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ABSTRACT. Let C be a class of topological abelian groups and SPC denote the full
subcategory of subobjects of products of objects of C. We say that SPC has Mackey
coreflections if there is a functor that assigns to each object A of SPC an object τA that
has the same group of characters as A and is the finest topology with that property. We
show that the existence of Mackey coreflections in SPC is equivalent to the injectivity of
the circle with respect to topological subgroups of groups in C.

1. Introduction

Consider a class C of topological abelian groups that includes the circle group K = R/Z.
If A is a topological group, then a character on A is a continuous homomorphism χ:A
−→ K. We let Â denote the discrete group of all characters of A. Let SPC denote the
closure of C with respect to arbitrary products and subobjects.

If A is an object of SPC, we say that A is a Mackey group in SPC if whenever Ã in
SPC is the same underlying group as A with a topology finer than that of A such that
the identity Ã −→ A induces an isomorphism Â −→ Ã ,̂ then Ã = A. In other words, if
A has the finest possible topology with the same group of characters. We denote by SPCτ
the full subcategory of Mackey groups.

We say that SPC admits Mackey coreflections if there is a functor τ : SPC −→ SPC
that assigns to each group A of SPC a Mackey group τA that has the same underlying
group group as A as well as the same set of functionals and additionally has the property
that for f :A −→ B, then τf : τA −→ τB is the same function as f .

Since τA has the finest topology on the group A that has the same characters as A it
follows that the identity function τA −→ A is continuous. Since for f :A −→ B, τf = f ,
it follows that

A B-
f

τA τB-τf

?

=

?

=

commutes so that τA −→ A is the component at A of a natural transformation ι: τ −→ Id,
the latter denoting the identity functor. Conversely, if we supposed that this square
commutes, then evidently τf = f so that naturality of ι would give another definition of
Mackey coreflections.
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If SPC admits Mackey coreflections, the group A is a Mackey group if and only if
τA = A. In particular, ττA = τA. If A is a Mackey group and A −→ B is a morphism in
SPC, then we have τA = A −→ τB, while the continuity of τB −→ B gives the other half
of the equality Hom(A,B) = Hom(A, τB) and thus we see that τ determines a coreflection
of the inclusion SPCτ −→ SPC.

There has been some effort into finding general conditions on a class of groups that
ensure the existence of Mackey coreflections. See, for example, [Chasco et. al., 1999].

On the other hand, there has been some effort into finding a class of topological abelian
groups on which the circle group is injective. It is known for locally compact groups, for
example. In [Banaszczyk, 1991], especially 8.3 on page 82, it is shown that there is a
large class of topological abelian groups, called nuclear groups, on which the circle is
injective. We refer the reader to the source for the somewhat obscure definition. The
class described there as the largest class of groups that is closed under the operations of
taking products, subgroups, and Hausdorff quotients.

What has not seemed to be noticed before (at least, as far as we can determine)
is that these two questions are essentially equivalent. This is the main result of this
paper, Theorem 4.1. The main tool in this construction is the so-called Chu construction,
described below.

2. Preliminaries

The results of this section are known. See, for example, [Hewitt and Ross, 1963]. We
include proofs of the simpler facts for the convenience of the reader.

We denote by K the circle group, which for our purposes it is convenient to think of
as R/Z. For any n ≥ 2, we let Un denote the image of the open interval (−2−n, 2−n) ⊆ R.
These evidently form a neighborhood base at 0 for the topology.

2.1. Theorem. For any locally compact abelian group L, subgroup M ⊆ L, and charac-
ter χ:M −→ K, there is a character ψ:L −→ K such that ψ|M = χ.

Proof. It is shown in [Banaszczyk, 1991] that locally compact groups are nuclear (7.10)
and that nuclear groups have this extension property (8.3).

We should mention that the proof that locally compact abelian groups are nuclear
depends on deep theorems from [Hewitt and Ross, 1963] that are used to embed any
locally compact abelian group in a product C ×D×E where C is compact, D is discrete
and E is a finite dimensional Euclidean space.

2.2. Lemma. Let x ∈ U2 such that 2x ∈ Un for n > 2. Then x ∈ Un+1.

Proof. If 2x ∈ Un then either x ∈ Un+1 or x− 1
2
∈ Un+1, but in the latter case, x /∈ U2.

2.3. Lemma. Suppose A is a topological abelian group and χ:A −→ K is a homomor-
phism such that χ−1U2 is open in A. Then χ is continuous.
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Proof. Let V2 = χ−1U2. For each n > 2, let Vn be a neighborhood of 0 in A such that
Vn + Vn ⊆ Vn−1. We claim that χ−1Un ⊇ Vn. This is true by definition for n = 2.
Assuming it is true for n, let x ∈ Vn+1. Then 2x ∈ Vn and so χ(2x) = 2χ(x) ∈ Un
together with χ(x) ∈ χ(Vn+1) ⊆ χ(V2) ⊆ U2, gives, by Lemma 2.2, that χ(x) ∈ Un+1.

2.4. Lemma. Suppose {Ai | i ∈ I} is a family of topological groups and A is a subgroup
of
∏
i∈I Ai. Then for any character χ:A −→ K, there is a finite subset J ⊆ I such that χ

factors through the image of A in
∏
i∈J Ai.

Proof. Suppose χ:A −→ K is a continuous character. Then χ−1(U2) is an open neigh-
borhood of 0 in A. Thus there is a finite subset {i1, . . . , in} ⊆ I and open neighborhoods
Vi1 , . . . , Vin of Ai1 , . . . , Ain , respectively, such that

χ−1(U2) ⊇ A ∩

Vi1 × · · · × Vin ×

∏

i 6=i1,...,in
Ai




which implies that

χ


A ∩


0× · · · × 0× ∏

i6=i1,...,in
Ai




 ⊆ U2

and since U2 contains no non-zero subgroup of K,

χ


A ∩


0× · · · × 0× ∏

i6=i1,...,in
Ai




 = 0

It follows that, algebraically at least, χ factors through the quotient

Ã =
A

A ∩
(
0× · · · × 0×∏i6=i1,...,in Ai

)

topologized as a subobject of Ai1 × · · ·Ain by a character we will denote χ̃. To show that
χ̃ is continuous, it is sufficient to observe that

χ̃−1(U2) ⊇ Ã ∩ (Vi1 × · · · × Vin)

and invoke Lemma 2.3.

By taking A to be the whole product, we derive the following.

2.5. Corollary. The natural map
∑

(Aî) −→ (
∏
Ai)̂ is an isomorphism.

3. The category chu

We give a brief description here of the category chu = chu(Ab, K) on which our devel-
opment depends. The objects of chu are pairs (G,G′) of abelian groups, equipped with
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a non-singular pairing 〈−,−〉:G ⊗ G′ −→ K. Non-singular means that for all x ∈ G, if
x 6= 0 there is a φ ∈ G′ with 〈x, φ〉 6= 0 and for all φ ∈ G′, if φ 6= 0 there is an x ∈ G
with 〈x, φ〉 6= 0. It is an immediate consequence that G′ can be thought of as a subset
of Ĝ and G can be thought of as a subset of G′ .̂ Using that identification, we define a
morphism f : (G,G′) −→ (H,H ′) in chu to be a group homomorphism f :G −→ H such
that for all φ ∈ H ′, φ ◦ f ∈ G′. Consequently, there is an induced morphism f ′:H ′ −→ G′

given by f ′φ = φ ◦ f . It has the property that for x ∈ G, fx is the unique element of H
such that for all φ ∈ H ′, φ(fx) = f ′(φ)(x) so that f ′ also determines f . Thus we can
define a duality by (G,G′)∗ = (G′, G) with the pairing given by 〈φ, x〉 = 〈x, φ〉 for φ ∈ G′
and x ∈ G.

Let us denote by [(G,G′), (H,H ′)] the subspace of Hom(G,H) consisting of the mor-
phisms described above. There is a tensor product in the category, given by

(G,G′)⊗ (H,H ′) = (G⊗̃H, [(G,G′), (H ′, H)])

This definition requires a bit of explanation. First, there is a pairing between G ⊗ H
and [(G,G′), (H ′, H)] given by 〈x ⊗ y, f〉 = 〈y, fx〉, for x ∈ G, y ∈ H and a morphism
f : (G,G′) −→ (H ′, H). This is non-singular in the second variable, but not in the first and
we let G⊗̃H be G ⊗ H modulo the elements of the tensor product that are annihilated
by all f . Similarly, there is an internal hom given by

(G,G′) −◦ (H,H ′) = ([(G,G′), (H,H ′)], G⊗̃H)

The resultant category is what is called a ∗-autonomous category. See [Barr, 1998] for
the definition of that term and further details.

For any topological abelian group A, we denote by |A| the underlying discrete group.
There is a functor F : SPC −→ chu defined by FA = (|A|, A )̂ with evaluation as the
pairing. There is a functor R: chu −→ SPC defined by letting R(G,G′) be the abelian
group G topologized as a subgroup of KG′ , topologized by the product topology. This
can also be described as the weak topology for the characters in G′.

3.1. Theorem. The functor R is full and faithful and right adjoint to F .

Proof. To show that R is full and faithful, it is sufficient to show that FR ∼= Id for which
it is sufficient to show that the natural map G′ −→ R(G,G′)̂ is an isomorphism. But a
character on R(G,G′) extends to the closure of R(G,G′) in KG′ , which is compact and
hence, by the injectivity of K on compact groups, to KG′ . By Corollary 2.5, a character on
KG′ takes the form n1χ1 +n2χ2 + · · ·+nkχk, where χ1, χ2, . . . , χk ∈ G′ and n1, n2, . . . , nk
are characters on K, that is integers. But then χ = n1χ1 + n2χ2 + · · · + nkχk ∈ G′. If
f :FA = (|A|, A )̂ −→ (G,G′) is given, then f : |A| −→ G has the property that for φ ∈ G′,
φ ◦ f ∈ A .̂ But this means that the composite A

f−−→ G −→ KG′ is continuous, so that
f :A −→ R(G,G′) is continuous.
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4. The main theorems

4.1. Theorem. Let C and SPC be as above. Then the first four of the following condi-
tions are equivalent and imply the fifth:

1. K is injective with respect to C;

2. K is injective with respect to SPC.

3. SPC has Mackey coreflections;

4. F has a left adjoint L whose counit LFA −→ A is a bijection;

5. the restriction of F to SPCτ is a natural equivalence.

Proof. We will show that 1 ⇐⇒ 2 =⇒ 3 =⇒ 4 =⇒ 2 and that 4 =⇒ 5.

1 ⇐⇒ 2: The property is inherited by subobjects so it is sufficient to show it for products
of objects of C. So suppose A ⊆ ∏

i∈I Ci with each Ci ∈ C. There is, by Lemma 2.4, a
finite subset J ⊆ I such that χ factors by a character χ̃ through the image Ã of A in∏
i∈J Ci. Since C is closed under finite finite products, the injectivity of K with respect to
C provides the required extension of χ̃ and hence of χ. Thus 1 =⇒ 2 while the reverse
inclusion is obvious.

2 =⇒ 3: Given an object A of SPC, let {Ai | i ∈ I} range over the set of all abelian
groups whose topology is finer than that of A and for which the identity Ai −→ A induces
an isomorphism Â−→ Ai .̂ Form the pullback

A AI-

τA
∏
Ai-

? ?

in which the bottom arrow is the diagonal and the right hand one is the identity on each
factor. Since the bottom arrow is an inclusion, so is the upper one up to isomorphism.
Taking duals and using the injectivity of K and Corollary 2.5, we have

Â
(
AI
)
̂∼= ∑

i∈I Â�

(τA)̂ (
∏
Ai)̂∼= ∑

Aî��

6 6
∼=

so that Â −→ (τA)̂ is surjective, while it is obviously injective. Since the topology on
τA is finer than that of any Ai, it has the finest topology that has the same character
group.
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3 =⇒ 4: Define L = τ ◦R: chu −→ SPC. If f : (G,G′) −→ FA, we have Rf :R(G,G′)
−→ RFA and then τR(G,G′) −→ τRFA. Now RFA has the same elements and same
character group as A and so does τA. Since τA −→ A −→ RFA is continuous, it follows
that τA has exactly the properties that characterize τRFA. Thus we have L(G,G′)
−→ τRFA = τA −→ A. This gives an injection Hom((G,G′), FA) −→ Hom(L(G,G′), A)
and the other inclusion is obvious since LF is evidently the identity.

4 =⇒ 2: Suppose that A ⊆ B in SPC. Let FA = (G,G′) and FB = (H,H ′). Then
G ⊆ H and we wish to show that the induced H ′ −→ G′ is surjective. If not, let G̃′ be
the image of H ′ −→ G′. We claim that there is a pairing on (G, G̃′) such that (G,G′)
−→ (G, G̃′) −→ (H,H ′) are morphisms. In fact, the pairing is given by G⊗ G̃′ −→ G⊗G′
−→ K. This is clearly extensional, since G̃′ is a subgroup of G′. If x 6= 0 is in G, let φ ∈ H ′
such that 〈x, φ〉 6= 0. If φ̃ is the image of φ then 〈x, φ̃〉 6= 0. That (G,G′) −→ (G, G̃′)
−→ (H,H ′) are morphisms is clear. We have the diagram

A Ã-

L(G,G′) L(G, G̃′)-

? ?
B-

L(H,H ′)-

?

R(G,G′) R(G, G̃′)-
? ?

R(H,H ′)-
?

in which Ã is defined by having the lower right square be a pullback. All the vertical
arrows are bijections as are the horizontal arrows in the left hand squares. Moreover, the
composite A −→ Ã −→ B is the inclusion of a subspace and the first arrow is a bijection,
which leaves the topology of Ã both finer and coarser than that of A. Hence A = Ã,
whence G′ = G̃′ and H ′ −→ G′ is surjective.

4 =⇒ 5: If F has a left adjoint L, then it follows that K is injective in SPC and that L
is constructed as above and its image is just SPCτ , which is then equivalent to chu.

Suppose that A and B are topological abelian groups. Say that a homomorphism
f : |A| −→ |B| is weakly continuous if for every continuous character φ:B −→ K, the
composite φ ◦ f :A −→ K is continuous. Clearly if every weakly continuous map out of A is
actually continuous, then A is a Mackey space. The converse is also true, provided Mackey
coreflections exist. We will say that C satisfies Glicksberg’s condition if every weakly
continuous homomorphism between objects of C is continuous. Glicksberg’s theorem says
that the category of locally compact abelian groups does satisfy Glicksberg’s condition
[1962, Theorem 1.1].

4.2. Theorem. Suppose C satisfies Glicksberg’s condition. Then every object of C is a
Mackey group in SPC.
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Proof. It is sufficient to show that if C is an object of C, then for any object A of SPC,
any weakly continuous f :C −→ A is continuous. But there is an embedding A −→ ∏

Ci
with each Ci in C and to prove C −→ A continuous, it is sufficient to show that each
composite C −→ A −→ Ci is continuous. But for any character Ci −→ K, the composite
A −→ Ci −→ K is continuous and since C −→ A is weakly continuous, the composite C
−→ A −→ Ci −→ K is also continuous. Thus each composite C −→ A −→ Ci is weakly
continuous and, by Glicksberg’s condition, is continuous.

4.3. Examples. We can identify three examples, though there are certainly more. We
list them in order of increasing size.

Weakly topologized groups. If we take for C the category of compact groups, the resultant
SPC is the category of subcompact groups—those that have a topological embedding into
a compact group. In that case, both the dual and the internal hom are topologized by
the weak topology and all our results are immediately applicable. In this case the Mackey
and weak topologies coincide and every object has a Mackey topology.

Locally compact groups. If for C we take the category LC of locally compact abelian
groups, then SPC is the category SPLC of subobjects of products of locally compact
abelian groups. Locally compact groups are Mackey groups in this case.

Nuclear groups. If we take for C the category Nuc of nuclear groups, then SPLC = Nuc
as well and there are Mackey reflections. Although SPLC ⊆ Nuc, it is not immediately
obvious that the inclusion is proper. One point is that the class of nuclear groups is closed
inder Hausdorff quotients, which is not known to be the case for SPLC.
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