
Topop is a quasi-variety

Michael Barr∗and M. Cristina Pedicchio

June 11, 1999

Abstract

We show that the opposite of the category of topological spaces is
a quasi-variety, that is a subobject and product closed subcategory of
a varietal category. We identify the varietal category as well as the
simple Horn clause that determines the objects of the subcategory.

1 Introduction

The category of topological spaces is usually thought rather poorly of
qua category. Although it is complete and cocomplete and the under-
lying set functor even has both adjoints, the free and cofree functors
produce spaces without interesting structure and the triple and cotriple
on Set produced by the adjoints are the identity. The category is far
from exact, or even regular. Thus the properties of topological spaces
seem rather far removed from those involved in the usual equational
theories.

Thus it came as some surprise to us to discover that the situation
is quite different when it comes to the dual category. It turns out
that that category is at least regular (not that hard to prove, once you
suspect it), although not exact and is, in fact quasi-varietal. In this
paper we show that it is quasi-varietal, identify the variety and also the
simple Horn clause that distinguishes the algebras that are the duals
of topological spaces.

2 Quasi-vareties

Definition. Recall that a varietal category or variety is one that is
tripleable over the category of sets. A quasi-variety is a full subcate-
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gory of a varietal category that is closed under subobjects and prod-
ucts. Equivalently, it is a surjective-reflective, or regular-epi-reflective
subcategory of a variety.

The following theorem is found in [Pedicchio, to appear].

2.1 Theorem A category E is quasi-varietal if and only if

QV–1. E is regular;

QV–2. E has coequalizers of equivalence relations;

QV–3. E has a regular projective generator P such that arbitrary
(small) sums of copies of P exist in E.

A regular projective generator is understood to be both regular
projective and a regular generator. It is shown in [Barr, 1989] that
such a quasi-variety is a full subcategory of a variety consisting of
those objects that satisfy a class of generalized Horn clauses that take
the form

(
∧

(φi(x) = ψi(x))⇒ (φ(x) = ψ(x))

where the φi, ψi, φ and ψ are operations in the theory and the con-
junction may be infinite. These clauses are found by imposing the
antecedent equations as an equivalence relation on a free algebra and
the consequent is an additional equation necessary to reflect the quo-
tient algebra into the subcategory (of which there may be many; each
such gives an additional Horn clause).

As an application, we can see that opposite of the category of topo-
logical spaces satisfies these conditions and is thus a quasi-variety.
We need a regular injective cogenerator in the category of topologi-
cal spaces. The simplest such space is the space we call P that has
three points, say a, b and c. Aside from P and ∅, the only open set
is {a, b}. If X is a topological space, a map f : X → P is determined
by three subsets A = f−1{a}, B = f−1{b} and C = f−1{c}. We must
have A ∪ B ∪ C = X so that such a map is uniquely determined by
giving two sets A and B. Continuity is equivalent to U = A∪B being
open. Thus a continuous map X → P determines a pair (U,A), where
U ⊆ X is open and A ⊆ X is arbitrary. Conversely, it is clear that
such a pair determines a unique continuous map that takes points of
A to a, points of U −A to b and all others to c.

There is no problem in proving directly that P is a regular injective
cogenerator, but it will also follow from the results of the next section.

3 Grids

Definition. Recall that a frame is a lattice with arbitrary supremums
that are preserved by finite infimums. By a grid , we mean a frame with
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an additional unary operation we denote ′ satisfying some equations.
The equations are best expressed using derived unary operations x↑ =
x ∨ x′ and x↓ = x ∧ x′. The equations (in addition to the frame
equations) are:

Gr–1. u′′ = u.

Gr–2. ↑ and ↓ are
∨

homomorphisms.

Gr–3. ↑ is a ∧ homomorphism, while ↓ satisfies (u ∧ v)↓ = u ∧ v↓.
Gr–4. The interval [u↓, u↑] is a complete atomic boolean algebra with

the operations of
∨

and ′.

This last requires some explanation to see why it is equational.
First, if v is arbitrary, Let vu denote (u↓∨v)∧u↑ = u↓∨(v∧u↑). Then
vu ∈ [u↓, u↑] and vu = v if v ∈ [u↓, u↑]. It follows immediately that
any sentence of the form v ∈ [u↓, u↑] ⇒ φ(v) = ψ(v) is equivalent to
the equation φ(vu) = ψ(vu) and that is true for operations of any arity
by replacing v by any string of elements. Finally, a complete atomic
boolean algebra is characterized by satisfying the complete distributive
law which can be stated, if awkwardly, in terms of

∨
and ′ as follows.

Let us denote by
u∨

and
u∧

the operations of the form

u∨

i∈I
vi =

∨

i∈I
vui

and
u∧

i∈I
vi =

(∨

i∈I
(vui )′

)′

Then we want equations of the form vu ∨ (vu)′ = u↑, vu ∧ (vu)′ = v↓
that force [u↓, u↑] to be a boolean algebra, evidently complete, with
u∨

is infinite join and, by duality,
u∧

its meet. Then the complete
distributive law will state that for all sets I and J and I × J indexed
families vij

u∧

i∈I

u∨

j∈J
vij =

u∨

s:I→J

u∧

i∈I
vi s(i)

This equation is imposed on the whole algebra, but of course is equiv-
alent to the assumption that [u↓, u↑] is a completely distributive com-
plete boolean algebra, which is equivalent to its being atomic (see, for
example, [Johnstone, 1982], VII.1.16, page 285).

We denote by Grid the category of grids and homomorphisms.
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3.1 Proposition A grid has the following properties:

1. u↓′ = u↑ and u↑′ = u↓;

2. u′↓ = u↓ and u′↑ = u↑;

3. (u ∧ v)↓ = u↓ ∧ v↓;
4. u↓↓ = u↑↓ = u↓ and u↑↑ = u↓↑ = u↑;

Proof.

1. Since [u↓, u↑] is a boolean algebra and ′ is the complement oper-
ation, the complement of the top element is the bottom and vice
versa.

2. This is immediate since, for example, u′↓ = u′∧u′′ = u′∧u = u↓.

3. (u ∧ v)↓ = u ∧ v↓ and also (u ∧ v)↓ = u↓ ∧ v so that (u ∧ v)↓ =
u ∧ v↓ ∧ u↓ ∧ v = u↓ ∧ v↓ since evidently u↓ ≤ u and v↓ ≤ v.

4.
u↓↓ = (u ∧ u′)↓ = u↓ ∧ u′↓ = u↓ ∧ u↓ = u↓

u↑↓ = (u ∨ u′)↓ = u↓ ∨ u′↓ = u↓ ∨ u↓ = u↓

and similarly for the other two.

The following is true because [u↓, u↑] is a boolean algebra.

3.2 Proposition Let G be a grid, u ∈ G and v, w ∈ [u↓, u↑].
Then

1. (v ∧ w)′ = v′ ∨ w′ and (v ∨ w)′ = v′ ∧ w′;
2. v↑ = u↑ and v↓ = u↓;

3.3 Corollary A grid G is partitioned by sets of the form [u↓, u↑].

4 The main theorem

4.1 Theorem The category of topological spaces is dual to the
full subcategory of grids defined by the Horn clause

(u↑ ∨ 1↓ = v↑ ∨ 1↓)⇒ (u↑ = v↑) (∗)

Proof. Define Φ : Topop → Grid by letting Φ(X) be the set of all pairs
(U,A) where U is an open subset of X and A is an arbitrary subset
of U . The order relation is the restriction of the product order and
both

∨
and ∧ are coordinatewise. (U,A)′ = (U,U − A). The derived

operations are (U,A)↑ = (U,U) and (U,A)↓ = (U, ∅). It is clear that
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this is a grid and also satisfies the Horn clause. We define a functor
Ψ : Gridop → Top. Suppose G is a grid. Then [1↓, 1] is a complete
atomic boolean algebra whose set of atoms we denote by X. Then the
interval [1↓, 1] can be thought of as the set of subsets of X. We will
use capitals to denote elements of [1↓, 1]. Say that U ∈ [1↓, 1] is open
if there is a u ∈ G such that u↑ ∨ 1↓ = U . It follows from the fact that
↑ commutes with

∨
that the union of open sets is open and from the

fact that ↑ commutes with ∧ and the distributivity that an intersection
of two open sets is open. Thus we have a topology on X. The set X
with this topology is Ψ(G). If f : G → G′ is a grid homomorphism,
then f(1↓) = f(1)↓ = 1↓ so that f takes the interval [1↓, 1] of G to the
corresponding interval of G′. Moreover, since f preserves

∨
and ′, it

is a morphism of CABAs, which is induced by a function we denote
Ψ(f) : X ′ → X, the set of atoms of [1↓, 1] in G′ and G, resp. Moreover,
the duality of CABAs and sets is such that the inverse image function
of Ψ(f) is f itself, so that showing that Ψ(f) is continuous is equivalent
to showing that f takes open sets to open sets. But if U = u↑ ∨ 1↓ is
open in X, then f(U) = f(u)↑ ∨ 1↓ is open in X ′.

It is clear that Ψ ◦Φ ∼= Id in any case. We finish the argument by
letting G be a grid that satisfies (∗) and showing that Φ(Ψ(G)) ∼= G.
Let X = Ψ(G). Define φ : G→ Φ(X) by φ(u) = (u↑∨1↓, u∨1↓). First
we show that φ is a grid morphism.

φ(
∨

i∈I
ui) = ((

∨
ui)↑ ∨ 1↓, (

∨
ui) ∨ 1↓)

= (
∨

(ui↑ ∨ 1↓),
∨

(ui ∨ 1↓)) =
∨

(ui↑ ∨ 1↓, ui ∨ 1↓)

for arbitrary index sets I, and

φ(u ∧ v) = ((u ∧ v)↑ ∨ 1↓, (u ∧ v) ∨ 1↓)

= ((u↑ ∧ v↑) ∨ 1↓, (u ∧ v) ∨ 1↓)

= ((u↑ ∨ 1↓) ∧ (v↑ ∨ 1↓), (u ∨ 1↓) ∧ (v ∨ 1↓))

= (u↑ ∨ 1↓, u ∨ 1↓) ∧ (v↑ ∨ 1↓, v ∨ 1↓))

= φ(u) ∧ φ(v)

To see that φ preserves ′, we use the fact that u′ is the complement of
u in the lattice [u↓, u↑] and show that φ(u′) is the complement of φ(u)
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in [φ(u)↓, φ(u)↑]. Then

φ(u) ∨ φ(u′) = φ(u ∨ u′) = φ(u↑)

= (u↑↑ ∨ 1↓, u↑ ∨ 1↓) = (u↑ ∨ 1↓, u↑ ∨ 1↓)

= (u↑ ∨ 1↓, u ∨ 1↓)↑ = φ(u)↑

since that is how ↑ works in Φ(X).

φ(u) ∧ φ(u′) = φ(u ∧ u′) = φ(u↓) = (u↓↑ ∨ 1↓, u↓ ∨ 1↓)

= (u↑ ∨ 1↓, (u ∨ 1)↓) = (u↑ ∨ 1↓, 1↓)

= (u↑ ∨ 1↓, ∅) = φ(u)↓

Thus φ is a morphism of grids. I claim that φ is an isomorphism. In
fact, if φ(u) = φ(v), then u↑∨1↓ = v↑∨1↓ which implies that u↑ = v↑.
Then

(u∨1↓)∧u↑ = (u∧u↑)∨(1↓∧u↑) = u∨(1∧u↑)↓ = u∨u↑↓ = u∨u↓ = u

and similarly (v ∨ 1↓) ∧ u↑ = v so that u = v and φ is monic. Let
(U,A) ∈ Φ(X). Then U = u↑ ∨ 1↓ for some u ∈ G, by definition of the
topology on X. Then φ(A ∧ u↑) = ((A ∧ u↑)↑ ∨ 1↓, (A ∧ u↑) ∨ 1↓). We
have

(A ∧ u↑)↑ ∨ 1↓ = (A↑ ∧ u↑↑) ∨ 1↓ = (1 ∧ u↑) ∨ 1↓ = u↑ ∨ 1↓ = U

and
(A ∧ u↑) ∨ 1↓ = (A ∨ 1↓) ∧ (u↑ ∨ 1↓) = A ∧ U = A

Thus φ is surjective.
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