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1. Introduction

In an appendix to his 1981 book, Putnam made the following claim.

1.1. Theorem. Let L be a language with predicates F1, F2, . . . , Fk (not necessarily
monadic [unary]). Let I be an interpretation, in the sense of an assignment of an intension
to every predicate of L. Then if I is non-trivial in the sense that at least one predicate
has an extension which is neither empty nor universal in at least one possible world,
there exists a second interpretation J which disagrees with I, but which makes the same
sentences true in every possible world as I does.

In more familiar language, he is claiming that in for any relational theory in a first
order language (without equality as a built-in predicate), there are distinct models that
satisfy the same first order sentences. This will true if and only if it is true for a single
predicate, so we stick to that case here. Thus we can rephrase his assertion as follows.

1.2. Theorem. Let U be a set and R ⊆ Un an n-ary relation on U . Then either R = ∅
or R = Un or there is a R′ 6= R in Un that satisfies the same first order sentences as R.

Ed Keenan showed that the equality relation on a two element set is a counter-example
and asserted that a similar example could be given on any finite set U ([Keenan, 1995]).
He also raised (privately) the question about what was true for infinite sets. The purpose
of this note is to show that Theorem 1.2 is true when U is infinite. Of course, Putnam’s
proof remains invalid because of the finite counter-example. Putnam does not make it
clear whether he is limiting himself to finite models or infinite models or not at all.

2. Permutation invariant relations

For a set U and a finite ordinal n = {0, 1, . . . , n−1}, we view Un as the set of all functions
a : n −→ U . If a ∈ Un, the kernel pair of a, denoted kerp(a) is the equivalence relation
on n defined by kerp(a) = {(i, j) ∈ n× n | ai = aj}.
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2.1. Proposition. Let a, b : n −→ U . Then there is a permutation σ of U such that
a = σ ◦ b if and only if kerp(a) = kerp(b).

Proof. Since σ is a bijection, we see from a = σ ◦ b that ai = aj if and only if
(σ ◦ b)i = (σ ◦ b)j if and only if bi = bj. Thus a and b have the same kernel pair. Conversely,
suppose kerp(a) = kerp(b) = α ⊆ n× n. From the diagram

n n/α--

n n/α--

?

=

?

=

U--
b

U-- a

We see that a and b have isomorphic images. Since n is finite, their images also have
isomorphic complements.

For an equivalence relation α on n, let Rα ⊆ Un denote the set of all functions n
−→ U whose kernel pair is α. Since each function has a unique kernel pair, it follows that
Un =

∑
Rα, the sum taken over the equivalence relations on n.

Say that a subset R ⊆ Un is permutation invariant (PI), if a ∈ R and σ a permutation
of U implies that σ ◦ a ∈ R. The preceding proposition implies that,

2.2. Corollary. A subset R ⊆ Un is PI if and only if it is a union of sets of the form
Rα.

Proof. Since a has the same kernel pair as σ ◦ a for any permutation σ, it follows that
Rα is PI. On the other hand, if R is PI, then for any a ∈ R any b ∈ Rα has the form
b = σ ◦ a for some permutation σ. Thus if α is the kernel pair of a, we must have Rα ⊆ R.
Since the Rα partition Un the subset R is a union of Rα. If we let Γ(R) = {α | Rα ⊆ R}
we can write that

R =
⋃

α∈Γ(R)

Rα

2.3. Definable sets. Say that a set R ⊆ Un is first order definable (or simply
definable) if there is a set of first order sentences (not using equality) that are satisfied
by R and by no other subset of Un. Putnam claimed in his proof that the only definable
sets are the empty set and Un. He then observed that a definable is PI and seems to have
assumed that the only PI sets are the empty set and Un. We have just seen that all the
Rα are PI. As mentioned, Keenan showed that equality on a finite set was definable. In
fact, on a finite set, every PI relation is definable.

2.4. Theorem. Every PI relation on a finite set is definable.
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Proof. We first show that equality is definable. In fact, if U is an n element set, then
equality is the unique binary relation E such that

Eq–1. ∀x, xEx;

Eq–2. ∀x, ∀y, xEy ⇒ yEx;

Eq–3. ∀x, ∀y, ∀z(xEy) ∧ (yEz)⇒ xEz;

Eq–4. ∀x1, . . . , ∀xn−1,∃xn,¬(x1Exn) ∧ . . . ∧ ¬(xn−1Exn).

Next we see that any Rα is definable. In fact, Rα is definable by the following first order
sentence

∀x1, . . . , ∀xn, ((x1, . . . , xn) ∈ Rα) ⇐⇒
((∧

iαj

xi = xj

)
∧
(∧
¬iαj
¬(xi = xj)

))

Since each Rα is definable, so is each finite union of Rα, that is, each PI set.

3. The infinite case

We now consider the case of an infinite universe U . We will show that in this case, only
the empty and total relations are definable.

Let E be an equivalence relation on U . For an equivalence relation α on n, let E(Rα)
denote the subset of Un consisting of all a : n −→ U for which the kernel pair of the

composite n
a−−→ U −→ U/E is exactly α. We note that in general E(Rα) neither

includes nor is included in Rα. For example, suppose that E is not the equality. Then
when α is the equality relation, Rα consists of the all the injective functions a : n −→ U ,
while E(Rα) is the proper subset consisting of all those for which the composite n −→ U
−→ U/E is injective. On the other hand, when α is the trivial relation (all pairs), then
Rα is just the set of constant functions, while E(Rα) is the superset consisting of those
for which n −→ U −→ U/E is constant.

If R is a PI subset of Un, then R =
⋃
α∈Γ(R) Rα. Define E(R) =

⋃
α∈Γ(R)E(Rα). We

do not define E(R) unless R is PI. Then the following two propositions will demonstrate
the claim that only the empty set and Un are first order definable.

3.1. Proposition. Let R ⊆ Un be a PI relation and E be an equivalence relation on
U such that each equivalence class is infinite and E(R) = R. Then R = ∅ or R = Un.

3.2. Proposition. Suppose U is an infinite set and E is an equivalence relation U for
which there are infinitely many equivalence classes. Then for any R ⊆ Un, the first order
theory of R and of E(R) are the same.

Assuming these are proven and that U is infinite, let E be an equivalence relation on
U such that there are infinitely many equivalence classes and infinitely many elements in
each class. Then if R ∈ Un is definable, it is PI. Since R and E(R) satisfy the same first
order sentences, we must also have that R = E(R) and then either R = ∅ or R = Un.
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4. Proofs

Proof of 3.1. Let a : n −→ U be an element of R. Let the image of a consist of
the distinct elements u1, . . . , uk. Choose distinct elements v1, . . . , vk ∈ U that are all
equivalent mod E. Let σ be any automorphism of U such that σ(ui) = vi, i = 1, . . . , k.
Since R is PI, it follows that σ ◦ a ∈ R. Since E(R) = R, then σ ◦ a ∈ E(R), which implies
that σ ◦ a ∈ E(Rα) for some equivalence relation α on n. But since aiEaj for all i, j ∈ n,
the only equivalence relation on n such that σ ◦ a ∈ E(Rα) is the total relation n×n. Thus
Rn×n meets E(R) = R. But R is the disjoint union of Rα so this implies that Rn×n ⊆ R.
Let α be an arbitrary equivalence relation on n and suppose that a : n −→ U belongs to
Rα. Repeat the above construction to get a b : n −→ U such that b ∈ Rα, and all the
values of b are equivalent mod E. This means that b ∈ E(Rn×n) ⊆ R and clearly b ∈ Rα.
Thus Rα meets Rn×n so that it meets and hence is included in R. Since α was arbitrary,
this shows that R = Un.

Proof of 3.2. There is a standard method used in logic to prove that two models are
isomorphic. It is called the back and forth method since you begin by well-ordering the
carriers and then alternate between defining the function and its inverse at the earliest
place they are not defined. In this way, you guarantee surjectivity, as well as injectiv-
ity. For more details, see [Chang & Keisler], especially the definition on page 114 and
Proposition 2.2.4 (ii) on page 115. Define PE : U −→ U/E as the projection on the equiv-
alence classes mod E. To apply the back and forth method, we have to define relations
Im ⊆ Um × Um by a Im b if kerp(a) = kerp(pE ◦ b) and show that

B&F–1. () I0 ();

B&F–2. If f : n −→ m is an injective function and a Im b, then a ◦ f In b ◦ f

B&F–3. If a Im b and a′ : m + 1 −→ U extends a, then there is a b′ : m + 1 −→ U that
extends b for which a′ Im+1 b

′.

B&F–1 is vacuously true. B&F–2 is immediate (even if f is not injective) since both
squares of

kerp(a) m×m-

kerp(a ◦ f) n× n-

? ?

f × f

kerp(pE ◦ b)�

kerp(pE ◦ b ◦ f)�

?

are pullbacks.
Finally, we show B&F–3. If a′ extends a, there is a new value, a′(m), while a′(i) = a(i)

for i = 0, . . . ,m− 1. It may happen that a′(m) = a(i) for some i < m. In that case, just
let b′(m) = b(i). Then the kernel pair of a′ is generated by that of a and the additional
element (i,m) and the same will be true of pE ◦ b

′. The other possibility is that a′(m)
is distinct from the image of a. In that case, the kernel pair of a′ is generated by that
of a. Since there are infinitely many equivalence classes mod E, we can find an element
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b′(m) ∈ U that is inequivalent mod E to all b(i), i = 1, . . . ,m, in which case the kernel
pair of pE ◦ b

′ will also be generated by the kernel pair of b.
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