linear
functionals, so it is evident that E = RF (E). If E is a Mackey space, then it is
the finest topology compatible with its set of functionals, which is the condition that
defines LF (E) = τRF (E) = τσ(E) = E.
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