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Abstract

We formulate three slightly different notions of oriented singular homology and
show that all three are homotopic to ordinary singular homology.

1 Introduction

A standard fact about simplicial homology theory on simplicial complexes is that the
oriented chain group is homotopic to the ordered (that might more evocatively be called
unoriented) chain group. This was first proved in [Eilenberg, 1944] as motivation for his
new definition of ordered singular homology to replace the oriented singular homology
as defined, for example, in [Lefschetz, 1942]. Curiously, Eilenberg does not seem to
have raised, let alone answered, the question as to whether his definition led to the
same homology groups as did Lefschetz’. For simplicial complexes, the two definitions
coincide, since they give the same groups as simplicial homology, but nothing was said
about what happens beyond that domain.

Eilenberg’s work was at least partly a response to a criticism by Čech of Lefschetz’
definition. Čech pointed out that the chain group used by Lefschetz (it is the group
that will be denoted C/U below) has elements of order 2 and is thus not truly free.
It is not altogether clear, at this remove, why this was considered such a disadvantage,
but it evidently was (see [Eilenberg, Steenrod, 1952], page 206). Eilenberg observed,
for example, that this torsion in the chain groups could cause difficulty in defining
morphisms on the chains.

Eilenberg also pointed out in his 1944 paper that, although he had proved that
oriented simplicial homology of simplicial complexes was isomorphic to ordered singular
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homology, even naturally so, he could not exhibit an arrow in either direction between
the chain groups that induced this isomorphism. Instead he gave natural maps from the
ordered simplicial chain groups to each of the other two that induced the isomorphism.
It is an interesting consequence of the results here that we find natural maps in both
directions between the ordered and oriented singular groups. One direction can be
composed with the obvious natural map from the oriented simplicial to the oriented
singular chain groups to give a natural map that is a homotopy equivalence from the
oriented simplicial chain group to the ordered singular chains.

The present paper was originally motivated by a question raised by Robert Milson
about the equivalence of oriented and ordered singular homology, in connection with
his research into cohomology rings. I am indebted to Jon Beck, who led me to the
discussion of these definitions by Eilenberg and Steenrod in their book, which is turn
led me to the papers of Eilenberg and Lefschetz cited above.

As usual, we identify the standard n-simplex ∆n as

{(t0, . . . , tn) ∈ Rn+1|ti ≥ 0 and t0 + · · ·+ tn = 1}
For a topological space X , a singular n-chain in X is a continuous map σ: ∆n −→ X .
Incidentally, one does not realize until reading the old papers what a great simplification
was the use of a standard simplex to define chains, instead of allowing all possible
homeomorphs of the n simplex modulo an equivalence relation.

It is clear that the permutation group Σn+1 acts on the set of singular n chains by
the formula

(pσ)(t0, . . . , tn) = σ ◦ p−1(t0, . . . , tn) = σ(tp−10, . . . , tp−1n)

for p ∈ Σn+1 and σ: ∆n −→ X . The singular n-chain functor Cn assigns to each space
X the free abelian group generated by the singular n-chains and is a module over Σn+1

as well. One way of defining an oriented chain group, the one that gives Lefschetz’
definition, is to factor out of Cn the subgroup Un generated by all chains of the form
pσ− sgn(p)σ where σ is an n-simplex and p ∈ Σn+1 . A second way is to factor Un by
the subgroup Vn generated by Un and all singular n-simplexes σ such that pσ = σ for
some transposition p ∈ Σ. Of course, if σ is such a simplex, then 2σ ∈ Un so the only
difference from the first definition is some 2-torsion. Finally, one might note that there
remain other 2-torsion simplexes mod Un , namely all those σ for which pσ = σ for
some odd permutation σ . We let Wn denote the subgroup generated by these together
with Un . There is no analog to these in the simplicial theory, since one easily sees
that in that theory, a simplex that is fixed under any permutation is fixed under some
transposition.

One might reasonably call any of Cn/Un , Cn/Vn or Cn/Wn the oriented singular
complex functor. It follows from the theorem below that you can use whichever of the
definitions is convenient.
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1.1 Theorem. Each of the maps C −→ C/U −→ C/V −→ C/W is a homotopy
equivalence.

This theorem states that this equivalence is in the functor category, which means
that both the homotopy inverses and the homotopies themselves are natural transfor-
mations.

2 The oriented singular complex

2.1 FDP complexes. Our first job is to show that the three subfunctors Un , Vn and
Wn are the nth components of subcomplexes of Cn . We begin with the observation
that any map (not just an order preserving one) from the finite ordinals f :m + 1
−→ n + 1 induces a map of singular chain functors Cn −→ Cm . Then if σ is such a
singular n-simplex, σ ◦ f : ∆m −→ X is a singular m-simplex.

It is clear that any function m+ 1 −→ n+ 1 can be represented as an order preserv-
ing function followed by a permutation of n + 1. Since the order-preserving maps are
composites of faces and degeneracies, it follows that the faces, degeneracies and permu-
tations generate the action of all the maps. Accordingly, we define an FDP complex to
be a functor on the category of finite non-empty sets and an augmented FDP complex
to be a functor on the category of finite sets. This is equivalent to an (augmented)
simplicial set {Xn‖n ≥ 0} (resp. n ≥ −1), face operators di = din:Xn −→ Xn−1 and
si = sin:Xn −→ Xn+1 for 0 ≤ i ≤ n subject to the usual simplicial identities. In ad-
dition, there are involutions pi = pin:Xn −→ Xn for 0 ≤ i ≤ n − 1. These correspond
to transposition of adjacent elements and are known to generate the symmetric group
([Sayers, 1934]).

They satisfy the equations pipi+1pi = pi+1pipi+1 as well as the following commuta-
tions with respect to the face and degeneracy operators:

dipj =





pj−1di if i < j
di+1 if i = j
di−1 if i = j + 1
pjdi if i > j + 1

sipj =





pj+1si if i < j
pi+1pisi+1 if i = j
pi−1pisi−1 if i = j + 1
pjsi if i > j + 1

2.2 Proposition. The subfunctors Un , Vn and Wn of Cn are the nth components
of subcomplexes U , V and W , resp. of C .
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Proof. Case of Un . Un is generated by the images of the 1 + pj , j = 0, . . . , n− 1. We
have

d ◦(1 + pj) =
n∑
i=0

(−1)idi ◦(1 + pj)

=

j−1∑
i=0

(−1)idi ◦(1 + pj) + (−1)jdj(1 + pj)

+ (−1)j+1dj+1(1 + pj) +
n∑

i=j+2

(−1)idi ◦(1 + pj)

=

j−1∑
i=0

(−1)i(1 + pj−1) ◦ di + (−1)j(dj + dj+1)

+ (−1)j+1(dj+1 + dj) +
n∑

i=j+2

(−1)i(1 + pj) ◦ di

= (1 + pj−1) ◦
j−1∑
i=0

(−1)idi + i(1 + pj)
n∑

i=j+2

(−1)i ◦ di

⊆ Un−1

Case of Vn . First I claim that Vn is generated by Un and adjacent transpositions.
Temporarily let Vn be the subgroup of Cn generated by Un and adjacent transpositions.
Suppose that σ is a simplex such that σ = σ ◦ ( i j ) for some i < j . If j− i = 1, then
σ ∈ Vn by definition. Otherwise, make the inductive hypothesis that τ ∈ Vn whenever
τ = τ ◦ ( i+ 1 j ). Then

σ ◦ ( i i+ 1 ) ( i+ 1 j ) = σ ◦ ( i j ) ( i i+ 1 ) = σ ◦ ( i i+ 1 )

so that σ ◦ ( i i+ 1 ) ∈ Vn . But σ + σ ◦ ( i i+ 1 ) ∈ Un ⊆ Vn and hence σ ∈ Vn .
Since d(Un) ⊆ Un1 we need only show that if σ = piσ , then d(σ) ∈ Vn−1 . But

diσ = dipiσ = di+1σ so that the two terms (−1)idiσ and (−1)i+1di+1σ cancel. The
remaining terms are of the form djσ for j < i or j > i + 1. In the first case, we have
djσ = djpiσ = pi−1djσ so that djσ is fixed by pi−1 or by pi and hence belongs to Vn−1

and therefore so does dσ .

Case of Wn . What we will establish in this case is that Cn/Wn is the torsion-free
quotient of Cn/Un . Since the torsion subgroup is invariant under any homomorphism,
it follows that any homomorphism that takes Un to Un−1 also takes Wn to Wn−1 .

Now let S be a set on which Σm acts for some m and suppose that C is the
free abelian group generated by S and that U and W are subgroups of C defined
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as follows. U is generated by all ps − sgn(p)s for s ∈ S and p ∈ Σm and W is
the subgroup generated by U as well as all s ∈ S such that ps = s for some odd
permutation p ∈ Σm . I claim that under those circumstances, W/U is the torsion
subgroup of C/U . It is sufficient to show that every element of W is torsion mod U ,
which is obvious as noted above, and that C/W is torsion free. It is sufficient to do
this when S is transitive, since C , U and W all split into direct sums corresponding
to orbits. In that case, C/U is generated by the class containing any element of S
(which I suppose is non-empty). If s ∈ S is fixed by an odd permutation, then 2s ∈ U
and C/U ∼= Z2 , while W = C . If not, then the isotropy group of S is included in
the alternating group and then C/U = C/W = Z . In each case, W/U is the torsion
subgroup of C/U .

It follows that we have chain complex functors C/U , C/V and C/W .

3 Acyclic models

Our main tool is the theorem on acyclic models which was formulated and proved in
slightly different language in [Barr, Beck, 1966].

Let G: X −→ X be a functor and ε:G −→ Id a natural transformation. We say
that an augmented chain complex functor K is ε-presentable if for each n ≥ 0, there
is a natural transformation θn:Kn −→ KnG such that Knε ◦ θn = id. We say that the
augmented chain complex functor L −→ L−1 −→ 0 is G-contractible if LG −→ L−1G
−→ 0 has a natural contracting homotopy.

3.1 Theorem. Suppose X is a category and K −→ K−1 −→ 0 and L −→ L−1 −→ 0
are augmented chain complex functors from X to an abelian category. Suppose G is an
endofunctor on X and ε:G −→ Id a natural transformation. If K is ε-presentable and
L −→ L−1 −→ 0 is G-contractible, then any natural transformation K−1 −→ L−1 can
be extended to a natural chain map K −→ L and any two such extensions are naturally
homotopic.

Of course, it follows that if both K and L are ε-presentable and both K −→ K−1

−→ 0 and L −→ L−1 −→ 0 G-contractible, then an isomorphism K−1 −→ L−1 extends
to a homotopy equivalence K −→ L .

We will be applying this theorem with the following functor G which was called C
and used for similar purposes in [Kleisli, 1974] where all details may be found.

For a space X and element x ∈ X , let I −−◦
x

X denote the space of paths π: I
−→ X such that π(0) = x , topologized with the compact/open topology. Define GX =∑

x∈X I −−◦x X . Of course, the point set of GX is just the set of paths in X , but the
topology is not that of the path space, since paths starting at distinct points are in
different components. We define εX:GX −→ X as evaluation at 1.
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4 Proof of 1.1

In order to understand the next theorem, we will think of Σn+1 as embedded as the
subgroup of Σn+2 consisting of those permutations of {0, . . . , n+ 1} that fix n+ 1.

4.1 Proposition. There is a natural chain contraction s on CG −→ C−1 −→ 0 such
that for an n-simplex σ and p ∈ Σn+1 , s(pσ) = ps(σ).

Proof. Let X be any space and suppose that σ: ∆n −→ GX is a singular n-simplex.
Then σ is a continuous function ∆n −→ I −−◦

x
X for some x ∈ X since ∆n is connected

and GX is the union of those connected components. We can think of this as a contin-
uous map we still call σ: ∆n × I −→ X and write σ(t0, . . . , tn; u) for (t0, . . . , tn) ∈ ∆n

and u ∈ I such that σ(t0, . . . , tn; 0) = x for all (t0, . . . , tn) ∈ ∆n . First we consider the
case of dimensions −1 and 0. A path component (−1-simplex) of GX is determined
by an x ∈ X and we define sx(u) = x , the constant path at x . A singular 0-simplex is
just a path in X . However, to be consistent with our previous notation, we write σ(t;u)
with t = 1 the only allowed value for t . Then define (sσ)(t0, t1;u) = σ( t0

1−t1 ; (1− t1)u).
Of course, t0 + t1 = 1, so this is really σ(1; t0u).

(d1sσ)(1;u) = (sσ)(1, 0;u) = σ(1;u)

while
(d0sσ)(1;u) = (sσ)(0, 1; u) = σ(1; 0)

while sd0σ(1;u) is the constant path at d0σ . Now d0:C0(GX) −→ H0(GX) assigns
to each path its path component and the path components of GX are in one-one
correspondence with the elements of X by the map that takes π to π(0). Thus sd0σ
is the constant path at σ(1; 0) and so we have d1sσ = σ and d0sσ = sd0σ . Next we
turn to dimension n > 0. Define

(sσ)(t0, . . . , tn+1;u) =

{
σ( t0

1−tn+1
, . . . , tn

1−tn+1
; (1− tn+1)u) if tn+1 6= 1

x if tn+1 = 1

We see that sσ is an n+ 1-simplex in GX and that

dn+1sσ(t0, . . . , tn;u) = (sσ)(t0, . . . , tn, 0;u)

= σ(t0, . . . , tn;u)

while for i ≤ n ,

di(sσ)(t0, . . . , tn;u) = sσ(t0, . . . , ti−1, 0, ti, . . . , tn;u)

= σ

(
t0

1− tn+1

, . . . ,
ti−1

1− tn+1

, 0,
ti

1− tn+1

, . . . ,
tn−1

1− tn+1

;u

)
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and

s(diσ)(t0, . . . , tn;u) = diσ

(
t0

1− tn+1

, . . . ,
tn−1

1− tn+1

; u

)

= σ

(
t0

1− tn+1

, . . . ,
ti−1

1− tn+1

, 0,
ti

1− tn+1

, . . . ,
tn−1

1− tn+1

;u

)

Thus dn+1s = id and for i ≤ n , dis = sdi and we have a contraction at the simplicial
level, and it is standard that the sequence of (−1)nsn is a contraction in the associated
chain complex. It is evident that for any permutation p ∈ Σn+1 , s(σ ◦ p) = (sσ) ◦ p .
Since pσ = σ ◦ p−1 , it follows that s(pσ) = ps(σ).

4.2 Proposition. For all n ≥ 0, there is a natural transformation θn:Cn −→ CnG
such that Cnε ◦ θn = id and such that for each p ∈ Σn+1 , θn(pσ) = pθn(σ).

Proof. Let X be a topological space. Define θnX:CnX −→ CnGX by

θn(σ)(t0, . . . , tn)(u) = σ

(
ut0 +

1− u
n+ 1

, . . . , utn +
1− u
n+ 1

)

which is a simplex in the component of GX based at σ( 1−u
n+1

, . . . , 1−u
n+1

). It is clear that
θn(σ)(t0, . . . , tn)(1) = σ(t0, . . . , tn) and that θ(σ ◦ p) = θ(σ) ◦ p , from which the second
claim follows.

Now we can apply acyclic models to C as well as C/U , C/V and C/W . We
have shown that C is ε-presentable and that C −→ C−1 −→ 0 is G-contractible and
both natural transformations commute with the action of the symmetric groups. This
implies that s(Un) ⊆ Un+1 , s(Vn) ⊆ Vn+1 and s(Wn) ⊆ Wn+1 and similarly that
θn(Un) ⊆ UnG , θn(Vn) ⊆ VnG and θn(Wn) ⊆ WnG and so C/U , C/V and C/W are
also ε-presentable and the complexes augmented over C−1 −→ 0 are G-contractible.
Since all four complexes have the same augmentation term, it follows that all the maps
and composites in C −→ C/U −→ C/V −→ C/W are homotopy equivalences.

5 An explicit computation

The acyclic models theorem gives an explicit construction and you can work out what
the homotopy inverse to the projection C −→ C/W is in low dimensions. Basically,
what is needed is a map fn:Cn −→ Cn such that for each transposition p ∈ Σn+1 and
singular n-simplex σ , fn(σ ◦ p) = −fn(σ) and if p is an arbitrary odd permutation
such that σ ◦ p = σ , then fn(σ) = 0. If you follow the construction given in the
proof, here is what happens in dimension 1. Suppose [a0, a1] is a 1-simplex. This
means there is a simplex σ: ∆1 −→ X such that σ(0) = a0 and σ(1) = a1 . Let
a01 = σ(1/2) be the barycenter. Then f1([a0, a1]) = [a0, a01]− [a1, a01] . Both simplexes
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on the left use σ to interpolate between the given endpoints. Compare this with the
simplicial subdivision map given in [Rotman, 1988], p. 113 or [Dold, 1980], p. 40, where
Sd([a0, a1]) = [a01, a1] − [a01, a0] . In degree 2, following analogous conventions, we get
the following map:

f2([a0, a1, a2]) = [a0, a01, a012]− [a1, a01, a012] + [a1, a12, a012]

− [a2, a12, a012] + [a2, a02, a012] + [a0, a02, a012]

It seems clear what the general pattern is, but I have not actually verified this in any
higher dimension.

6 Appendix: some historical notes

I had never understood the reason for the names “oriented” and “ordered” in connection
with the chain groups nor could recall which was which. After looking at the references
[Eilenberg] and [Lefschetz], it became clear. Originally, all chain groups were oriented,
that is based on oriented simplexes. An oriented chain is simply a chain, simplicial or
singular, based on an oriented simplex, that is a simplex with a chosen orientation. If
you changed the orientation, you changed the sign of the chain. This was necessary to
make d2 = 0 and doubtless went back to the earliest days of algebraic topology. They
didn’t use standard simplexes, but any oriented simplex and identified two simplexes
if they differed by an orientation preserving “barycentric map”, meaning one that was
the linear extension of a map that takes vertices to vertices. An orientation reversing
barycentric map just changed the sign of the chain. What Eilenberg did was to replace
the oriented simplex by an ordered simplex, that is one with a linear ordering of its
vertices. Now in identifying two chains, only order preserving maps were permitted.
This gave a larger chain group (fewer identifications could be made) since now, for
example, the 1-simplex [v0, v1] is not related to the simplex [v1, v0] since the barycentric
map that mediates between them does not preserve the order on the vertices. In this
way, the group of chains based on ordered simplexes became the ordered chain group.

I had believed that singular homology was defined in order to prove the topological
invariance of homology. This is apparently incorrect. Lefschetz gives a direct proof
of the invariance and develops singular homology only later. It seems to have been
Eilenberg’s idea, and only after he had defined the ordered singular chain group, to use
singular homology to prove invariance.
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