MICHAEL'BARR

THE THEORY OF THE{)RIES AS AMODEL {}F SE’?&E’{’%X
&CQ‘L}ESiTI{}N

We give a brief description of the mathematical theory known as the theory of
squational theories in sufficient derail to show how it may. serve as o model of 2
language acquisition theory, We see how, by restricting acmntnm . 2 very spicial
cliss of firsc order theories ~ the finitistic equational ones ~ we ses how a machine
could be programmed 1o produce an entire tize{;ry on the basis of a severely limired:
guantity of data.

Introduction

Mauch of the controver . zmémg Chomsky’s imgmsz&{: ihe@mes
is caused by his insistence on the necessity of innate capacities or ideas, a
notion which seems to have a different mﬁaz;mg to every reader (and every
wrater} In fact it seems likely that what the critics find most objectionable
may be notions (e.g. racial memory) that are entirely absent from azzd
entirely unnecessary to Chomsky’s theories,

To my mind, what must be suppos&cﬁ innate, in {}rder to %‘ﬂpg}{}"‘:
these theories, is 2 strategy for organizing language data. I believe it might
be useful to expose, by way of analogy, an example of a datawergamzmg
strategy from one branch of mathematics. This strategy is sufficiently
precise that it might readily be programmed into a computer. It takes as
input data of a certain very restricted form and produces as output a theory
{of an equally restricted form) that deﬁcrzbes the data. New data will cause
the theory to be modified (unless it is simply inconsistent with the previous
theory. This is a technical condition which doesn’t concern us.)

As far as language capacities are concerned there are three iogzcai
possibilities: that people are born already knowi ing their language; that they
are born without language but with a special capacity for learning languages
not used (or not much used) for other purposes; that language is learned by
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use of some general learning capacity in the same way 15, say, mathematics
is. The first alternative can obviously be rejected, although it is interesting
to note that in the case of the analogous q&esziezz tor birdcalls, all three
possibilities apparently occur. That is, some species are born with a species-
specific call; some learn the location-specific call of the members of their
owni ‘species nearby, but not that of other species; a few species are capable
of imitating the calls of any species or even human speech.

Thus the question comes down to a choice between the second and
third possibilities and I believe that the evidence against the third is over-
whelming. By all evidence, ability to learn a language (us 4 first langnage) is
present only in the first éﬁ*{:ade of life and then disappears forever. As the
debacle with the “new math” has clearly demonstrated, the ability to learn
math 1s not norn aiijf present 1o any great extent until aég}ies%zzﬂe and
probably peaks during the 20°s. I believe that this 1s the norm for any
learning capacity — except that of language.

The strongest evidence remains, nonetheless, the disparity between
the quantity and quality of the linguistic input and that of the output. In
fact, if language were learned in the way supposed by the behavoriss, the
results I would expect are about what the primate language experiments
have demonstrated (even allowing for the difference in innate mt&éi:gﬁm&} :
rather intensive training resuicmg in communicative behavior which is
rather concrete and with few or no grammatical complexities. For it is the
grammatzﬁai ‘complexities and the ease wzt& which they are iéamesﬁ; ézz{% is
the main pomt here. : '

There is nothing in the pfgcatimg inconcistent with either the
mentahist or the mechanistic g{}mi of view. In fact I find the extreme
positions of both points of view untenable and — given ph}fﬁﬁai un-
cerrainty — I find the less extreme positions indistinguishable.

It seems entirely reasonable to describe the syntax of 2. §angusg@ as a
theory of how that izﬁguage operates. In the analogy T am going to pursue
the analogue of sentences is to be mathematical structures of some kind
(technically known is algebras or models) and the analogue of z:i*ze sygzmx is
to be the theory of which these models are structures.

Some fairly sophisticated {baz not genuinely hard!) mathematics is
required of the reader in order to pursue this analogy. Nearly forty years
ago a new concept ‘was introduced into mathematical thought, that of 2
category. Crudely speaking, a category is a class mathematical structures of
some kind together with all structure-preserving mappings between them.
Slowly, but with increasing speed-over the past ten vears, this notion has
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been supplanting set theory as the underlying conceptual basis of the
working mathematician. (See [MacLane] and [Barr-Wells] for introductory
accounts.) There is even a school of mathematicians, led by E. W. Lawvere;
who would make it the theoretical basis as well. (See {izm*eff—:] [John-
stone] and the many references found there.) Since theory usually follows
practice (eventually; anyway) it seems likely they will succeed. Thus the
day may not be too distant that at least a smattering o:f category theory be a
prerequisite to comprehension of mo mathematics.

It was mentioned above that analogue to a language is mmgthmg
which is called a theory or, more precisely, a finitistic equational theory.
An equational theory {the finiteness condition will be introduced larer) is 2
set of operations and equations bétween these operations in a formal sense.
A model of such a theory is a set equipped with the operations and satis-
fying the equations. For exampie the theory of monoids has as G?eratmms a
binary operation of mﬁkzphcaxmn and a nullary (or o-ary) operation called
a unit and Is subject to associative and unitary identities. Both the operations
and equations can be formalized (see appendix A) but it is easier to say what
a model of the theory (i.e., a monoid) is. A monoid is a set M, together
with a mulmph‘;azi(}g map, x, y — xy and a unit element 1 € M such that ?ﬁ}r
all x,y, z € M, the following equations are satisfied:

(xy)z = x(yz)
Iz =gl =x,

There are many kinds of theories in mathematics. What make the
kind of recognition device T am talking about feasible here is that it is not
searching for an unknown example of an unknown kind of theory but
rather it is searching from among all possible eguational theories for a
particular one of them. Moreover, as we shall see, it does not actually carry
on a search in any sense but rather constructs the theory out of the dara. In
other words, the metatheory of equational theories is 2 data-organizing
strategy of a particalar kind.

The first section intro the conceptual tool that is required 1o
deal with this theory: categories (and functors and natural transformations),
The second section describes theories. Section 3 introduces products and
powers of sets, necessary for speaking of models in the fourth section.
Section 5 finally describes how the theory recognition device actually
funcrions and the sixth section contains a complete description of the
analogy. There is a short appendix giving a formal description of an
equational theory.

8 TLV
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1. Categories

To simplify the exposition and to avoid unnecessary abstracuion we
define as a category here what is usually called a concrete mtegﬁry By a
category we mean the following data.

C1. A given cia;ss a§ sets:| € | (called the objects of €);
C2. Forsets Gy, Cie | Flaset (T, Cy) ) of functions ff{}m C; to s

I £:Cy - Cybelongs to (Cy, C;) then we ‘Wiﬁ say. iimz fis a mapping ot F.
These data are Sﬁ%gect to two axioms, '

C3. M Ce| ¥/, then the function i: C - éefﬁzeé by z)=x

for all x € C, belongs to €. (This functz{}n is Qaiieé the 3{3@:3{1{?’ furction or
mapping on CJ. -

Ci HC,ChCrel®land
f:C; =3 {:2, g:(:z'*—% 63

are mappings in % 50 is the -funzz_iién
gof:Ci—>Cs o

defined by
g f(x) = g(f(x))

forx e C,. (Tﬁis is called the composite of f and ¢).
These axioms ma}f be summarized by the sisgarzs “Idmtiiy
functions are mappings,” and “The composite of mappings is 2 f’ﬁ&???ﬁg
Here are some exam?ks Although the definition does not require
this, we stick to categories wh@s& Obgﬁng are finite sets.

1. The category 2 of finite partaaiiy ordered sets {gossts ) A ;}ﬁses is'a
set equipped with 2 binary relation = such that

() x=yandy=<xifandonlyifx=y;
(it} x<yand y=zimplies x =2z

If Py and P; are posets, a function
£:P,P;

is a mapping of 2 provided when x, y € Py,
x =y implies f{x) < {(y).
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2. The category & of finite inf semilattices. Suppose § is-a partially
ordered set with the property that for x, v €8, there is a largest element,
denoted x A y, among all those z such that z = x and 2 = y. In addition
there is an element T such that x < T forall x € S. Then S is said to be an inf
semilattice. A mag;amg £:8,—'S; is a function thar satisfies:

HDy=T
fx Ay) = H{x) AN

It is an easy exercise to show that such an f is also 4 map of posets.
(Hint: x = yif and only f x Ay = x).

3. The category & of finite lattices. A semilattice L is called a lartice if,
in addition, there is a smallest element F and for each x, v € L there is a
smallest element, denoted x v y, among those w such that x < w, and
y<w, A mapping of }attz{:sfs is required to preserve both Gpez’aﬁsﬁs as well
as T'and F.

_ The reader will have perhaps nozxced that every finite mf semgiatzza:e '
is actually a iattme Infact, xVy=n AnA . Az, =2, Al AL
(Zae1 A 22) o) where 7, .. ., 2, are the {fimmiy many) elementes 2 suciz
thatx<zandy=z "Saaetﬁeiegs, the categories & and 2 are different
because in ¥ the mappings are required only 1o preserve Tand A while
in &, Fand vV must be preser?ed as well. This illustrates an important
feature about categories. The mappings are the significant things. In fact, at
a higher level of abstraction, the objects may be omitted completely.

2. Finitistic theories

An algebraic theory Th consists of a sequence of sets @, 24,2y, . ..
called the operation sets. Elements of ©o, Q, @5, Q5. ., @, ... arecalled
nullary, unary, binary, ternary, n-ary operations, respectively. Nullary
operations are also called constants for reasons that will become clearer.
These sets have the following structure. The set @, includes n
distinguished operations named n,,, . . ., 7, called projection operations.
Moreover if w € @, and w,, . . ., @, € Q;, respectively there is 3 composite
operation weo (@, . . ., ®,) € Q. There are certain equations between these
operations but they are too complicated to state in this formulation. A
complete description appears in the Appendix. Fortunately, the detailed
description is not required here.

g
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The special case n = 0 of the above requires a little explanation. It
says that given o € £, and no other data; there isan operation we{ ) €@,
Ins practice this means there are given functions Qg — Q, for-each n. Tt will
s;myizfy life'if; for we Qg¢ we s;mp}v let the same symbol o stand for its
image in each Q..

An algebraic theory is caﬁsé finitistic provided

(i)  each set Q, is finite, and

(it)  there is some n such that for all mi>n, every m-ary operation is
built up using the © mm?agms:}ﬁ above from projections and k-ary
operations for k = n. '

’ﬁ;é ggmfwa,m:e of the semrzr:i condition will be ex?iamfrd iazer

In actual practice, you never &esf:;‘zbf: all the operation sets of a
theory but only a few generating operations and equations involving the
generating operations; the projections and their composites. For axampia
the theory of inf semilattices is gmemteé by 2 single nullary operation v
(corresponding to T) and iamafgf operation if%rfesgmzémg o A) ALl
other operations are gotten by uszﬁg these two, projections and composites.
For example, there is an operation P o (55, 53) € Qs which may be used 1o
recursively construct smii other operations. The equations assert that two
apparently different operations are actually the same. in the present
instance the theory of inf semilattices satisties all relanions entailed by

(2.1 Po(my,v)=Ppo(y, 5"&1}_% Ty
(2.2) Belmy,np)=p
(2.3) Bo(Be(mms, 7)), 75s) = Pro (o3, Bo (s, 733))-

If all this seems mysterious; have faith. Ir will make much more
serise in section 4 when we come to the actual znterpxeiatzmz of ‘these
identities in a model.

3. Products and powers of sets

Let X and Y be two sets. By X X Y we denote the set of all or-
dered pairs

(x,v),xe X, ye Y.
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Two such pairs (x, y) and (x', y') are equal if and only if x =x" and y = y".
We define two functions

prXXY—=X,q:XXY—Y
by
plx, ) =%, g% ¥) =¥

called the first and second coordinate projections, respectively. The set .
X X Y is called the product of X and Y with projections p and g.

If X, Y and Z are three sets, we have products X X (¥ X Z) and
(X x Y) X Z as well as a product X x Y x Z which consists of all triplets

(x,v,z), xe X, yeY,zeZ.

These three product sets are distinct (i.e. . their elements are not the same)
but it is clear in an intuitive way all three are “essentially” the same. Tiaere
is no gzrﬁcaiar difficulty in making this notion of “essentially the same”’
completely precise but only at the cost of considerable complication which
I would like to avoid. Hence I will pretend that all three products are the -
same. Analogous observations hold for the products of more than three sets,
ff:X—»X and g: Y -5 Y/ are functions, we let f X g denote the
function X X Y-» X' X Y’ given by the formula '

(g (x, ) = ({x): gly)-

Analogous formulas exist for three or more functions.
As a special case, we let X" denote the product X X X X -+ X X of n
factors. It consists of all n-t  of el -

{Xis s v ?Xﬁ}

taken from X. For aﬁ mtﬁgez‘ i, 1<i<n, welet py, : X" X dmﬁts the
projection on the i factor give by

P%n{xi; L Xﬁ} = X5

If there is any doubt-about the sev involved; we may write ppX instead .
f:X— Y write f*: X" — Y* for the function f X f X~ x f.

A very special case occurs when n = 0. In that case we define X" to
consists of one element. We write X" = 1 and denote the single element of 1
by #. In this case there are no projections (or, rather, the number of
them 15 0).
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4. Models of a theory

Let Th be a theory. By 2 model of a theory is meant a set X together
with a function
X K X

for each n =0 and each weQ,. These are subject to the following
conditions.

(1) Hip X = Pyt X2 X

() HoeQ,, o,...,0,€8,, then
Wl i, .o oy W} (K, o0 oy Xpy) 1S
G e TN 30 JARN (X ¢ ST 5 ) &

Note that 2 nullary operation v determines a function vX:1- X in
any model X, This is exactly the same thing as a fixed element of X, Such an
element is called a constant and the operation v is called a constant
operation.

It should be understood that the data of a model consists of the set X
together with all the functions @X. We might write M = (X, {0X}) w0
denote a model and say that X is the underlying set of M. Usually we will
write M interchangeably for the model as well as its underlying set.

If M, and M, are models (of the same theory Th) and

f:M;MMz

a function, we say that f is a mapping of models provided for every n-ary
operation @ of Th we have that the functions
o F agm oM,
Bfli s 5«‘{3 oy z‘/iz
and

oM
Mi MM, -5 M,
are equal. We usually describe this situation by saying that the diagram

?ii.}}fig
wM;, ;

i QSME
Lo
M, s M,
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commutes. We ler Mod(Th) denote the. category of models {}f Th and
mappings of models.

In the very common situation that Th is ;}reseﬁteé by a few defining
operations and equations between those operations it is necessary and
sufficient that a model admit wX only for those few operations subject, of
course, to the condition that the relations be valid. T hope this will become
clearer as we turn to the example of the theory of inf semilattices éésczi%eé
in séction 2.

Se let X be a ser tggethez with functions vX:1- ;‘{ and
BX : X x X — X. We denote the (unique) value of vX by T and the value of
BX(x,y) by x A y. Now consider equation (2.1). It says

5 {”53%3 "f} = Bolv, ity) = 1y

Now we have required that m,;X = py;yand tha{ function is defined by
p1:(x) = x. The value of vX is the constant 1 so that the value of Bofmy;, v)is
defined to be

Bo (i, v)(x) = B(x, v(x)) = ﬁ(x Ty=xA ’i‘l

Similarly the value of Bo(v, ;*zn} at x is T A x. Hence %hé interpretation of
(2.1)is -

AT=TAx=x
Since pﬁ(}g §,) =y and ;;;z{x, V} = x, the i mmrpretgzmn of (2.2)ina meﬁﬁi 15
that .0

yAx=xAY.
Finally (2.3) has the imerpz:siatéon

XA(yAZ)=(xAY) Az

It is an easy exercise to show that these operations and equations serve o
s?eaf}z an inf semilattice. Again 4 function f berween inf semilattices X ané
Y is a mapping if and only i

X
Lol
1

V’Y
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and .
Xx XX

fxfi if
YX Yy y

commute, That is if and only if .
KT =T
and

fixAy)= f{x} A ().

It is instructive to write out generating eperatmﬁg m{i equations fm‘
the theory of lattices. On the other hand, the category of posets is not the
category of models of any algebraic theory,

5. The theory of a'concrete eafzegafy

Yﬂé”e are now in a position to describe the ;}mm{im& wkereb}f given
any concrete Category we may Construct an algebraic theory which best
approximates it. In order to make it perfectly constructive, we will suppose
that % is a category consisting of a finite number of finite sets and the
mappings berween them. At this juncture it will be necessary to clearly
distinguish between the object C and its set of elements that we will denote
UC U {:C,-C, is a mag;smg in, ‘we let Uf:UC;~ UG, denote
the function underlying f. It is easily seen that when g:C,— C;,
U(gef) = Ug s Uf. We let UPC denote the set (UC)"

By 2 natural szzsfgrm;z;w:rz o from U to U is meant a collection of
functions wC, one for each Ce | ¥ | such that

wC:UC—»UC : _
and such that Whene?er f: C1 —» C, is a mapping in ¥ the diagram
UG, <5 uc,
Ut E jut
UG, =3 UC,
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commutes. Since there are only finitely many C and for each C only finitely
many functions UC— UC, it is clear that it is principly possible to
compute the set Q of all natural transformations U—» U. This proof of
possibility leaves a lot to be desired in the way of feasibility but in actual
practice many shortcuts present themselves. On sure example is that natural
transformation n for which each nC is the identity function on UC. Tris
evident that the commutativity condition above is satisfied in that case.

More generally by a natural transformation @: U”— U is meant 2
collection of functions @wC, one for each C € ¥ such that

wC:U'C— UC
and for each mapping f: C;— C,
UC, X4 U,
% ?
i ? Ut
UG, 55 UG,

Ut

Here U™ = (Uf)". When n = 0, the sets on the left have one element and
then U™ is the only function theré is. When n > 0, there is the natural
transformation for each 1 1= n, x;,, : U"— U defined by

Kinc = Dins

the projection on the i coordinate. The required commutation is trivial.
Equally easy is the proof that if w:U"— U and @, ..., @,: U"— U are
natural soiswe(wy, .. ., w,): U"— Udefined by wo (wy, . . ., 0,) (x1, . . ., %)

= w(ﬁ)?@ib veey Xm}) ey mn<x’i§ ey Xm}}s

(15 .. . X) € UPC (e, x4, .. oy % € UC): The upshot is that if -we let
€2, be the set of all natural transformations U?— U, then the sets
€, Qi(=Q),Q,, ... form an equational theory that we call Th(#):
(Technically it is the theory of U but [ have defined things in such a way
that U is part of the structure of . This is not the usual way for abstract
categories but is appropriate for concrete ones.)

We make several observations here, without proof. Their proofs
would take us far afield and are, in any case, found in standard sources, are
trivial or they are mere practical observations.

1. For each fixed n, the computation of the finite set Q, is possible in
principle. In practice it may be unfeasible, but usually is not.
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2. It looks like you have to consider infinitely many n. In fact there is
an n depending only on € such that all operations are generated by those
of arity <n;. Take for example, n; to be the product of the number of
elements of the finitely many objects of %. That looks fearfully large but I
personally have never seen anything worse than ternary operations arise in a
serious mathematical discourse. (I have also seen infinitary operations but
that is not possible with the finitistic theories considered here.) It would
be perfectly feasible to replace the problem of finding the best algebraic
theory that approximates & with that of finding the best theory whose
operations were generated by those arity =2 or < 3.

3. The objects of % are models of Th(%). The value of an w on C
is @C. The mappings of % are mappings of models. The best way to
describe Th(%#) is to say that it has the largest class of operations for which
both of the above statements are true and the largest set of equations for
which the first one is.

4. This means that the category € is embedded in the category of
models of Th(#%). If C, and C, belong to % it may happen that some
function f : C; — C, is a mapping of models without being a mapping in €.

6. The analogy

In this section we recapitulate the capacities of the theory generaring
device. After each mathematical term I add parenthetically the linguistic
term it is analogous to.

Let Th be a theory (language — or perhaps beuter, the syntax of a
language) known to be determined by a finite number of finite models
(sentences). Let M be the category of finite models (corpus of all gram-
matical sentences). Imagine the computer (child) to be presented, not with
all of M. (M is infinite) but with a sequence of models (sentences) of M,
one at a time and at random. Then the computer’s (child’s) input data
(knowledge) is a sequence of subcategories (subsets of the corpus)
1 — €.~ % — ... of M each embedded in the next by adding one
model in M or one mapping of such models (one sentence). Then the
computer (child) is capable, by calculating natural transformations (?7?),
of computing a sequence of theories and mappings

Th( ) —Th( %) « Th( &) — . .
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This sequence may or may not; after 2 finite number of steps, ever
reach the whole theory Th. If it does, it stabilizes (i.e. does not change
from then on). That is, no additional data can change it. On the other hand
it might not attain Th. If Th' is the theory actually atained there is a
mapping Th— Th' and we may discuss its possible failure to be a 1~ 1
correspondence. It may fail in two ways, each of which has a ;:s@temzaé
linguistic analogue. First, there may be an operation (syntactic rule) valid
in all the models (sentences) which happens to have been sampled but not -
in all of M. Second, there may be two operations in Th (rules of syntax)
that are equal (fall together) on all the sampled data. Here is an example
from English morphology: It is certainly possible for a native speaker of
English to have s;mpi}f never sampled the past participle of “cleave”. I can’t
think of any syntactic example of this phenomenon. That is gaerhzgﬁ not
surprising as rarely used rules and rarely used distinctions will evidently
tend to disappear. -

At any rate, the attained tﬁfzer}? Th' i is ‘determined exclusively %ﬂ;’
the data, not by the order in which it is input or any other 12“3*&&?3{1-:? 1ts
failure to be the original theory Th can only be the result of the lack of
sufficient data. In fact, Th' is the best, in a very strong sense; theory that
describes the data received. The construction of Th' instead of Th may be
more usefully viewed as anai@gﬂus 1o a restructuring of the grammar rather
than ‘as 2 failure of the machine 1o operate properly. When new data are
received the machine will continue to construct better and betver approxi-
mations to Th. This needn’t ever cease although as a practical marter adules
probably treat new syntactic information as irrelevant (or mwrfezzt}
variation, a behavior not svailable to 2 machine,

Appendix: A complete description of a theory

The only really efficient description of what a theory is is in terms
of abstract categories. [ Wﬁi suppose henceforth that this notion is familiar
to the reader. o

Let Th consist of sets O, Q,, ..., have projection operators
Tl Si<n, in Q, and a composition law as described in section 2. We
attempt to construct a category as follows. The objects of the category are
formal symbols [0], [1], ..., [n], ... where n is a positive integer. We
define the homsets by

Th ([m], [a]) = Q3.
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That is, @ mapping [m]->{n] is to consist of an n-tuple .
(@, . . . ) | . |
of n-ary operations. Among the maps [n]— [n] is the map.
(Tims - s To).
H .
© = (@, ., 03): [m]> [n]
and e
T =t W) ] > [k]

The composite o w is defined as (11 2(Wp v Oy v ooy T o (@3 -0 1, ©,))
which is an element of ©F. This defines a law of composition. Then the
requirements that Th be a category is summarized by the requirement that
the above law of composition determines the structure of 2 category for
which the identity map of [n] is

{j{im = s Ry ﬁiﬁ}*

It is ‘customary to denote this category by Th. The category has finite

products. In fact; it follows essentially by definition that [n] is the n¥

power of [1]. Also [0] is the terminal object. Then it is quite straightforward

to show that the category of models of Th can be identified as exactly the .

category of set-valued product-preserving functors on Th. Mappings of
models are exactly natural transformations berween such funcrors.
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