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Introduction

Associated with each of the classical cohomology theories in algebra has been a theory
relating H2 (H3 as classically numbered) to obstructions to non-singular extensions and
H1 with coefficients in a “center” to the non-singular extension theory (see [Eilenberg &
MacLane (1947), Hochschild (1947), Hochschild (1954), MacLane (1958), Shukla (1961),
Harrison (1962)]). In this paper we carry out the entire process using triple cohomology.
Because of the special constructions which arise, we do not know how to do this in
any generality. Here we restrict attention to the category of commutative (associative)
algebras. It will be clear how to make the theory work for groups, associative algebras and
Lie algebras. My student, Grace Orzech, is studying more general situations at present.
I would like to thank her for her careful reading of the first draft of this paper.

The triple cohomology is described at length elsewhere in this volume [Barr & Beck
(1969)]. We use the adjoint pair
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for our cotriple G = (G, ε, δ). We let

εi = GiεGn−i: Gn+1 // Gn,

δi = GiδGn−i: Gn+1 // Gn+2 and

ε = Σ(−1)iεi: Gn+1 // Gn.

It is shown in [Barr & Beck (1969)] that the associated chain complex

· · · ε // Gn+1R ε // · · · ε // G2R ε // GR ε // R // 0

is exact. This fact will be needed below.
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More generally we will have occasion to consider simplicial objects (or at least the first
few terms thereof)

X: · · · Xn
... //X: · · · Xn

//
Xn · · ·... //Xn · · ·

//
· · · X2//· · · X2//· · · X2

//· · · X2

//
X2 X1

//X2 X1//X2 X1

//
X1 X0//X1 X0

//

with face maps di: Xn
// Xn−1, 0 ≤ i ≤ n, and degeneracies si: Xn−1

// Xn, 0 ≤ i ≤
n − 1 subject to the usual identities (see [Huber (1961)]). The simplicial normalization
theorem1, which we will have occasion to use many times, states that the three complexes
K∗X, T∗X and N∗X defined by

KnX =
n⋂

i=1

ker(di: Xn
// Xn−1)

with boundary d induced by d0,
TnX = Xn,

with boundary d =
∑n

i=0(−1)idi, and

NnX = Xn

/ n∑
i=0

im(si: Xn−1
// Xn)

with boundary d induced by
∑n

i=0(−1)idi are all homotopic and in fact the natural inclu-
sions K∗X ⊆ T∗X and projections T∗X // N∗X have homotopy inverses. In our context
the Xn will be algebras and the di will be algebra homomorphisms, but of course d is
merely an additive map.

We deliberately refrain from saying whether or not the algebras are required to have
a unit. The algebras Z, A, Z(T, A), ZA are proper ideals (notation A < T ) of other
algebras and the theory becomes vacuous if they are required to be unitary. On the other
hand the algebras labeled B, E, M , P , R, T can be required or not required to have a unit,
as the reader desires. There is no effect on the cohomology (although G changes slightly,
being in one case the polynomial algebra cotriple and in the other case the subalgebra of
polynomials with 0 constant term). The reader may choose for himself between having a
unit or having all the algebras considered in the same category. Adjunction of an identity
is an exact functor which takes the one projective class on to the other (see [Barr &
Beck (1969), Theorem 5.2], for the significance of that remark). (Also, see [Barr (1968a),
Section 3])

Underlying everything is a commutative ring which everything is assumed to be an
algebra over. It plays no role once it has been used to define G. By specializing it to the
ring of integers we recover a theory for commutative rings.

1(see [Dold & Puppe (1961)])
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1. The class E

Let A be a commutative algebra. If A < T , let Z(A, T ) = { t ∈ T | tA = 0 }. Then
Z(A, T ) is an ideal of T . In particular ZA = Z(A,A) is an ideal of A. Note that Z is
not functorial in A (although Z(A, -) is functorial on the category of algebras under A).
It is clear that ZA = A ∩ Z(A, T ). Let E = EA denote the equivalence classes of exact
sequences of algebras

0 // ZA // A // T/Z(A, T ) // T/(A + Z(A, T )) // 0

for A < T . Equivalence is by isomorphisms which fix ZA and A. (A priori it is not a set;
this possibility will disappear below.)

Let E′ denote the set of λ: A // E where E is a subalgebra of HomA(A,A) which
contains all multiplications λa: A // A, given by (λa)(a′) = aa′.

Proposition 1.1. There is a natural 1-1 correspondence E ∼= E′.

Proof. Given A < T , let E be the algebra of multiplications on A by elements of T .
There is a natural map T // E and its kernel is evidently Z(A, T ). If T > A < T ′, then
T and T ′ induce the same endomorphism of A if and only if T/Z(A, T ) = T ′/Z(A, T ′) by
an isomorphism which fixes A and induces T/(A + Z(A, T )) ∼= T ′/(A + Z(A, T ′)).

To go the other way, given λ: A // E ∈ E′, let P be the algebra whose module
structure is E × A and multiplication is given by (e, a)(e′, a′) = (ee′, ea′ + e′a + aa′). (ea
is defined as the value of the endomorphism e.) A // P is the coordinate mapping and
embeds A as an ideal of P with Z(A,P ) = { (−λa, a) | a ∈ A }. The associated sequence
is easily seen to be

0 // ZA // A λ // E π // M // 0

where π is cokerλ.

From now on we will identify E with E′ and call it E.
Notice that we have constructed a natural representative P = PE in each class of E.

It comes equipped with maps d0, d1: P // E where d0(e, a) = e + λa and d1(e, a) = e.
Note that A = ker d1 and Z(A,P ) = ker d0. In particular ker d0 · ker d1 = 0.

P = P (T/Z(A, T )) can be described directly as follows. Let K // // T be the kernel
pair of T // T/A. This means that

T T/A//

K

T
²²

K T// T

T/A
²²

is a pullback. Equivalently K = { (t, t′) ∈ T × T | t + A = t′ + A }, the two maps being
the restrictions of the coordinate projections. It is easily seen that ∆Z = { (z, z) | z ∈
Z(A, T ) } < K and that K/∆Z

∼= P .
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Let d0, d1, d2: B // P be the kernel triple of d0, d1: P // A. This means that d0d0 =
d0d1, d1d1 = d1d2, d0d2 = d1d0, and B is universal with respect to these identities.
Explicitly B is the set of all triples (p, p′, p′′) ∈ P × P × P with d0p = d0p′, d1p′ = d1p′′,
d0p′′ = d1p, the maps being the coordinate projections.

Proposition 1.2. The “truncated simplicial algebra”,

0 B// B P//B P//B P
//
P E//P E// E M// M 0//

is exact in the sense that the associated (normalized) chain complex

0 // ker d1 ∩ ker d2 // ker d1 // E // M // 0

is exact. (The maps are those induced by restricting d0 as in K∗.)

The proof is an elementary computation and is omitted.

Note that we are thinking of this as a simplicial algebra even though the degeneracies
have not been described. They easily can be, but we have need only for s0: E // P ,
which is the coordinate injection, s0e = (e, 0). Recall that d: B // P is the additive map
d0 − d1 + d2. The simplicial identities imply that d0d = d0(d0 − d1 + d2) = d0d2 = d1d0 =
d1(d0 − d1 + d2) = d1d.

Finally note that ZA is a module over M , since it is an E-module on which the image
of λ acts trivially. This implies that it is a module over B, P and E and that each face
operator preserves the structure.

Proposition 1.3. There is a derivation ∂: B // ZA given by the formula

∂x = (1− s0d0)dx = (1− s0d1)dx

Proof. First we see that ∂x ∈ ZA = ker d0 ∩ ker d1, since di∂x = di(1 − s0di)dx(di −
di)dx = 0 for i = 0, 1. To show that it is a derivation, first recall that ker d0 · ker d1 =
Z(A,P ) · A = 0. Then for b1, b2 ∈ B,

∂b1 · b2 + b1 · ∂b2 = (1− s0d0)db1 · d0b2 + d1b1 · (1− s0d0)db2

= d0b1 · d0b2 − d1b1 · d0b2 + d2b1 · d0b2 − s0d0d2b1 · d0b2

+ d1b1 · d0b2 − d1b1 · d1b2 + d1b1 · d2b2 − d1b1 · s0d0d2b2

To this we add (d2b1− d1b1)(d
2b2− s0d0d2b2) and (s0d0d2b1− d2b1)(d

0b2− s0d0d2b2), each
easily seen to be in ker d0 · ker d1 = 0, and get

d0b1 · d0b2 − d1b1 · d1b2 + d2b1 · d2b2 − s0d0d2b1 · s0d0d2b2

= d0(b1b2)− d1(b1b2) + d2(b1b2)− s0d0d2(b1b2)

= (1− s0d0)d(b1b2) = ∂(b1b2)
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2. The obstruction to a morphism

We consider an algebra R and are interested in extensions

0 // A // T // R // 0

In the singular case, A2 = 0, such an extension leads to an R-module structure on A.
This comes about from a surjection T // E where E ∈ E, and, since A is annihilated,
we get a surjection R // E by which R operates on A. In general we can only map
R //M . Obstruction theory is concerned with the following question. Given a surjection
p: R // M , classify all extensions which induce the given map. The first problem is to
discover whether or not there are any. (Note: in a general category, “surjection” should
probably be used to describe a map which has a kernel pair and is the coequalizer of
them.) Since GR is projective in the category, we can find p0: GR // E with πp0 = pε. If

d̃0, d̃1: P̃ // E is the kernel pair of π, then there is an induced map u: P // P̃ such that
diu = d̃i, i = 0, 1 which is easily seen to be onto. The universal property of P̃ guarantees
the existence of a map p̃1: G

2R // P̃ with d̃ip̃1 = p0ε
i, i = 0, 1. Projectivity of G2R

and the fact that u is onto guarantee the existence of p1: G
2R // P with up1 = p̃1, and

then dip1 = diup̃1 = d̃ip̃1 = p0ε
i, i = 0, 1. Finally, the universal property of B implies

the existence of p2: G
3R // B with dip2 = p1ε

i, i = 0, 1, 2. Then ∂p2: G
3R // ZA is

a derivation and ∂p2ε = (1 − s0d0)dp2ε = (1 − s0d0)p1εε = 0. Thus ∂p2 is a cocycle in
Der(G3R, ZA).

Proposition 2.1. The homology class of ∂p2 in Der(G3R, ZA) does not depend on the
choices of p0, p1 and p2 made. (p2 actually is not an arbitrary choice.)

Proof. ∂p2 = (1 − s0d0)p1ε and so doesn’t depend on p2 at all. Now let σ0, σ1 be

new choices of p0, p1. Since πp0 = εp = πp1, there is an h̃0: GR // P̃ with d̃0h̃0 = p0,

d̃1h̃0 = σ0. Again, since u is onto, there exists h0: GR // P with uh0 = h̃0, and then
d0h0 = p0, d1h0 = σ0. Also πd0p1 = πp0ε

0 = πσ0ε
0 = πd0σ1 = πd1σ1 and by a similar

argument we can find v: G2R // P with d0v = d0p1 and d1v = d1σ1. Now consider
the three maps p1, v, h0ε1: G2R // P . d0p1 = d0v, d1v = d1σ1 = σ0ε

1 = d1h0ε1 and
d0h0ε1 = p0ε

1 = d1p1, so by the universal mapping property of B, there is h0: G2R // B
with d0h0 = p1, d1h0 = v, d2h0 = h0ε1. By a similar consideration of h0ε0, v, σ1: G

2R //P
we deduce the existence of h1: G2R // B such that d0h1 = h0d0, d1h1 = v, d2h1 = σ1.
The reader will recognize the construction of a simplicial homotopy between the pi and
the σi. We have

(∂h0 − ∂h1)ε = (1− s0d0)d(h0 − h1)ε

= (1− s0d0)(d0h0 − d1h0 + d2h0 − d0h1 + d1h1 − d2h1)ε

= (1− s0d0)(d0h0 − d2h1 + h0ε1 − h0ε0)ε

= (1− s0d0)(p1 − σ1 + h0ε)ε = (1− s0d0)(p1 − σ1)ε

= (1− s0d0)d(p2 − σ2) = ∂p2 − ∂σ2
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This shows that ∂p2 and ∂σ2 are in the same cohomology class in Der(G3R,ZA), which
class we denote by [p] and which is called the obstruction of p. We say that p is unob-
structed provided [p] = 0.

Theorem 2.2. A surjection p: R // M arises from an extension if and only if p is
unobstructed.

Proof. Suppose p arises from

0 // A // T // R // 0

Then we have a commutative diagram

P Eoo E M// M 0//

0 K// K TooK

P

ν0

²²

T R//T

E

ν1

²²

R

M

p

²²

R 0//

P E
//
E M//

K T
//

K

P

T RT

E

R

MP E// E M//

K T//K

P

T RT

E

R

MB PooB P
//

B P//0 B//

where e0, e1: K //// T is the kernel pair of T // R and t0: T // K is the diagonal
map. Commutativity of the leftmost square means that each of three distinct squares
commutes, i.e. with the upper, middle or lower arrows. Recalling that E = T/Z(A, T )
and P = K/∆Z we see that the vertical arrows are onto. Then there is a σ0: GR // T
with ν0σ0 = p0. Since K is the kernel pair, we have σ1: G

2R // K with eiσ1 = σ0ε
i,

i = 0, 1. Then ν1σ1 is a possible choice for p1 and we will assume p1 = ν1σ1. Then
∂p2 = (1 − s0d0)p1ε = (1 − s0d0)ν1σ1ε = ν1(1 − t0e0)σ1ε. But e0(1 − t0e0)σ1ε = 0 and
e1(1 − t0e0)σ1ε = (e1 − e0)σ1ε = σ0(ε

1 − ε0)ε = σ0εε = 0, and since e0, e1 are jointly
monic, i.e. define a monic K // T × T , this implies that ν1(1− t0e0)σ1ε = 0.

Conversely, suppose p, p0, p1, p2 are given and there is a derivation τ : G2R //ZA such
that ∂p2 = τε. Let p̃1: G

2R // P be p1 − τ where we abuse language and think of τ as
taking values in P ⊇ ZA. Then p̃1 can be easily shown to be an algebra homomorphism
above p0. Choosing p̃2 above p̃1 we have new choices p, p0, p̃1, p̃2 and

∂p̃2 = (1− s0d0)dp̃2ε = (1− s0d0)p̃1ε = (1− s0d0)(p1 − τ)ε

= (1− s0d0)p1ε− (1− s0d0)τε = ∂p2 − τε = 0,

since (1 − s0d0) is the identity when restricted to ZA = ker d0 ∩ ker d1. Thus we can
assume that p0, p1, p2 has been chosen so that ∂p2 = 0 already.

Let

GR Ep0

//

Q

GR

q2

²²

Q P
q1 // P

E

d1

²²
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be a pullback. Since the pullback is computed in the underlying module category, d1

is onto so q2 is onto. Also the induced map ker q2
// ker d1 = A is an isomorphism

(this is true in an arbitrary pointed category) and we will identify ker q2 with a map
a: A // Q such that q1a = ker d1. Now let u0, u1: G2R // Q be defined by the conditions
q1u

0 = s0d0p1, q2u
0 = ε0, q1u

1 = p1, q2u
1 = ε1. In the commutative diagram

G2R Q
u0

// Q Tq //

A

G2R

A A//A

Q

a

²²

A

0

²²
A

T

a

²²

G2R GR
ε0

// GR Rε
//GR

0
²²

R

0
²²

G2R

G2R
²²

Q

GR

q2

²²

T

R

ϕ

²²

G2R Q
u1

// Q Tq //

A

G2R

A A//A

Q

a

²²

A

0

²²
A

T

a

²²

G2R GR
ε1

// GR Rε
//GR

0
²²

R

0
²²

G2R

G2R
²²

Q

GR

q2

²²

T

R

ϕ

²²

the rows are coequalizers and the columns are exact. The exactness of the right column
follows from the commutativity of colimits. We claim that the map ā is 1-1.

This requires showing that im a ∩ ker q = 0. ker q is the ideal generated by the image
of u = u0 − u1. Also im a = ker q2. Consequently the result will follow from

Proposition 2.3. The image of u is an ideal and im u ∩ ker q2 = 0.

Proof. If x ∈ G2R, y ∈ Q, let x′ = δq2y. We claim that u(xx′) = ux · y. To prove
this it suffices to show that qiu(xx′) = qi(ux · y) for i = 1, 2 (because of the definition of
pullback). But

q2u(xx′) = ε(xx′) = ε0x · ε0x′ − ε1x · ε1x′

= ε0x · q2y − ε1x · q2y = q2(u
0x · y)− q2(u

1x · y)

= q2(ux · y)

Next observe that our assumption is that (1−s0d1)p1 is zero on im ε = ker ε. In particular,
(s0d1−1)p1δ = 0. (εδ = ε0δ−ε1δ = 0.) Also (s0d0−1)p1x·(s0d1−1)q1y ∈ ker d0·ker d1 = 0.
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Then we have,

q1u(xx′) = (q1u
0 − q1u

1)(xx′) = (s0d0p1 − p1)(xx′)

= s0d0p1x · s0d0x′ − p1x · p1x
′

= (s0d0p1x− p1x)s0d0p1x
′ + p1x · (s0d0p1x

′ − p1x
′)

= (s0d0 − 1)p1x · s0d0p1δq2y + p1x · (s0d0 − 1)p1δq2y

= (s0d0 − 1)p1x · s0p0ε
0δq2y

= (s0d0 − 1)p1x · s0p0q2y = (s0d0 − 1)p1x · s0d1q1y

= (s0d0 − 1)p1x · q1y + (s0d0 − 1)p1x · (s0d1 − 1)q1y

= (s0d0p1x− p1x)q1y = q1ux · q1y = q1(ux · y)

Now if ux ∈ ker q2, then 0 = q2ux = εx, x ∈ ker ε = im ε, and 0 = (s0d0 − 1)p1x = q1ux.
But then ux = 0.

Now to complete the proof of 2.2 we show

Proposition 2.4. There is a τ : T // E which is onto, whose kernel is Z(A, T ) and such
that pϕ = πτ .

Proof. Let τ be defined as the unique map for which τq = d0q1. This defines a map, for
d0q1u

0 = d0s0d0p1 = d0p1 = d0q1u
′. τ is seen to be onto by applying the 5-lemma to the

diagram,

A E// E M// M 0//

0 A// A T//A

A

=

²²

T R//T

E

τ

²²

R

M

p

²²

R 0//

since p is assumed onto. πτq = πd0q1 = πd1q1 = πp0q2 = pεq2 = pϕq and q is onto,
so πτ = pϕ. Now if we represent elements of Q as pairs (x, ρ) ∈ GX × P subject to
p0x = d1ρ, τ(x, ρ) = d0ρ. Then ker τ = { (x, ρ) | d0ρ = 0 }. That is,

GX Ep0

//

ker τ

GX
²²

ker τ ker d0// ker d0

E

d1| ker d0

²²

is a pullback. A is represented as { (0, ρ′) | d1ρ′ = 0 }. Now

Z(A, T ) = { (x, ρ) ∈ Q | d1ρ′ = 0 +3 ρρ′ = 0 }
= { (x, ρ) ∈ Q | ρ ∈ Z(A, P ) }
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It was observed in Section 1 that Z(A,P ) = ker d1. Thus Z(A, T ) = { (x, ρ) ∈ Q | ρ ∈
ker d1 } = ker τ .

3. The action of H1

This section is devoted to proving the following.

Theorem 3.1. Let p: R //M be unobstructed. Let Σ = Σp denote the equivalence classes
of of extensions

0 // A // T // R // 0

which induce p. Then the group H1(R, ZA) acts on Σp as a principal homogeneous rep-
resentation. (This means that for any Σ ∈ Σ, multiplication by Σ is a 1-1 correspondence
H1(R, ZA) ∼= Σ.)

Proof. Let Λ denote the equivalence classes of singular extensions

0 // ZA // U // R // 0

which induce the same module structure on ZA as that given by p (recalling that ZA is
always an M -module). Then Λ ∼= H1(R, ZA) where the addition in Λ is by Baer sum
and is denoted by Λ1 +Λ2, Λ1, Λ2 ∈ Λ. We will describe operations Λ×Σ //Σ, denoted
by (Λ, Σ) Â // Λ + Σ, and Σ×Σ // Λ, denoted by (Σ, Σ′) Â // Σ− Σ′, such that

a) (Λ1 + Λ2) + Σ = Λ1 + (Λ2 + Σ)

b) (Σ1 − Σ2) + Σ2 = Σ1

c) (Λ + Σ)− Σ = Λ

for Λ, Λ1, Λ2 ∈ Λ, Σ, Σ1, Σ2 ∈ Σ (Proposition 3.2). This will clearly prove Theorem 3.1.
We describe Λ + Σ as follows. Let

0 // ZA // U
ψ // R // 0 ∈ Λ

0 // A // T
ϕ // R // 0 ∈ Σ

(Here we mean representatives of equivalence classes.) To simplify notation we assume
ZA < U and A < T . Let

T R//

V

T
²²

V U// U

R
²²

be a pullback. This means V = { (t, u) ∈ T × U | ϕt = ψu }. Then I = { (z,−z) | z ∈
ZA } < V . Let T ′ = V/I. Map A //T ′ by a Â //(a, 0)+I. Map T ′ //R by (t, u)+I Â //ϕt =
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ψu. This is clearly well defined modulo I. Clearly 0 //A //T ′ ϕ′ //R //0 is a complex
and ϕ′ is onto. It is exact since ker(V // R) = ker(T // R) × 0 + 0 × ker(U // R) =
A×0+0×ZA = A×0+ I (since ZA ⊆ A). Z(T ′, A) = { (t, u)+ I ∈ V/I | t ∈ Z(T,A) }.
Map T ′ // T/Z(T, A) by (t, u) + I Â // t + Z(T, A). This is well defined modulo I and its
kernel is Z(T ′, A). Since U // R is onto, so is V // T , and hence T ′ // T/Z(T, A) is
also. Thus T ′/Z(T ′, A) ∼= T/Z(T, A) and the isomorphism is coherent with ϕ and ϕ′ and
with the maps T oo A // T ′. Thus

0 // A // T ′ ϕ′ // R // 0 ∈∈ Σ

(This notation means the sequence belongs to some Σ′ ∈ Σ.)
To define Σ1 − Σ2 let Σi be represented by the sequence

0 // A // Ti

ϕi // R // 0, i = 1, 2

where we again suppose A < Ti. We may also suppose T1/Z(A, T1) = E = T2/Z(A, T2)

and T1

τ1 // E oo τ2
T2 are the projections. Let

W E

T1

W

??

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

T1

E
ÂÂ?

??
??

??
??

??
?

W

T2

ÂÂ?
??

??
??

??
??

??
W EE

T2

??

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
R

T2

88

qqqqqqqqqqqqqqqqqqqqq

T1

R
&&MMMMMMMMMMMMMMMMMMMMMT1

T2

be a limit. This means W = { (t1, t2) ∈ T1 × T2 | τ1t1 = τ2t2 and ϕ1t1 = ϕ2t2 }. Then
J = { (a, a) | a ∈ A } < W . Map ZA // W/J by z Â // (z, 0) + J and ϕ: W/J // R by
(t1, t2)+J Â // ϕ1t1 = ϕ2t2. If (t1, t2)+J ∈ ker ϕ, then ϕ1t1 = 0 = ϕ2t2, so t1, t2 ∈ A. Then
(t1, t2) = (t1 − t2, 0) + (t2, t2). But then τ1(t1 − t2) = 0, so t1 − t2 ∈ A ∩ Z(A, T1) = ZA.
Thus ZA ⊆ ker ϕ, and clearly ker ϕ ⊆ ZA. Now given r ∈ R, we can find ti ∈ Ti

with ϕiti = r, i = 1, 2. Then π(τ1t1 − τ2t2) = πτ1t1 − πτ2t2 = pϕ1t1 − pϕ2t2 = 0, so
τ1t1 − τ2t2 = λa for some a ∈ A. (Recall λ: A // E is the multiplication map.) But then
τ1t1 = τ2(t2 + a) and ϕ1t1 = ϕ2(t2 + a), so (t1, t2 + a) + J ∈ W/J and ϕ(t1, t2 + a) = r.
Thus ϕ is onto and

0 // ZA // W/J // R // 0 ∈∈ Λ

Note that the correct R-module structure is induced on ZA because p is the same.

Proposition 3.2. For any Λ, Λ1, Λ2 ∈ Λ, Σ, Σ1, Σ2 ∈ Σ,

a) (Λ1 + Λ2) + Σ = Λ1 + (Λ2 + Σ)
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b) (Σ1 − Σ2) + Σ2 = Σ1

c) (Λ + Σ)− Σ = Λ

Proof. a) Let

0 // ZA // Ui

ψi // R // 0, i = 1, 2,

0 // Z // T
ϕ // R // 0

represent Λ1, Λ2, Σ respectively. An element of (Λ1 + Λ2) + Σ is represented by a triple
(u1, u2, t) such that ψ(u1, u2) = ϕt where ψ(u1, u2) = ψ1u1 = ψ2u2. An element of
Λ1 + (Λ2 + Σ) is represented by a triple (u1, u2, t) where ψ1u1 = ϕ′(u2, t) and ϕ′(u2, t) =
ψ2u2 = ϕt. Thus each of them is the limit

W U2
// U2 R//

U1

W

??

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

U1

U2

U1

R
ÂÂ?

??
??

??
??

??
?

W

T
ÂÂ?

??
??

??
??

??
??

W RR

T

??

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

modulo a certain ideal which is easily seen to be the same in each case, namely
{ (z1, z2, z3) | zi ∈ Z and z1 + z2 + z3 = 0 }.

b) Let Σ1 and Σ2 be represented by sequences 0 //A //Ti

ϕi //R //0. Let τi: Ti
//E

as above for i = 1, 2. Let (Σ1 − Σ2) + Σ2 be represented by

0 // A // T // R // 0

Then an element of T can be represented as a triple (t1, t2, t
′
2) subject to the condition

τ1t1 = τ2t2, ϕ1t1 = ϕ2t2 = ϕ2t
′
2. These conditions imply that t′2 − t2 ∈ A and we can

map σ: T // T2 by σ(t1, t2, t
′
2) = t1 + (t′2 − t2). To show that σ is an algebra homo-

morphism, recall that τ1t1 = τ2t2 implies that t1 and t2 act the same on A. Now if
(t1, t2, t

′
2), (s1, s2, s

′
2) ∈ T ,

σ(t1, t2, t
′
2) · σ(s1, s2, s

′
2) = (t1 + (t′2 − t2))(s1 + (s′2 − s2))

= t1s1 + t1(s
′
2 − s2) + (t′2 − t2)s1 + (t′2 − t2)(s

′
2 − s2)

= t1s1 + t2(s
′
2 − s2) + (t′2 − t2)s2 + (t′2 − t2)(s

′
2 − s2)

= t1s1 + t′2s
′
2 − t2s2 = σ(t1s1, t2s2, t

′
2s
′
2)

= σ((t1, t2, t
′
2)(s1, s2, s

′
2))
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Also the diagram

0 A// A T2
// T2 R// R 0//

0 A// A T//A

A
²²

T R//T

T2

²²

R

R
²²

R 0//

commutes and the sequences are equivalent.
c) Let Λ and Σ and (Λ + Σ)− Σ be represented by sequences

0 // ZA // U
ψ // R // 0

0 // A // T
ϕ // R // 0

0 // ZA // U ′ ψ′ // R // 0,

respectively. An element of U ′ is represented by a triple (t, u, t′) subject to ϕt = ψu = ϕt′

and τt = τt′. The equivalence relation is generated by all (z, a−z, a), a ∈ A, z ∈ ZA. The
relations imply that t− t′ ∈ ZA, so the map σ: U ′ // U which takes (t, u, t′) Â // u+(t− t′)
makes sense and is easily seen to be well defined. For s, s′, t, t′ ∈ T , u, v ∈ U , we have

σ(t, u, t′)σ(s, v, s′) = (u + t− t′)(v + s− s′)

= uv + u(s− s′) + (t− t′)v + (t− t′)(s− s′)

= uv + t(s− s′) + (t− t′)s′

= uv + ts− t′s′ = σ(ts, uv, t′s′)

= σ((t, u, t′)(s, v, s′))

Since ZA // U ′ takes z Â // (z, 0, 0) and ψ′(t, u, t′) = ψu = ψu + ψ(t− t′), the diagram

0 ZA// ZA U// U R// R 0//

0 ZA// ZA U ′//ZA

ZA
²²

U ′ R//U ′

U
²²

R

R
²²

R 0//

commutes and gives the equivalence.

4. Every element of H2 is an obstruction

The title of this section means the following. Given an R-module Z and a class ξ ∈
H2(R, Z), it is possible to find an algebra A and an E ∈ EA of the form

0 // ZA // A // E // M // 0
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and a surjection p: R // M such that Z ∼= ZA as an R-module (via p) and [p] = ξ. It
is clear that this statement together with Theorem 2.2 characterizes H2 completely. No
smaller group contains all obstructions and no factor group is fine enough to test whether
a p comes from an extension. In particular, this shows that in degrees 1 and 2 these
groups must coincide with those of Harrison (renumbered) (see [Harrison (1962)]) and
Lichtenbaum and Schlessinger (see [Lichtenbaum & Schlessinger (1967)]). In particular
those coincide. See also Gerstenhaber ([Gerstenhaber (1966), Gerstenhaber (1967)]) and
Barr ([Barr (1968a)]).

Theorem 4.1. Every element of H2 is an obstruction.

Proof. Represent ξ by a derivation ρ: G3R // Z. This derivation has the property that
ρε = 0 and by the simplicial normalization theorem we may also suppose ρδ0 = pδ1 = 0.
Let V = { (x, z) ∈ G2R × Z | ε1x = 0 }. (Here Z is given trivial multiplication.) Let
I = { (ε0y,−ρy) | y ∈ G3R, ε1y = ε2y = 0 }. I ⊆ V for ε1ε0y = ε0ε2y = 0. I claim
that I < V . In fact for (x, z) ∈ V , (ε0y,−ρy) ∈ I, (x, z)(ε0y,−ρy) = (x · ε0y, 0). Now
δ0x · y ∈ G3R satisfies ε0(δ0x · y) = x · ε0y, εi(δ0x · y) = εiδ0xεiy = 0, i = 1, 2. Moreover
ρ(δ0x · y) = ρδ0x · y + δ0x · ρy. Now ρδ0 = 0 by assumption and the action of G3R on Z
is obtained by applying face operators into R (any composite of them is the same) and
then multiplying. In particular, δ0x ·ρy = ε1ε1δ0x · ρy = ε1x ·ρy = 0, since ε1x = 0. Thus
(x, z)(ε0y,−ρy) = (ε0(δ0x · y),−ρ(δ0x · y)) and I is an ideal. Let A = V/I. I claim that
the composite Z // V // V/I is 1-1 and embeds Z as ZA. For if (0, z) = (ε0y,−ρy),
then ε0y = ε1y = ε2y = 0 so that y is a cycle and hence a boundary, y = εz. But then
ρy = ρεz = 0. This shows that Z ∩ I = 0. If (x, z) + I ∈ ZA, (x, z)(x′, z′) = (xx′, 0) ∈ I
for all (x′, z′) ∈ V . In particular ε(xx′) = ε0(xx′) = ε0x · ε0x′ = 0 for all x′ with ε1x′ = 0.
By the simplicial normalization theorem this mean ε0x · ker ε = 0. Let w ∈ GR be the
basis element corresponding to 0 ∈ R. Then w is not a zero divisor, but w ∈ ker ε. Hence
ε0x = 0 and x = εy and by the normalization theorem we may suppose ε1y = ε2y = 0.
Therefore (x, z) = (ε0y,−ρy) + (0, z + ρy) ≡ (0, z + ρy) (mod I). On the other hand
Z + I ⊆ ZA.

Let GR operate on V by y(x, z) = (δy · x, yz) where GR operates on Z via pε. I is
a GR-submodule for y′(ε0y,−ρy) = (δy′ · ε0y,−y′ · ρy) = (ε0(δδy′ · y),−ρ(δδy′ · y)), since
ρ(δδy′ · y) = δδy′ · ρy + ρδδy′ · y = y′ · ρy. Hence A is a GR-algebra.

Let E be the algebra of endomorphisms of A which is generated by the multiplications
from GR and the inner multiplications. Let p0: GR // E and λ: A // E be the indicated
maps. Then E = im p0 + im λ. This implies that πp0 is onto where π: E // M is cokerλ.

Now we wish to map p: R // M such that pε = πp0. In order to do this we must show
that for x ∈ G2R, p0ε

0x and p0ε
1x differ by an inner multiplication. First we show that if

(x′, z) ∈ V , then (x ·x′−δε0x ·x′, 0) ∈ I. In fact let y = (1−δ0ε1)(δ1y ·δ0x). Then ε1y = 0
and ε2y = 0 also, since ε2δ0x′ = δε1x′ = 0. ε0y = (ε0 − ε1)(δ1x · δ0x′) = δε0y · x − x · x′.
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Finally ρy = 0 because of the assumption we made that ρδi = 0. Now

(p0ε
0x− p0ε

1x)(x′, z) = ((δε0x− δε1x)x′, xz − xz)

= ((x− δε1x)x′, 0) (mod I)

= (x− δε1x, 0)(x′, z)

where (x− δε1x, 0) ∈ V . Thus we have shown

Lemma 4.2. p0ε
0x− p0ε

1x is the inner multiplication λ((x− δε1x, 0) + I).

Then map p: R // M as indicated. Now πp0 = pε is a surjection and so is p.
P is constructed as pairs (e, a), e ∈ E, a ∈ A with multplication (e, a)(e′, a′) =

(ee′, ea′ + e′a + aa′). Map p1: G
2R // E by p1x = (p0ε

1x, (x − δ0ε1x, 0) + I). Then
d0p1x = p0ε

1x+λ((x− δ0ε1, 0)+ I) = p0ε
1x+ p0ε

0x− p0ε
1x = p0ε

0x by Lemma 4.2. Also
d1p1x = p0ε

1x and thus p1 is a suitable map. If p2: G
3R // B is chosen as prescribed,

then for any x ∈ G3R,

(1− s0d1)dp2x = (1− s0d1)p1εx

= (1− s0d1)(p0ε
1εx, (εx− δ0ε1εx, 0) + I)

= (p0ε
1εx, (εx− δ0ε1εx, 0) + I)− (p0ε

1εx, 0)

= (0, (εx− δ0ε1εx, 0) + I)

The proof is completed by showing that (εx − δ0ε1εx, 0) ≡ (0, ρx) (mod I). Let y =
(1 − δ0ε1)(1 − δ1ε2)x. Then ε1y = ε2y = 0 clearly and ε0y = (ε0 − ε1)(1 − δ1ε2)x =
(ε0−ε1 +ε2−δ0ε1ε0)x = (ε0−ε1 +ε2−δ0ε1(ε0−ε1 +ε2))x = (ε−δ0ε1ε)x, while ρy = ρx,
since we have assumed that ρδi = 0. Thus ∂p = ρ and [p] = ξ. This completes the proof.
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