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Abstract. Let R be a commutative ring whose complete ring of quotients is R-
injective. We show that the category of topological R-modules contains a full sub-
category that is ∗-autonomous using R itself as dualizing object. In order to do this, we
develop a new variation on the category chu(D, R), where D is the category of discrete
R-modules: the high wide subcategory, which we show equivalent to the category of
reflexive topological modules.

1. Introduction

Let R be a ring (with unit). In [Barr, et. al. (2009)], we showed that under certain reason-
able conditions on R, a full subcategory of the category of right R-modules is equivalent
to a full subcategory of the category of topological left R-modules. These conditions are
explained in detail in the cited paper. When R is commutative, the conditions simplify
and reduce to the assumption that the complete ring of quotients Q of R, as described in
[Lambek (1986), Section 3] be R-injective (op. cit., Proposition 4.3.3). It is sufficient, but
far from necessary, that R have no non-zero nilpotents. When K is a field and p ∈ K[x]
is any polynomial, the residue ring R = K[x]/(p) will always be its own complete ring of
quotients and also be self-injective. But if p has repeated factors, R will have nilpotents.

The main purpose of this paper is to show that when the commutative ring R satisfies
the injectivity condition of the preceding paragraph, then the category of topological R-
modules contains a full subcategory with both an autoduality and an internal hom. Such
a category is called ∗-autonomous, see, for example, [Barr (1999)]. As usually happens,
exhibiting such a structure requires a detour through the Chu construction (op. cit.).
However, since we are not supposing that R be self-injective, neither the full Chu category
nor the separated extension subcategory does the job and we are forced to introduce yet
another variation of the Chu category, that we call the high, wide subcategory (Definition
4.7).

We also consider the case that R is self-injective. In that case, all Chu objects are high
and wide and we do not need to introduce that subcategory. Moreover, in that case there
will be two distinct ∗-autonomous subcategories of topological R-modules. Although
the two categories are equivalent to each other as categories—even as ∗-autonomous
categories—one of them contains all the discrete modules and the other one doesn’t.

The first and third authors would like to thank NSERC of Canada for its support of this research.
We would all like to thank McGill and Concordia Universities for partial support of the second author’s
visits to Montreal.

c©Michael Barr, John F. Kennison, and R. Raphael, 2009. Permission to copy for private use granted.

1



October 4, 2009 2

2. The ring R

All objects we study in this note are modules over a commutative ring R of which we
make one further assumption: that the complete ring of quotients of R be R-injective (for
which it is necessary and sufficient that the complete ring of quotients be self-injective).

An ideal I of a commutative ring R is called dense if whenever 0 6= r ∈ R, then
rI 6= 0. The complete ring of quotients Q of R is characterized by the fact that it is
an essential extension of R and every homomorphism from a dense ideal to Q can be
extended to a homomorphism R // Q. Details are found in [Lambek (1986), Sections 2.3
and 4.3].

It is worth going into a bit more detail about the reference [Lambek (1986)]. In section
2.3, the complete ring of quotients for commutative rings is constructed, while in 4.3 the
construction is carried out in the non-commutative case, where the definition of “dense”
is more complicated. Unfortunately, all the discussion of injectivity is carried out in
the latter section and it is not easy to work out reasonable conditions under which the
complete ring of quotients is injective. Here is one simple case, although far from the only
one.

2.1. Example. Let K be a field. The rings K[x]/(x)2 and K[x, y]/(x, y)2, can each
be readily seen to be their own complete rings of quotients (they have no proper dense
ideals), but the first is and the second is not self-injective. In the second case the ideal
(x, y) contains every proper (and is therefore large, as defined below), but is not dense.

Let A be an R-module. An element a ∈ A is called a weak torsion element if there
is a dense ideal I ⊆ R with aI = 0. We say that A is weak torsion module if every
element of A is and that A is weak torsion free if it contains no non-zero weak torsion
elements.

An R-module is said to be R-cogenerated if it can be embedded into a power of R.
A topological R-module is called R-cogenerated if it can be embedded algebraically and
topologically into a power of R, with R topologized discretely. Among other things, this
implies that the topology is generated by (translates of) the open submodules.

An ideal I ⊆ R is called large if its intersection with every non-zero ideal is non-zero.
An obvious Zorn’s lemma argument shows that if every map from a large ideal of R to
a module Q can be extended to a map R // Q, then this is true for all ideals and so
Q is R-injective. A dense ideal is characterized by the fact that its product with every
non-zero ideal is non-zero. If, for example, there are no nilpotents, then when the product
of two ideals is non-empty, so is their intersection and then the complete ring of quotients
is injective. But while this condition is sufficient, it is far from necessary as the example
K[x]/(x)2 makes clear.

3. The category C
modcat

Let C denote the category of R-cogenerated topological R-modules. When C is an object
of C , we let |C| denote the discrete module underlying C and let ||C|| denote the discrete
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set underlying C. If C and C ′ are objects of C , we let hom(C, C ′) denote the R-module
of continuous R-linear homomorphisms and Hom(C, C ′) denote the set ||hom(C, C ′)||.

We denote by C? the module hom(C,R) topologized as a subspace of R||C||.
canon

3.1. Proposition. For C ∈ C , the canonical map C //R||C?|| is a topological embedding.

Proof. Let C Â Ä // RS define the topology on C. Then for each s ∈ S, the composite

C // RS ps // R, where ps is the projection, defines a homomorphism C // R. Thus
there is a function S // Hom(R,C) that leads to the commutative triangle

C RSÂ Ä //C

RHom(C,R)
""DD

DD
DD

DD
DD

DD
DD

RS

RHom(C,R)

OO

and the diagonal map, being an initial factor of a topological embedding, is one itself.

Crucial to this paper is the following theorem, which is proved in [Barr, et. al. (2009),
Corollary 3.8]. It is understood that R always carries the discrete topology. Incidentally,
this is the only place that the injectivity condition is used.

coktor
3.2. Theorem. Let C Â Ä // C ′ be an algebraic and topological inclusion between objects
of C . Then the cokernel of hom(C ′, R) // hom(C,R) is weak torsion.

4. The chu category
chucat

We begin this section with a brief description of Chu categories and chu categories. For
more details, see the papers [Barr (1998), Barr (1999)].

We denote by D the category of (discrete) R-modules. Fix a module T . In this
article, T will usually be the ring R, but the general scheme does not require that. We
define a category Chu(D, T ) as follows. An object of Chu(D, T ) is a pair (A,X) in which
A and X are R-modules together with a pairing 〈−,−〉 : A ⊗ X // T . A morphism
(f, g) : (A,X) // (B, Y ) consists of R-linear homomorphisms f : A // B and g : Y // X
such that 〈fa, y〉 = 〈a, gy〉 for a ∈ A and y ∈ Y . The definition of morphism is equivalent
to the commutativity of either of the squaresdiag*

B hom(Y, T )//

A

B

f

²²

A hom(X,T )// hom(X,T )

hom(Y, T )

hom(g,T )

²²
X hom(A, T )//

Y

X

g

²²

Y hom(B, T )// hom(B, T )

hom(A, T )

hom(f,T )

²²

(∗)

in which the horizontal arrows are the adjoint transposes of the two 〈−,−〉.
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As we will see, a key example of a Chu object is determined by a topological module C
as (|C|, hom(C,R)). Then, if C and C ′ are topological modules, then it follows immedi-
ately that every continuous homomorphism from C to C ′ induces a Chu homomorphism
(|C|, hom(C, R)) // (|C ′|, hom(C ′, R)).

If U = (A,X) is an object of Chu(D, T ), we denote by U⊥ the object (X,A) with
the evident pairing. If U = (A,X) and V = (B, Y ) are objects of Chu(D, T ), the set
of morphisms U // V has an obvious structure of an R-module that we denote [U,V].
Then Chu(D, T ) becomes a ∗-autonomous category when we define

U−◦V = ([U,V], A⊗ Y )

with pairing 〈(f, g), (a, y)〉 = 〈fa, y〉 = 〈a, gy〉. When T = (R, T ) with the R-module
structure as pairing, one easily sees that U−◦T = U⊥. We call T the dualizing object.
There is also a tensor product given by

U⊗V = (U−◦V⊥)⊥

We say that the object (A,X) is separated if the induced map A // hom(X, T ) is
monic and that it is extensional if X //hom(A, T ) is monic. (Incidentally, extensionality
is the property of functions that two are equal if they are equal for all possible arguments.
Thus extensionality here means that X is a module of homomorphisms A // T ). A
pair is called non-singular if it is both separated and extensional. This means that
for all 0 6= a ∈ A there is an x ∈ X with 〈a, x〉 6= 0 and, symmetrically, that for all
0 6= x ∈ X, there is an a ∈ A with 〈a, x〉 6= 0. The results in the theorem that follows are
proved in detail in [Barr (1998)]. Since D is abelian the factorization referred to in that
citation can only be the standard one into epics and monics. Let Chus(D, T ), Chue(D, T ),
and chu(D, R) denote, respectively, the full subcategories of Chu(D, T ) consisting of the
separated, the extensional, and the separated extensional objects.

4.1. Theorem. [Barr (1998)]

1. The inclusion Chus(D, T ) Â Ä // Chu(D, T ) has a left adjoint S;

2. the inclusion Chue(D, T ) Â Ä // Chu(D, T ) has a right adjoint E;

3. SE ∼= ES;

4. when (A, X) is extensional and (B, Y ) is separated, then

(A,X)−◦(B, Y ) is separated;

5. chu(D, R) becomes a ∗-autonomous category when we define

(A,X)−◦(B, Y ) = E((A,X)−◦(B, Y ))

(A,X)⊗ (B, Y ) = S((A,X)⊗ (B, Y ))

where the right hand sides of these formulas refer to the operations in Chu(D, T ) and
the left hand sides define the operations in chu(D, R).
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4.2. Convention. From now on, we will be restricting our attention to objects of
chu(D, R), unless explicitly stated otherwise.

4.3. Separated extensional Chu categories and topology. In a number of
cases the category of chu objects is equivalent to concrete categories of topological objects.
For example, suppose A is the category of abelian groups and T is the circle group. A
pair (A,X) with a non-singular pairing corresponds to the topological group G whose
underlying set is A and whose topology is given as a subgroup of T ||X||. Conversely, if
G is a topological group, then (|G|, hom(G, T )) is a Chu pair. Moreover, if G comes
from (A,X), the inclusion A Â Ä // T ||X|| gives, since T is injective (in the category of T -
cogenerated topological groups, see the argument in Theorem 6.1 below), a surjection
||X|| · Z // hom(G, T ). But X is itself a group, so this implies that X // hom(G, T ) is
surjective. But it is also injective since the original pairing on (A,X) was non-singular.
The result is that hom(G, T ) ∼= X so that we recover (A, X). Much more can be said; the
details can be found in [Barr & Kleisli (2001)] as well in the note [Barr, (unpublished)].

A crucial point was the injectivity of T which makes X · Z // Hom(G, T ) surjective.
In the present case, we are using the non self-injective (in general) ring R as the dualizing
object. It turns out that we have to take only certain chu objects. The ones we need
are those objects (A,X) with the property that when A is endowed with the topology
it inherits from R||X||, every continuous homomorphism of A // X has the form 〈−, x〉
for some, necessarily unique, x ∈ X. It is possible to express this in a way that does
not explicitly mention topology, see Proposition 4.8 below. When the dualizing object is
injective, this condition is satisfied by every chu object. See Section 6 for a proof of this
fact in our case.

sigrho

4.4. The functors σ and ρ. We introduce functors σ : chu(D, R) // C and ρ :
C // chu(D, R) as follows. If U = (A,X) is an object of chu(D, R), then σU is the
module A topologized as a subobject of R||X||. If C is an object of C , let ρC = (|C|, |C?|)
with the obvious pairing.

4.5. Proposition. ρ is left adjoint to σ.

Proof. As seen in Diagram (∗) on Page 3, a map ρC // (A, X) is given by R-linear
homomorphisms |C| // A and X // |C?| for which the left-hand square of

A Hom(X,R)//

|C|

A
²²

|C| Hom(|C?|, R)// Hom(|C?|, R)

Hom(X,R)
²²

Hom(X,R) R||X||//

Hom(|C?|, R)

Hom(X,R)

Hom(|C?|, R) R||C?||// R||C?||

R||X||
²²

commutes, while the right-hand one obviously does. But the commutation of the outer
square is the condition required for continuity of C // σ(A,X) when A is topologized by
the embedding into R||X||. Thus we get a map C // σ(A,X).



October 4, 2009 6

In the other direction, a map C // σ(A, X) consists of a map |C| // A for which the
composite C // A // R||X|| is continuous. Dualizing gives a map X · R // |C?| which
when composed with the inclusion X // X · R gives a map X // |C?|. This function
is actually a homomorphism as it factors X // X · R // Hom(A,R) // |C?| and the
composite of the first two as well as the third are homomorphisms. The remaining details
are left to the reader.

inn

4.6. Proposition. For any C ∈ C , the inner adjunction C //σρC is an isomorphism.

Proof. This follows from the facts that ρC = (|C|, |C?|) and that σρC is just |C| topol-
ogized as a subspace of R||C?||, which is just the original topology on C by 3.1.

Next we identify the objects of chu(D, R) on which ρσ is the identity. If U = (A,X)
is an object of chu(D, R), then σU = A, topologized as a subobject of R||X||. Then
ρσU = (A, hom(σU, R)). Since the elements of X induce continuous maps on σU, we
have X // hom(σU, R) Â Ä // hom(A,R). Since U is extensional the composite is monic
and hence so is the first map. In other words, we can assume X ⊆ hom(σU, R). There
is, however, no reason to suppose that X = hom(σU, R) so that ρσ is not generally the
identity. To deal with this situation, we introduce new conditions on objects of the chu
category.

hiwi
4.7. Definition. We say that U is high when ρσU = U. We also say that U is wide
when U⊥ is high.

If (A,X) is an object of chu(D, R), the topology induced on A by its embedding into

RX has a subbase at 0 given by the kernels of the composites A // RX px // R. It follows
that ϕ : A // R is continuous in this topology if and only if there are finitely many
elements x1, . . . , xn ∈ X such that ker ϕ ⊇ ⋂

ker〈−, xi〉. Thus we conclude:
highchar

4.8. Proposition. The object (A,X) ∈ chu(D, R) is high if and only if, for all ϕ :
A // R and all x1, . . . , xn ∈ X such that ker ϕ ⊇ ⋂

ker〈−, xi〉, there is an x ∈ X such
that ϕ = 〈−, x〉.

The extensional object U = (A,X) is high when the map X Â Ä // hom(σU, R) is an
isomorphism. This map arises from the topological structure map σU ⊆ R||X|| which
dualizes to ||X|| · R // hom(σU, R). But since X is an R-module, the image of ||X|| ·
R // hom(σU, R) is just X. In general, we know from [Barr, et. al. (2009), Corollary
3.8], that the cokernel of ||X|| · R // hom(σU, R) is weak torsion, which allows us to
conclude:

wtq

4.9. Proposition. Let U = (A,X) be an object of chu(D, R). Then there are exact
sequences 0 // X // hom(σU, R) // T // 0 and 0 // A // hom(σ(U⊥), R) // T ′ // 0
with T and T ′ weak torsion.
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We let chu(D, R)h, chu(D, R)w and chu(D, R)hw denote the full subcategories of
chu(D, R) consisting, respectively, of the high objects, the wide objects and the high,
wide objects.

4.10. Proposition. The inclusion chu(D, R)h
Â Ä // chu(D, R) has a right adjoint H and

the inclusion chu(D, R)w
Â Ä // chu(D, R) has a left adjoint W .

Proof. We claim that H = ρσ. In fact, suppose U is high and V is arbitrary. Then,
since σ is full and faithful and ρ is its left adjoint, we have

Hom(U, ρσV) ∼= Hom(σU, σρσV) ∼= Hom(σU, σV)

∼= Hom(ρσU,V) ∼= Hom(U,V)

which shows the first claim. For the second, let WV = (H(V⊥))⊥.

Recall that when U = (A, X) and V = (B, Y ) are objects of chu(D, R), the tensor
product in Chu(D, R) is given by (A,X)⊗ (B, Y ) = (A⊗B, [U,V⊥]) and is extensional
but not generally separated. Its separated reflection is gotten by factoring out of A ⊗ B
the elements that are annihilated by every map U // V⊥. It nonetheless makes sense to
talk of continuous maps A⊗B // R.

In the study of Chu objects that are separated and extensional, a crucial point was
that the separated reflection commuted with the extensional coreflection. One would
similarly hope here that the wide reflection might commute with the high coreflection.
That this fails will be shown in Example 4.16. However, the only real consequence of that
commutation that matters to us remains true:

4.11. Proposition. If U is wide, so is HU; dually if U is high, so is WU.

Proof. It suffices to prove the first claim. So assume U = (A,X) is wide. Let HU =
(Ā,X). It follows from Proposition 4.9 that the cokernel of A Â Ä // Ā is weak torsion.
Since weak torsion modules have no non-zero homomorphisms into R, we see that two
homomorphisms Ā // R that agree on A are equal. Now suppose that ϕ : Ā // R and
x1, . . . , xn ∈ X such that ker ϕ ⊇ ⋂

ker〈−, xi〉. Then ker(ϕ|A) ⊇ ⋂
ker(〈−, xi〉|A). Since

A is wide, there is an x ∈ X such that ϕ|A = 〈−, x〉|A. But then ϕ = 〈−, x〉 on all of Ā.

4.12. Proposition. Let U = (A,X) and V = (B, Y ) be high and extensional. Then
U⊗V is high (and extensional).

Proof. By definition U ⊗ V = (A ⊗ B, [U,V⊥]). This means that the topology on
A⊗B is induced by its map to RHom(U,V⊥). Note that even when U and Vare separated
this map is not necessarily injective. If ϕ : A ⊗ B // R is continuous in this topology,
then, as in Proposition 4.8, there are maps (f1, g1), . . . (fn, gn) : U // V⊥ such that
ker ϕ ⊇ ⋂

ker(fi, gi). Here (fi, gi) acts on A ⊗ B by (fi, gi)(a ⊗ b) = 〈b, fia〉 = 〈a, gib〉.
Extensionality implies that fi and gi actually determine each other uniquely. Now fix
a ∈ A. If b ∈ ⋂

ker〈−, fia〉 then b ∈ ker ϕ(a,−). Since for any y ∈ Y , the map 〈−, y〉 is
continuous on B, it follows that ϕ(a,−) : B // R is continuous. Since B is high, there
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is a unique y = fa ∈ Y such that ϕ(a⊗ b) = 〈b, fa〉 for all b ∈ B. The usual arguments
involving uniqueness show that f is an R-linear homomorphism A //Y . There is similarly
an R-linear map g : B //X such that ϕ(a⊗b) = 〈a, gx〉. It follows that ϕ is in the image
of [U,V⊥] // hom(A⊗B, R). Extensionality is proved in [Barr(1998)].

4.13. Corollary. If U is high and V is wide, then U−◦V is wide.

Proof. This is immediate from the fact that U−◦V = (U⊗V⊥)⊥.

Now we can define the ∗-autonomous structure on chu(D, R)hw. Assume that U
and V are high and wide. Then U ⊗ V is high and U−◦V is wide. So we define
U−h−◦V = H(U−◦V) and U⊗

w
V = W (U⊗V).

4.14. Theorem. For any U, V, W ∈ chu(D, R)hw, we have

Hom(U⊗
w

V,W) ∼= (U,V−h−◦W)

Proof.
Hom(U⊗

w
V,W) = Hom(W (U⊗V),W) ∼= Hom(U⊗V,W)

∼= Hom(U,V−◦W) ∼= Hom(U, H(V−◦W))

= Hom(U,V−h−◦W)

Since it is evident that U−h−◦V ∼= V⊥−h−◦U⊥, we conclude that chuhw is a ∗-
autonomous category.

4.15. Theorem. chu(D, R)hw is complete and cocomplete.

Proof. chu(D, R)h is a coreflective subcategory of chu(D, R) and is therefore complete
and cocomplete and chu(D, R)hw is a reflective subcategory of chu(D, R)h and the same
is true of it.

nocommute

4.16. Example. We will show that HW is not isomorphic to WH in general.

Assume that R contains an element r that is neither invertible nor a zero divisor. Let
(1/r)R denote the R-submodule of the classical ring of quotients (gotten by inverting all
the non zero-divisors of R) generated by 1/r. Then as modules, we have proper inclusions
rR ⊆ R ⊆ (1/r)R.

Let U = (R, R) and V = (R, rR) both using multiplication as pairing. It is clear that
U ∈ chu(D, R)hw. As for V, it is evident that σV = R. The topology is discrete since
under the inclusion R ⊆ R||rR||, the only element of R that goes to 0 under the projection
on the coordinate r is 0, since r is not a zero-divisor. Then HV = ρσV = (R,R).
Moreover if (f, g) : U // V is the identity on the first coordinate and inclusion on the
second, it is clear that H(f, g) is just the identity. Since HV is obviously also wide, we
see that WH(f, g) is also the identity.

Now let us calculate HWV. Since V⊥ = (rR, R), it is clear that σ(V⊥) = rR.
Moreover σ(g, f) : σ(V⊥) // σ(U⊥) is the proper inclusion rR ⊆ R and is not the
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identity. We can identity ρσ(V⊥) as (rR, (1/r)R) so that WV = ((1/r)R, rR), which is
isomorphic to U and is therefore high and wide. Thus HWV = WV (assuming, as we
may, that H is the identity on chuh and W is the identity on chuw). But the map induced
by (f, g) is not an isomorphism since the first coordinate is the inclusion R ⊆ (1/r)R and
the second is the inclusion R ⊆ rR, neither of which is the identity. Thus HW is not
naturally isomorphic to WH.

5. The ∗-autonomous structure in C
sastruct

Recall that for C ∈ C , C? is the object hom(C, R) topologized as a subset of R||C||.

5.1. Proposition. The map C //C?? that takes an element of C to evaluation at that
element is a topological embedding.

Proof. By hypothesis, there is an embedding C Â Ä // RS for some set S. This transposes
to a function X // Hom(C,R) = ||C?|| and then R||C?|| // RX . The diagram

C?? R||C?||Â Ä //

C

C??
²²

C RSÂ Ä // RS

R||C?||

OO

commutes and the result is that the left-hand arrow, being an initial factor of an embed-
ding, is one itself.

We say that the object C is reflexive if the canonical map C //C?? is an isomorphism.
Let Cr denote the full subcategory of reflexive objects.

5.2. Proposition. For any C ∈ C , the object C? is reflexive.

Proof. We have C Â Ä // C?? which gives C??? // C? and composes with the canonical
C? // C??? to give the identity. Thus C??? ∼= C? ⊕ C ′ for a submodule C ′ ⊆ C???. In
particular, C ′ is weak torsion free. On the other hand, the inclusion C?? // R||C?|| gives a
map ||C?|| ·R // C??? whose cokernel T is, by 3.2, weak torsion. But since the canonical
map ||C?|| ·R // C? is obviously surjective, we conclude that T ∼= C ′, which implies that
both are zero.

5.3. Theorem. The functors σ and ρ induce inverse equivalences between the categories
chu(D, R)hw and Cr.

Proof. Suppose that U = (A,X) ∈ chu(D, R)hw. Then σU is A topologized by its
embedding into R||X||. Let V = U⊥. The object (σV)? is Hom(σV, R) topologized by
its embedding into R||X||. But the definition of wide means that Hom(σV, R) = ||A||.
Thus σU = (σV)? and therefore σU is reflexive. Thus σ restricts to a functor from
chu(D, R)hw

// Cr. Suppose now that C is reflexive. Then ρC = (|C|, |C?|) is always
high. Also ρ(C?) = (|C?|, |C??|) ∼= (|C?|, |C|) = (ρC)⊥ is high and hence ρC is wide.
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5.4. The internal hom in Cr. The obvious candidate for an internal hom in Cr is to
let C −◦C ′ be hom(C,C ′) embedded as a topological subobject of R||C||×||C′||. But it is not
obvious that this defines a reflexive object. With the help of the ∗-autonomous structure
on chu(D, R)hw, we can prove this.

reflhom
5.5. Theorem. For C, C ′ ∈ Cr, the object C −◦C ′, as defined in the preceding para-
graph, is reflexive. In fact, C −◦C ′ ∼= σ(ρC −h−◦ ρC ′).

Proof. We have that ρC −◦ ρC ′ = ([ρC, ρC ′], |C| ⊗ |C ′?|). Since ρ is full and faithful,
[ρC, ρC ′] = hom(C, C ′). Since C ′ Â Ä //RC′? , we see that C −◦C ′ is topologized as a subspace
of R||C||×||C′?||. There is a natural map ||C|| × ||C ′?|| // |||C| ⊗ |C ′?||| which gives rise to a
map R||C⊗C′?||. From the commutative triangle

hom(C, C ′) R||C||×||C′||Â Ä //hom(C, C ′)

R|||C|⊗|C′|||
''OOOOOOOOOOOOOOOOOO
R||C||×||C′||

R|||C|⊗|C′|||

OO

‘

we see that hom(C,C ′) // R|||C|⊗|C′|||, as a first factor in a topological embedding, is also
a topological embedding. Thus C −◦C ′ is just σ(ρC −h−◦ ρC ′).

6. The case of a self-injective ring
selfinj

Things get simpler and a new possibility opens when R is a commutative self-injective
ring. This was done in [Barr (1999)] when R is a field and what was done there goes
through unchanged when R is separable (that is, a product of finitely many fields), but
there are many more rings that are self-injective. For example, an arbitrary product of
fields, and any complete boolean ring.

Throughout this section we will suppose that R is a commutative self-injective ring.
Let S and T be sets. We denote by Q(S, T ) the module RS × |RT |. The module R itself
is always topologized discretely. We let C denote the category of topological R-modules
that can be embedded into a module of the form Q(S, T ) for some sets S and T . The
principal use we make of self-injectivity is contained in the following.

topinj
6.1. Theorem. R is injective in C with respect to topological inclusions.

Proof. It is easy to reduce this to the case of an object embedded into an object of the
form Q(S, T ). So we begin with C Â Ä //Q(S, T ) and show that Hom(Q(S, T ), R) //Hom(C, R)
is surjective. Suppose that ϕ : C // R is a continuous homomorphism. The topology on
Q(S, T ) has a basis at 0 of sets of the form Q(S −S0, T ) for a finite subset S0 ⊆ S. Then
the kernel of ϕ contains a set of the form C∩Q(S−S0, T ). Let C0 = C/(C∩Q(S−S0, T )).
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Then we get a commutative diagram

C0 Q(S0, T )Â Ä //

C

C0

²²

C Q(S, T )Â Ä // Q(S, T )

Q(S0, T )
²²

C

R

ϕ

»»

C0

R

ϕ0

²²

Q(S0, T )

R
zzt t

t
t

t
t

t
t

t

in which the diagonal map exists because C0 and Q(S0, T ) are discrete and R is injective.

We will say that an object of C is weakly topologized if it is embedded in a power
of R (with the product topology). Let Cwk be the full subcategory of C consisting of
the weakly topologized objects. It is clear that every object of chu(D, R) is both high
and wide and thus σ and ρ, as defined in 4.4 are actually equivalences between C0 and
chu(D, R). Since chu(D, R) is ∗-autonomous, so is C0. Thus we have,

6.2. Theorem. The category Cwk of R-cogenerated topological algebras is ∗-autonomous
when C −◦C ′ is defined as hom(C, C ′) topologized as subspace of C ′||C||.

6.3. The strongly topologized objects. Let C ∈ C . We say that C is strongly
topologized if whenever C ′ // C is a bijective homomorphism that induces an isomor-
phism Hom(C, R) // Hom(C ′, R), then C ′ // C is an isomorphism.

6.4. Theorem. Let C be an object of C . Then there is a strongly topologized object τC
together with a bijection τC //C that induces an isomorphism Hom(C, R) //Hom(τC, R).

Proof. Let {Ci | i ∈ I} range over all the objects of C that have the same underlying
R-module as C, for which the identity map Ci

// C is continuous and for which the
induced Hom(C,R) // Hom(Ci, R) is an isomorphism. Let τC be defined so that

C CI//

τC

C
²²

τC
∏

Ci
//
∏

Ci

CI
²²

is a pullback. Since
∏

Ci
// CI is a bijection, so is τC // C so it suffices to show that

Hom(C,R) // Hom(τC, R) is an isomorphism. It is clearly monic, so it suffices to see
that it is surjective. If ϕ : τC // R is a continuous homomorphism, it extends, since R
is injective, to a homomorphism ψ :

∏
Ci

// R. Continuity forces there to be a finite
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subset I0 ⊆ I such that ψ vanishes on
∏

i∈I−I0
Ci and hence induces a homomorphism

ψ0 :
∏

i∈I0
Ci. But

Hom(
∏
i∈I0

Ci, R) ∼=
∏
i∈I0

Hom(Ci, R) ∼=
∏

Hom(C,R) ∼= Hom(C, R)I0

and this restricts to a map C // R that evidently composes with τC // C to give ϕ.

If we let ωC denote the module |C| retopologized by its embedding into RHom(C,R) then
ωC is the weakest topology with the same set of characters as C and τC is the strongest.
Clearly τω = τ and ωτ = ω.

We have already denoted the category of weakly topologized modules by Cw and we
denote by Cs the full subcategory of strongly topologized modules.

6.5. Theorem. τ and ω induce inverse equivalences between Cwk and Cst.

Proof. If C ∈ Cwk, then τC ∈ Cst and ωτC = ωC = C, while if C ∈ Cst, then ωC ∈ Cwk

and τωC = τC = C.

Consequently, Cst is also ∗-autonomous. The internal hom is gotten by first forming
C −◦C ′ and then applying τ .

7. Discussion

It is obvious that the ∗-autonomous structure on the category Cr depends crucially on 5.5.
But we could not find a proof of that fact independent of the chu category, in particular,
the high wide subcategory. While it is certainly true that you use the methods that work,
an independent argument would still be desirable.

For example, suppose R is a ring that is not necessarily commutative. The category
of two-sided R-modules has an obvious structure of a biclosed monoidal category. If
A is a topological module, it has both a left dual ∗A (consisting of the left R-linear
homomorphisms into R) and a right dual A∗. The two duals commute and there is
a canonical map A // ∗A∗. It is natural to call an object reflexive if that map is an
isomorphism. One can now ask if the internal homs (that is, the left and right homs)
of two reflexive objects is reflexive. It might require something like the left and right
complete rings of quotients being isomorphic and also R-injective. Even the case that R
has no zero divisors would be interesting.

Although there a Chu construction for a biclosed monoidal category, with an infinite
string of left and right duals (see [Barr, 1995]), there does not seem to be any obvious
way of defining separated or extensional objects. An object might be separated, say, with
respect to its right dual, but not its left. Factoring out elements that are annihilated by
the left dual would usually lead to the right dual being undefined. And even if a notion
of separated, extensional objects was definable, what possible functor to the topological
category would exist that would transform to all the infinite string of duals? Thus we
would require an independent argument for the analog of Theorem 5.5.
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