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Abstract. We continue our investigations into absolute CR-epic spaces. Given
a continuous function f : X // Y , with X absolute CR-epic, we search for
conditions which imply that Y is also absolute CR-epic. We are particularly
interested in the cases when X is a dense subset of Y and when f is a quotient
mapping. To answer these questions, we consider issues of local extension of
continuous functions. The results on this question are of independent interest.
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1. Introduction

Unless stated otherwise, all spaces in this paper will be assumed Tychonoff, that
is, completely regular and Hausdorff. In a series of papers, the current authors
and others have developed at some length the notion of absolute CR-epic spaces:
a Tychonoff space X is absolute CR-epic if for any dense embedding X Â Ä // Y
into another Tychonoff space, the induced C(Y ) // C(X) is an epimorphism
in the category of commutative rings (see [Barr, et al. (2003), Barr, et al. (2005),
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Barr, et al. (2007b), Barr, et al. (2009)]). In this paper we continue these inves-
tigations. We consider a continuous map f : X // Y and search for conditions
under which the fact that X is absolute CR-epic implies the same for Y . We are
interested in two cases. In the first X is a dense subspace of Y and in the second
Y is a quotient of X.

The motivation for this paper came from the study of epimorphisms of com-
mutative rings in which we have uncovered several classes of spaces. The class
of Lindelöf absolute CR-epic spaces properly contains the class of Lindelöf CNP
spaces. The latter class consists of those spaces that are P-sets in any (and there-
fore every) compactification. Both of these classes can be defined in terms of the
extendibility of continuous functions. Lindelöf absolute CR-epic spaces are pre-
cisely those for which continuous functions extend to neighbourhoods in arbitrary
compactifications. Lindelöf CNP spaces are exactly those for which a countable
sequence of functions can be extended from a point to one of its neighbourhoods
in the β-compactification (Theorem 4.3). There is also a new and stronger class of
spaces for which a neighbourhood works for extending all functions (the uniform
property). In analyzing these classes and in examining their local-global behaviour
we were led to the following definitions which discuss the extendibility of continu-
ous functions both locally and globally. They make no reference to epimorphisms.
They are general but also contain the key to studying epimorphisms induced by
Lindelöf spaces. The study in the non-Lindelöf case uses different methods. See
[Barr, et al. (2009)] for classes of punctured planks (such as the Dieudonné plank)
which are absolute CR-epic.

(1) Extension property (EP): X satisfies the EP if for every dense embedding
X Â Ä // Y , every f ∈ C∗(X) has a continuous extension to a Y -neighbourhood
of X

(2) Local Extension property (LEP): X satisfies the LEP if every point of X has
an X-neighbourhood that satisfies the EP.

(3) Countable extension property (CEP): X satisfies the CEP if for every dense
embedding X

Â Ä // Y and every sequence f1, f2, . . . , fn, . . . of functions in
C∗(X), there is a single Y -neighbourhood of X to which each fn extends.

(4) Countable local extension property (CLEP): X satisfies the CLEP if every
point of X has an X-neighbourhood that satisfies the CEP.

(5) Uniform Extension Property (UEP): X satisfies the UEP if for every dense
embedding X ⊆ Y there is a Y -neighbourhood of X to which every f ∈ C∗(X)
extends.

(6) Uniform Local Extension Property (ULEP): X satisfies the ULEP if every
point of X has an X-neighbourhood that satisfies the UEP.

(7) Sequential Bounded Property (SBP): X satisfies the SBP at a point p ∈ X
if given any sequence f1, f2, . . . , fn, . . . of functions in C(X), there is an X-
neighbourhood of p in which every one of the fn is bounded. We also say that
X satisfies the SBP if it satisfies it at every point.

(8) Countable neighbourhood property (CNP): X satisfies the CNP if for every
sequence U1, U2, . . . , Un, . . . of βX-neighbourhoods of X, then

⋂
Un is a βX-

neighbourhood of X. Topologists often say that X is a P-set in βX.

Obviously, (1) +3 (2), (3) +3 (4), and (5) +3 (6). The converses to all three
are given in 2.4. Clearly (5) +3 (3) +3 (1). In [Barr, et al. (2005), Corollary
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2.13] it was shown that for Lindelöf spaces (1) ks +3 absolute CR-epic. We will see
in Theorem 4.1 that for Lindelöf spaces, (7) ks +3 (8) +3 (3). In Example 6.5 we
will see that the CEP (and even the UEP) does not imply the CNP. Combining
these results, we see that a Lindelöf space that satisfies any of the eight conditions
defined above is absolute CR-epic

Remark 1.1. We will often say that “X is an EP space” (or a CEP or CNP space,
etc.) as an abbreviation for “X satisfies the EP”.

A compactification X ⊆ K of X is a dense embedding into a compact space K.
One readily sees that since every Tychonoff space can be embedded into a compact
Hausdorff space, it would be sufficient, in points 1, 3, and 5 above to restrict the
spaces Y to being compactifications.

When we are considering the case that X is a dense subspace of Y , it will often,
but not always, be the case that Y is a subspace of βX and f is the inclusion
map. A typical result is that if X is Lindelöf CNP and A ⊆ X, then X ∪ clβX(A)
is Lindelöf CNP (Theorem 4.6). Another result is that if X is Lindelöf absolute
CR-epic and A a zeroset in βX, then X ∪A is absolute CR-epic (Corollary 2.9).

Until this paper, we knew only that a Lindelöf locally compact subset of βX
satisfied the UEP, but that is an immediate consequence of the fact that a locally
compact space is open in its β-compactification. In Theorem 6.2 we will find other
examples, which will allow us to resolve negatively a question raised by Ronnie
Levy in [Levy (1980)], see 6.1.

For quotients, we had previously seen that a perfect image of an Lindelöf CNP
space was Lindelöf CNP, [Barr, et al. (2007b), Theorem 3.5.5]. Here we extend this
result to open images, Theorem 4.2, and closed images, Theorem 4.7. We also show
that a quotient of a countable sum of compact spaces is CNP, Theorem 4.17. The
last result will allow us to answer positively a question we have previously raised
and show that the rational numbers with the “Egyptian topology” (induced by the
representation of rational numbers as the sum of reciprocals of distinct integers) is
CNP, hence absolute CR-epic. One interesting thing about this result is that the
rationals with the usual topology is not absolute CR-epic.

Another theme that has arisen is encompassed in several theorems that say that
if X satisfies one of the map extension conditions and A ⊆ βX is a subspace that
satisfies some subsidiary condition then X ∪ A or X ∪ clβX(A) satisfies the same
extension condition as X (Theorem 2.8, Corollary 2.9, Theorem 4.6, Theorem 4.12,
Theorem 4.13, Theorem 5.4).

Notation and Conventions. If ϕ : X // Y is a map and A ⊆ X we denote
by ϕ#(A) the “universal image” of A in Y . To be precise ϕ#(A) consists of all
y ∈ Y for which ϕ−1(y) ⊆ A. Another way of defining it is by the formula ϕ#(A) =
Y −ϕ(X−A). The properties of ϕ# are given in detail in [Barr, et al. (2007b), 2.2].
An important property—evident from the second definition above—is that when ϕ
is a closed mapping, ϕ# takes open sets to open sets. If E is an equivalence relation
on a space X and A ⊆ X we say that E is A-admissible or A is E-compatible if
(A×X)∩E = ∆A. This means that no point of A is E-equivalent to any point of
X but itself (See [Barr, et al. (2007b), Proposition 2.5]). In such a case, the map A
to its image in X/E is a homeomorphism and we will usually treat A as a subspace
of that quotient.
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2. Preliminary results

We begin with a pair of known results that we will be using. See [Barr, et al. (2005),
2.13 and 2.14] for the proofs. See also [Engelking (1989), Problems 1.7.6 and
3.12.25].

Proposition 2.1. [Smirnov’s Theorem] A space X is Lindelöf if and only if in
any compactification K of X, every K-neighbourhood of X contains a cozeroset
containing X.

Proposition 2.2. A Lindelöf space satisfies the EP if and only for every dense
embedding X ⊆ Y and every point p ∈ X every function in C∗(X) extends to a
neighbourhood of p in Y .

The following is proved in detail in [Barr, et al. (2009), 3.1–3.3] and is central
to much of this paper. The limit used in the statement is taken over the directed
set of all pairs (W,x) for which x ∈ X ∩W with (W,x) ≤ (W ′, x′) if and only if
W ⊇ W ′. This is, of course, only a directed preorder, but that is all that is required
(see [Kelley (1955), Page 65]).

Theorem 2.3. Suppose X
Â Ä // Y is a dense embedding and f ∈ C(X). Then f can

be extended continuously to a point p ∈ Y if and only if

lim{f(x) | x ∈ X ∩W and W is a neighbourhood of p}
exists and that limit is the value of the extension to p. Moreover, the extension of
f to all such points is continuous.

Theorem 2.4. LEP (respectively CLEP, ULEP) implies EP (respectively, CEP,
UEP).

Proof. Suppose X satisfies the LEP and is densely embedded in Y . Suppose
f ∈ C∗(X). For each x ∈ X, there is an X-neighbourhood U(x) of x that satisfies
the EP. Let V (x) = intY (clY (U(x))). Then V (x) is a Y -open set that contains U(x)
and in which U(x) is dense. It follows from the EP applied to U(x) that f |U(x)
extends to a V (x)-open set W (x), which is evidently also Y -open. The preceding
theorem implies that f extends to

⋃
x∈X W (x) which is a Y -open set containing X.

The arguments for the CLEP and ULEP are similar and we omit them. ¤
Lemma 2.5. Suppose A = Z(f) is a zeroset in βX disjoint from X and E a
closed, A-admissible equivalence relation on βX. Then there is an ε > 0 such that
whenever (p, q) ∈ E with p 6= q, |f(p)| ∧ |f(q)| > ε.

Proof. We may assume, without loss of generality, that f : βX // [0, 1]. If the
conclusion fails there is a sequence of points (pn, qn) ∈ E such that pn 6= qn and
for which the sequence f(pn) ∧ f(qn) is not bounded away from 0. Admissibility
implies that f(pn) ∧ f(qn) is never actually 0. By choosing a subsequence and
interchanging pn with qn, if necessary, we can suppose that the sequence of f(pn) is
not bounded away from 0. There are two cases, depending on whether the sequence
of f(qn) is bounded away from 0 or not. In the former case, any limit point (p, q)
of the sequence (pn, qn) belongs to E since E is closed. Clearly p ∈ A and q /∈ A,
which contradicts the A-admissibility of E.

If neither of the sequences f(pn), f(qn) is bounded away from 0, then, by ap-
propriate choice of subsequences, we can suppose that f(pn) ∨ f(qn) < f(pn−1) ∧
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f(qn−1). Let Bn = f−1[f(pn) ∧ f(qn), 1]. Then Bn ⊆ Bn+1 for all n, both pn

and qn belong to Bn, while neither pn+1 nor qn+1 does. Suppose, by induction,
that we have found, for all m < n, continuous functions gm : Bm

// [0, 1] such
that gm(pm) = 0, gm(qm) = 1 and gm|Bk = gk for all k < m. Now construct
gn : Bn

// [0, 1] as follows. Since pn and qn lie outside the closed set Bn−1, we can
extend gn−1 to ĝn−1 on Bn−1 ∪{pn, qn} by letting ĝn−1(pn) = 0 and ĝn−1(qn) = 1.
The extended domain is a closed subspace of the compact set Bn and so ĝn−1 can
be extended to a continuous function gn : Bn

// [0, 1] as desired. We let g be
the function defined on B = coz(f) =

⋃
Bn whose restriction to Bn is gn. To

see that g is continuous, we note that g−1(f(pn) ∧ f(qn), 1] is open, contained in
Bn, and contains Bn−1 so that Bn−1 ⊆ int(Bn). Thus B =

⋃
int(Bn). Since

g|int(Bn) = gn|int(Bn) is continuous, it follows that g is continuous on B. Since
X ⊆ B ⊆ βX, we see that βX = βB and g extends to βX. But any limit point
(p, q) of the sequence (pn, qn) lies in E ∩ (A× A) = ∆A, which is impossible since
p = q while g(p) = 0 and g(q) = 1. ¤

Corollary 2.6. Under the same hypotheses, there is an open set U ⊇ A such that
E is U -compatible.

Proof. Just take U = f−1[0, ε). ¤

Theorem 2.7. Suppose that {Aα} is a family of zerosets in βX, all disjoint from
X and A =

⋃
Aα. Then for every A-compatible equivalence relation E on βX,

there is a βX-open set U ⊇ A such that U is E-compatible.

Proof. An A-compatible equivalence relation E is also Aα-compatible and so there
is an open Uα ⊇ Aα such that E is also Uα-compatible. Set U =

⋃
Uα and then

A ⊆ U and E is U -compatible. ¤

Theorem 2.8. Suppose X is Lindelöf and satisfies the EP and A =
⋃

Aα is a
union of zerosets in βX. Then X ∪A satisfies the EP.

Proof. Let K be a compactification of X ∪A and hence of X since X is dense in
X∪A. Let f ∈ C∗(X∪A). Since X is absolute CR-epic, there is a K-neighbourhood
U of X to which f extends. Since X is Lindelöf we can assume that U is a cozeroset
by Smirnov’s Theorem. Let θ : β(X ∪ A) = βX // K be the canonical map and
let

E = {(u, v) ∈ βX × βX | θ(u) = θ(v)}
(called its kernel pair). Then V = θ−1(U) is a cozeroset of β(X ∪A) containing X.
The difference of a zeroset and a cozeroset is also a zeroset. Thus A−V =

⋃
(Aα−V )

is a union of zerosets disjoint from X. The previous theorem implies there is an
E-compatible β(X∪A)-neighbourhood W of A−V and then f extends to U∪θ(W ).
But θ(W ) = θ#(W ) is a neighbourhood of A−U = θ(A− V ) and hence U ∪ θ(W )
is a neighbourhood of X ∪ θ(A− V ) = X ∪A. ¤

Corollary 2.9. Suppose that X is Lindelöf absolute CR-epic and A =
⋃

An is a
union of at most countably many zerosets in βX. Then X ∪A is Lindelöf absolute
CR-epic.

Proof. A zeroset is Lindelöf and so is the union of countably many of them. ¤
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3. A topological interlude

Lemma 3.1. Suppose X and Y are spaces and K and L are compactifications of
X and Y , respectively. Suppose

Y LÂ Ä //

X

Y

θ

²²²²

X KÂ Ä // K

L

ϕ

²²

is a commutative square with θ a closed surjection. Then for any p ∈ K for which
y = ϕ(p) ∈ Y , we have p ∈ clK(θ−1(y)).

Proof. Let A = θ−1(y). If the conclusion fails, there is a closed K-neighbourhood
W of p disjoint from A. Since X is dense in K, we can suppose that W = clK(X ∩
W ). Then U = X −W is an X-open subset of X such that A ⊆ U and U ∩W = ∅.
Thus θ#(U) is an open neighbourhood of ϕ(p) = θ#(A) in Y . Since θ#(U)∩θ(W ∩
X) = ∅, we have

ϕ(p) /∈ clL(θ(W ∩X)) = clL(ϕ(W ∩X)) ⊇ ϕ(clK(W ∩X)) = ϕ(W )

which is a contradiction. ¤

The following is well known when A and B are disjoint and, in fact, characterizes
normal spaces. This more general case must be known, but we have not found it
in standard references.

Lemma 3.2. Let X be a normal space and A and B two closed subsets of X. Then
clβX(A ∩B) = clβX(A) ∩ clβX(B).

Proof. Clearly clβX(A∩B) ⊆ clβX(A)∩clβX(B). So let p ∈ clβX(A)∩clβX(B) and
suppose that p /∈ clβX(A∩B). Then there is a closed neighbourhood U of p in βX
such that U ∩A∩B = ∅. Obviously p ∈ clβX(U ∩A) and similarly p ∈ clβX(U ∩B)
which contradicts the special case of disjoint closed sets. ¤

The following is true for abstract sets. We omit the easy proof.

Lemma 3.3. Suppose θ : T // S is a function, A ⊆ S, and B ⊆ T . Then
θ(B ∩ θ−1(A)) = θ(B) ∩A. ¤

Lemma 3.4. Let ϕ : K // L be a continuous map of compact spaces. Let Y ⊆ L
and X = ϕ−1(Y ). Then θ = ϕ|X is closed.

Proof. Suppose that A is a closed subset of X. Then A = clK(A) ∩X and then
θ(A) = ϕ(A) = ϕ(clK A ∩ ϕ−1(Y )) = ϕ(clK(A)) ∩ Y , which is the intersection of a
compact set with Y and is therefore closed in Y . ¤

A commutative square

Z T
ρ

//

X

Z

τ

²²

X Y
σ // Y

T

θ

²²
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of not necessarily Tychonoff spaces is called a pushout in Top, provided that, given
any space W and continuous maps µ : Y //W and ν : Z //W such that µσ = ντ ,
there is a unique ω : T // Z such that ωθ = µ and ωρ = ν. Even if σ and τ are
subspace inclusions, θ and ρ need not be. If all four maps are subspace inclusions,
then a necessary and sufficient condition that the square be a pushout is that
X = Y ∩ Z and that a subset of T is closed if and only its intersection with each
of Y and Z is. In general, if X, Y , and Z are Tychonoff spaces, it does not follow
that T is. However in the following lemma, the corresponding space is a given as a
subspace of a Tychonoff space and therefore is one as well.

Lemma 3.5. Suppose X is normal and A ⊆ X. Then the square

clβX(A) clβX(A) ∪X//

X ∩ clβX(A)

clβX(A)
²²

X ∩ clβX(A) X// X

clβX(A) ∪X
²²

is a pushout of topological spaces.

Proof. We may as well suppose that A is closed in X in which case we can identity
clβX(A) with βA and X ∩ clβX(A) = clX(A) = A. Let Y = βA ∪ X. Then the
square in question is

βA Y//

A

βA
²²

A X// X

Y
²²

From the remarks preceding, it suffices to show that for any B ⊆ Y , if B ∩ βA is
compact and B ∩X is closed in X, then B is closed in Y . So let B be such a set.
We have that clY (B) = clY ((B∩βA)∪(B∩X)) = clY (B∩βA)∪clY (B∩X). Since
B ∩ βA is compact, the first term is just B ∩ βA ⊆ B. As for the second term, we
have that X ∩ clY (B ∩X) = clX(B ∩X) = B ∩X ⊆ B, while by 3.2,

βA ∩ clY (B ∩X) = clβX(A) ∩ clβX(B ∩X) ∩ Y = clβX(A ∩B ∩X) ∩ Y

= clβX(A ∩B) = clβA(A ∩B) ⊆ clβA(βA ∩B) = βA ∩B ⊆ B

and so clY (B) ⊆ B. ¤

4. Spaces satisfying the CEP and CNP

Theorem 4.1. For any Lindelöf space X, the conditions SBP and CNP are equiv-
alent and imply the CEP.

Proof. We showed in [Barr, et al. (2009), Theorem 7.4] that X satisfies CNP if
and only if it satisfies the SBP at every point. Here we will show that CNP +3

CEP. Suppose that X satisfies the CNP and is densely embedded in a space Y .
Let f1, f2, . . . , fn, . . . be a sequence of functions in C∗(X). The CNP implies that
each fn extends to a Y -neighbourhood Un of X, [Barr, et al. (2007b), Corollary
3.4]. The CNP also implies that U =

⋂
Un is a Y -neighbourhood of X (and hence

of each of its points) to which each fn extends. ¤
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The following is an application of the equivalence of the CNP and SBP.

Theorem 4.2. An open image of a Lindelöf CNP space is also Lindelöf CNP.

Proof. We will show that the SBP is preserved under open surjections. Suppose
θ : X // Y is an open surjection and X satisfies the SBP. Given any sequence f1,
f2, . . . , fn, . . . ∈ C(Y ) and any y ∈ Y , let x ∈ θ−1(y). Since X satisfies SBP, there
is an open neighbourhood U of x on which each term of the sequence f1θ, f2θ, . . . ,
fnθ, . . . is bounded. Then θ(U) is the desired open neighbourhood of y. ¤

See Example 6.5 below for a space that satisfies the CEP (in fact, the UEP) but
not the CNP. Here is a result that highlights the difference between them. The
equivalence of the CEP and CLEP implies that when the CEP is satisfied by a
space X then for each countable sequence f1, f2, . . . , fn, . . . in C∗(X) and each
point p ∈ X there is a βX-neighbourhood of p to which each fn extends. If we
replace C∗(X) by C(X) we get the following:

Theorem 4.3. A Lindelöf space X satisfies CNP if and only if there is a com-
pactification K of X with the property that for each countable sequence f1, f2, . . . ,
fn, . . . of functions in C(X) and each point x ∈ X there is a K-open set contain-
ing X to which each fn extends. Moreover, if this condition is satisfied by any
compactification of X it is satisfied by all of them.

Proof. We know from Theorem 4.1 that CNP implies CEP, which implies the
extendability of a sequence of bounded functions to some open subset of K that
contains X. If f : X // R is continuous, then f/(1 + |f |) is bounded and if it
extends to an open set U ⊇ X, then the only obstacle to extending f is that it
might take on infinite values. Thus f extends to the one-point compactification
R ∪ {∞} of R and, since R is open in its one-point compactification, we see that
f extends to an R-valued function on an open set. Since X is a P-set in K, the
conclusion follows for a countable sequence of functions.

For the other direction, suppose {Vn} is countable family of K-open sets contain-
ing X. Since X is Lindelöf, each Vn contains a cozeroset coz(fn) that contains X.
We can suppose that fn : βX // [0, 1]. Since 1/fn is continuous on coz(fn), there
is, for each x ∈ X, a K-neighbourhood U(x) to which every 1/fn extends. This
implies that for all n ∈ N, U(x) ⊆ coz(fn) ⊆ Vn, whence U(x) ⊆ ⋂

n∈N Vn. Then⋃
x∈X U(x) ⊆ ⋂

n∈N Vn and the former is a K-open set containing X. Thus X is a
P-set in K, which implies the CNP and that X is a P-set in any compactification
([Barr, et al. (2007b), Theorem 3.3]). ¤
Corollary 4.4. Suppose that {Xn} is a finite or countable family of subsets of the
compact set K such that each Xn is dense in K and is Lindelöf CNP. Then

⋃
Xn

is Lindelöf CNP.

Proof. For any sequence of functions f1, f2, . . . , fm, . . ., there is, for each n, a
K-open set Un containing Xn to which each fm extends. But then U =

⋃
Un is a

K-open set containing
⋃

Xn to which each fm extends. ¤
The following is an obvious reformulation of the CNP.

Proposition 4.5. A space X has CNP if and only if for every countable sequence
K1, K2, . . . , Kn, . . . of compact sets in βX − X, we have clβX(

⋃
Kn) ⊆ βX −

X. ¤
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The proof of the following theorem is a substantial simplification of our original
one and we thank Ronnie Levy for suggesting it.

Theorem 4.6. If X is Lindelöf CNP and A ⊆ X, then X∪clβX(A) is also Lindelöf
CNP.

Proof. Since clβX(A) = clβX(clX(A)), we can suppose, without loss of generality,
that A is closed in X and therefore Lindelöf. Let {Kn} be a sequence of compact
subsets of βX−X−clβX(A) and B =

⋃
Kn. Then Y = X∪B is Lindelöf and hence

normal ([Kelley (1955), Lemma 4.1]). Since B is disjoint from clβX(A) and A is
closed in X, it follows that A is closed in Y . Since B is a countable union of closed
sets disjoint from X, the CNP hypothesis implies that clY (B) is also disjoint from
X. Hence A and clY (B) are disjoint closed sets in a normal space and therefore
clβX(A) is disjoint from clβX(B) and hence so is X ∪ clβX(A). ¤

Theorem 4.7. A closed image of a Lindelöf CNP space is also Lindelöf CNP.

Proof. Let θ : X // Y be a closed surjection and suppose X is Lindelöf CNP.
The space Y is clearly Lindelöf. Write ϕ = β(θ) : βX // βY . Let {Ln} be a
sequence of compact subsets of βY −Y . Let Kn = ϕ−1(Ln) and K = clβX (

⋃
Kn).

We claim that L = ϕ(K) is contained in βY − Y . If not, there exists p ∈ K for
which y = ϕ(p) ∈ Y so, by Lemma 3.1, we see p ∈ clβX(θ−1(y)). By Theorem
4.6, X ∪ clβX(θ−1(p)) satisfies the CNP and hence clβX(θ−1(y)) is disjoint from
clβX(

⋃
Kn), which is a contradiction. ¤

Compare this with [Barr, et al. (2007b), 3.5.5] where we require a perfect sur-
jection to draw that conclusion.

It is an easy consequence that if you form a quotient space of a Lindelöf (hence
normal) CNP space by collapsing a closed subspace to a point (or by collapsing any
finite number of disjoint closed subspaces to points) the resultant space is Lindelöf
CNP. As an example of how that can be applied, we have:

Corollary 4.8. Let X be Lindelöf CNP and A ⊆ X be a subspace. If f1, f2, . . . ,
fn, . . . is a sequence of real-valued functions on X, each one bounded on A, then
there is a single neighbourhood of A on which each one is bounded.

Proof. By replacing A by clX A (on which each fn will continue to be bounded),
we can suppose that A is closed. By replacing each fn by |fn| we can suppose that
the values of the fn are non-negative. If bn is an upper bound of fn on A, then we
can replace fn by fn ∨ bn and suppose that each fn is constant on A. The quotient
mapping θ : X // X/A, gotten by identifying the points of A to a single point, is
closed and Theorem 4.7 implies that X/A is CNP. Evidently all the functions fn,
being constant on A, descend to the quotient. Thus there is a single neighbourhood
U of the point {A} on which each fn is bounded and then θ−1(U) is the required
neighbourhood of A. ¤

The following strengthens one of the cases of [Barr, et al. (2009), Lemma 6.9].

Theorem 4.9. Suppose X and Y are Tychonoff spaces with a common subspace
A. Suppose that A is closed in X and that X is normal. Then the amalgamated
sum X +A Y is Tychonoff.
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Proof. The amalgamated sum is the pushout (for the definition of pushout, see
the proof of 3.4) in the square

Y X +A Y//

A

Y
²²

A X// X

X +A Y
²²

A subset B ⊆ X +A Y is closed if and only if B ∩X and B ∩Y are closed in X and
Y , respectively. Points clearly have that property, so we need only show that the
amalgamated space is completely regular. So let B be closed and p /∈ B. We first
consider the case that p ∈ X −A. Then p /∈ A ∪ (B ∩X) and the latter is a closed
subset of X. There is a continuous function f : X // [0, 1] for which f(p) = 1,
while f vanishes on A ∪ (B ∩ X). Let g be the constant function 0 on Y . Then
f |A = g|A and therefore there is an h : X +A Y // [0, 1] whose restrictions to X
and Y are f and g, respectively. Evidently, h(p) = 1, while h vanishes on B.

For the case that p ∈ Y begin with a function g : Y // [0, 1] such that g(p) = 1,
while g vanishes on B∩Y . The function that is g on A and 0 on B∩X is continuous
on A∪ (B ∩X) since it is continuous on each of two closed subsets of X and agrees
on the overlap. This function then extends, by normality, to a continuous function
f : X // [0, 1]. Since f |A = g|A we get the function h as required. ¤

Theorem 4.10. Suppose that X and Y are CNP spaces with a common subspace
A that is closed in each and that at least one of X and Y is normal. Then the
amalgamated sum X +A Y also satisfies the CNP.

Proof. The canonical map θ : X+Y //X+AY is a closed (even perfect) surjection
since if B is closed in X then θ−1θ(B) = B + (B ∩A). ¤

Theorem 4.11. Let X be normal CNP, A ⊆ X be a closed subspace and K be a
compactification of A. Then X +A K is CNP.

Proof. Since A is closed in X, it is known that βA is embedded in βX. Let
K = (βA)/E and F = E ∪ ∆βX , which is a compact X-compatible equivalence
relation on βX. We thus get a map ϕ : βX // βX/F for which ϕ−1(X) = X and
ϕ−1(K) = clβX(A). The fact (from Lemma 3.5) that

clβX(A) X ∪ clβX(A)//

A

clβX(A)
²²

A X// X

X ∪ clβX(A)
²²

is a pushout implies that θ : X ∪ clβX(A) // X ∪K is continuous. The fact that
X ∪K has the pushout topology embeds it into βX/F . Then 3.4 implies that θ is
closed and then the result follows from Theorem 4.7. ¤

Here is an application of Theorem 4.11. By contrast, see 4.14.

Theorem 4.12. Suppose that X is normal CNP and that A ⊆ βX is a locally
compact set such that A ⊆ clβX(A ∩X). Then X ∪A is CNP.
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Proof. Let K = clβX(A). Since A is locally compact it is open in K. Since X ∩A
is dense in A by hypothesis and A is evidently dense in K we can conclude that
K is a compactification of X ∩ K. In particular, for any K-open set U ⊆ K we
have that U ⊆ clK(X ∩ U). By hypothesis, every point p ∈ A has a compact
K-neighbourhood Vp. Let Up = intKVp so that Up is a K-open set containing p.
Clearly, clK Up ⊆ Vp and is a compact neighbourhood of p. Thus we may replace Vp

by clK Up and assume that Vp is a regular closed set. Since Up ⊆ clK(X ∩Vp) ⊆ Vp

it follows immediately that Vp = clK(X ∩ Vp). The preceding theorem implies that
X +X∩Vp Vp is CNP and it follows from Lemma 3.5 that that space can be identified
with X ∪ Vp. Suppose now that {Wn} is a countable sequence of open sets of βX,
all containing X ∪A. Then intβX (

⋂
Wn) contains each X ∪Vp and hence contains

their union, which is X ∪A. ¤

Theorem 4.13. Let X be Lindelöf CNP and A ⊆ βX such that A itself is Lindelöf
CNP and A ⊆ clβX(A ∩X). Then X ∪A is Lindelöf CNP.

Proof. Let K = clβX A. As above K is a compactification of both X ∩ A and
X ∩ K. Let f1, f2, . . . , fn, . . . be a sequence of functions in C(X ∪ A). Since A
is CNP and K is a compactification of A, it follows from Theorem 4.3 that there
is a K-open set U ⊆ K that includes A and to which each fn extends. Since U
is open in K, it follows that U ⊆ clK(X ∩ U) = clβX(X ∩ U) and is also locally
compact so that by 4.12 X ∪U is CNP. It follows from Theorem 4.3 that there is a
βX-neighbourhood of X ∪U to which each fn extends. The conclusion now follows
from the converse part of the same theorem. ¤

Example 4.14. We give an example of a compactification K of an Lindelöf CNP
space X and a closed subspace A ⊆ X for which X∪clK(A) is not absolute CR-epic.

We take X = N. It is known that there is a compactification K of N for which
K −N is the unit interval I = [0, 1], see [Chandler (1976), Theorem 7.8]. Take an
open interval U ⊆ I and a point p ∈ I not in clI(U). Since clI(U) is compact, it
is also closed in K. Thus there is a function f : K // [0, 1] such that f(p) = 1,
while f vanishes on cl(U). The set V = f−1[0, 1/2) is open and contains cl(U).
If A = V ∩ N, then U ⊆ V ⊆ clK(A) ⊆ f−1[0, 1/2]. It follows that p /∈ clK(A)
so that clK(A) ∩ I is a closed subset that is neither empty nor all of I. We claim
that B = N ∪ clK(A) does not satisfy CNP. In fact, K − B is an open subset of I
and therefore a countable union of open intervals, each of which is σ-compact and
hence K − B is also σ-compact. It is, in particular, an Fσ and its complement B
is a Gδ. A Gδ that satisfies the CNP is open. But if B were open, B ∩ I would be
clopen in I and different from ∅ and I. Thus B does not satisfy the CNP.

To see that B is not even absolute CR-epic, we begin by observing that every
point of K is a Gδ. For N this is obvious. If p ∈ K − N, there is a function
f : K − N // [0, 1] that vanishes only at p. This function extends to K. Since
N is Lindelöf and open in K, there is a function g : L // [0, 1] with coz(g) = N
and then we see that f + g vanishes only at p, which is thereby a Gδ. Since B is
Lindelöf and not CNP, it is not locally compact. It follows from [Barr, et al. (2005),
Theorem 4.2] that K is first countable at every point. Then the condition 2 of
[Barr, et al. (2005), Theorem 4.3] applies, from which we conclude that B is not
absolute CR-epic.
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Definition 4.15. Let θ : X //Y be continuous. We say that θ has local sections
if for all p ∈ Y there is a neighbourhood U of p and a map ϕ : U // X such that
θϕ is the inclusion U Â Ä // Y .

Theorem 4.16. Suppose that θ : X // Y has local sections. If X is CNP so is Y .

Proof. Suppose that p ∈ Y . Choose a neighbourhood U of p on which there
is a section ϕ. We can choose U open, in which case θ−1(U) will also be open
and hence satisfy the CNP (see [Barr, et al. (2007b), Theorem 3.5.4]). Clearly the
image of ϕ is contained in θ−1(U) and hence U is a retract of θ−1(U). A retract in
a Hausdorff space is closed and hence ϕ(U) is also CNP (Theorem 3.4.1, op. cit.).
Since ϕ(U) ≡ U , it follows that each point of Y has a CNP neighbourhood and
thus Y is CNP (Theorem 3.4.2, op.cit.). ¤
4.1. The Egyptian topology on Q. There is a topology on the rational numbers
Q that is derived from the representation of rationals as Egyptian fractions. The
easiest way to describe this is to let N+∗ denote the one point compactification of
the positive integers and let X =

∑∞
k=1(N

+∗)k. Map f : {0, 1}×X //Q by letting

f(n0, n1, n2, . . . , nk) = (−1)n0

(
1
n1

+
1

n1 + n2
+ · · ·+ 1

n1 + · · ·+ nk

)

This is surjective since every rational number has at least one (actually infinitely
many) representations as a sum of distinct unit—or Egyptian—fractions. Of course,
any term with ∞ in the denominator is 0. The Egyptian topology on Q is the
quotient topology induced by f . The resultant space is obviously Hausdorff since
the topology is finer than the usual topology on Q.

For several years we have been wondering whether Q with the Egyptian topol-
ogy was absolute CR-epic. The following theorem gives a positive answer to the
question. One of the implications is that the Egyptian topology on Q is finer than
the usual topology since the latter is not absolute CR-epic ([Barr, et al. (2005),
Example 1.3.12]).

Theorem 4.17. Suppose the Hausdorff space X =
⋃

n∈N Kn is a union of com-
pact sets and has the quotient topology from

∑
n∈N Kn. Then X is Tychonoff and

Lindelöf CNP.

Proof. We begin by showing X is Tychonoff. The inverse image of a point in⋃
Kn consists of at most one point in each summand and is therefore closed. We

can assume, without loss of generality that K1 ⊆ K2 ⊆ · · · . Let A ⊆ X be closed
and p /∈ A. We will construct a series of continuous functions fn : Kn

// [0, 1] each
extending the previous one and let f : X // [0, 1] be the unique function whose
restriction to Kn is fn. The quotient topology is such that a function is continuous
if its restriction to each Kn is. We may assume without loss of generality that
p ∈ K1. Begin by letting f1 : K1

// [0, 1] be any function for which f1(p) = 0
and f1(A ∩K1) = 1. First extend this to K1 ∪ (A ∩K2) by letting the extended
function be 1 on A∩K2. Since K1 ∪ (A∩K2) is compact, it is C-embedded in K2

and hence may be extended to a function f2 : K2
// [0, 1]. Continue the obvious

induction to get the required function f .
From Lemma 4.5, to show CNP, it is (necessary and) sufficient to show that if

L1, L2, . . . is a countable family of compact subsets of βX − X, and L =
⋃

Ln,
then clβX L is disjoint from X. So assume we are given such a family and assume
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that p ∈ X. We will show that there is a neighbourhood V of L and a function
f : X // [0, 1] such that f(p) = 0 and f(V ∩ X) = 1. Finding such a V and
f will suffice since from L ⊆ intβX(V ) ⊆ clβX(intβX(V ) ∩ X), it will follow that
f(p) = 0, while f(L) = 1 and hence that p /∈ clβX(L). Since p was an arbitrary
point of X, it therefore follows that X ∩ clβX(L) = ∅. To construct this function,
we again suppose that the Kn are nested and that p ∈ K1. Begin by choosing a
closed (hence compact) neighbourhood V1 of L1 that misses p. There is a function
f1 : K1

// [0, 1] with f1(p) = 0 and f1(V1 ∩K1) = 1. The next step is to choose
a closed neighbourhood V2 of L2 that is disjoint from K1. This is possible because
K1 is a compact set inside X and L2 is a compact set disjoint from X. First extend
f1 to the set K1 ∪ ((V1 ∪ V2) ∩ K2) by letting it be 1 on (V1 ∪ V2) ∩ K2. This
works because (V1 ∪ V2) ∩K2 ∩K1 = (V1 ∪ V2) ∩K1 = V1 ∩K1 since V2 is disjoint
from K1. Then let f2 be a further extension of f1 to all of K2, with f2 = 0 on
(V1 ∪ V2) ∩ K2. Continue by induction to finally get f . Again, the restriction to
each Kn is continuous and therefore f is continuous in the quotient topology. That
X is Lindelöf is obvious. ¤

Example 4.18. Let N∗ denote the one-point compactification of N. Map the space

N × N∗ θ // Q by enumerating the rationals in a sequence q1, q2, . . . , qn, . . . and
defining θ(k, m) = qk + 1/m while θ(k,∞) = qk. This is obviously continuous,
but cannot be a quotient mapping since Q is not even absolute CR-epic, let alone
CNP. We conclude that there must exist a discontinuous function f : Q // R that
nonetheless satisfies limm //∞ f(q+1/m) = f(q) for all q ∈ Q. After we mentioned
the existence of such a function to Alan Dow, he sent us a simple construction of
an explicit one that is nowhere continuous, in fact, unbounded in every interval of
rationals.

Example 4.19. On the other hand, the countability in Theorem 4.17 is crucial.
Let S ⊆ QN∗ denote the set of convergent sequences with their limits. Give S the
discrete topology and consider the evaluation map S × N∗ // Q. This is clearly
a quotient mapping since a map on Q that preserves the limits of all convergent
sequences is continuous. But Q does not satisfy the CNP; it is not even absolute
CR-epic.

5. Subspaces and extensions of EP spaces

Theorem 5.1. A closed C∗-embedded subspace of an EP space is also an EP space.

Proof. Let X satisfy the EP and A be a closed C∗-embedded subspace. It is
sufficient to show that in any compactification K of A, every function in C∗(A)
extends to a K-neighbourhood of A. In [Barr, et al. (2007b), 6.1–6.3], we showed
that the amalgamated sum X +A K has enough real-valued functions to separate
points and thus maps injectively to its associated Tychonoff space that we will
denote Z. Thus the diagram

K Z
ϕ

//

A

K
²²

A X// X

Z

θ

²²
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is a pushout in the category of Tychonoff spaces (although not necessarily in Top).
We also showed that θ is a topological embedding. We claim that θ is a dense
embedding. In fact, if W = clZ(θ(X)), then ϕ−1(W ) is a closed subspace of K
containing A, which means that ϕ−1(W ) = K. But then ϕ and θ both factor
through W , which is impossible for W 6= Z. Then any f ∈ C∗(A) extends to
X and then to a Z-neighbourhood U of θ(X). It follows that ϕ−1(U) is a K-
neighbourhood of A. ¤

Theorem 5.2. An open subspace of a normal EP space is also an EP space.

Proof. Let X be a normal EP space and U an open subset. For each x ∈ X
there is a closed neighbourhood V (x) of x contained in U . Since V (x) is closed and
embedded in the normal space X, it is C∗-embedded. By the preceding theorem,
V (x) is an EP space. Now apply Theorem 2.4. ¤

Theorem 5.3. Suppose X is a Lindelöf EP space and A ⊆ X. Then X ∪ clβX(A)
is also Lindelöf and EP (and is therefore absolute CR-epic).

Proof. Let Y = X∪clβX(A). We must show that whenever K is a compactification
of Y (and hence of X, since X is dense in Y ), then every f ∈ C∗(Y ) extends to a
neighbourhood of Y in K. Let f be such a function. Since X is absolute CR-epic,
the maximum extension of f |X in K (implicit in 2.3) includes a cozeroset U ⊇ X
and also includes clβX(A), so that it includes W = U∪clβX(A). Let θ : βX //K be
the canonical map and V = θ−1(U). Clearly V is a cozeroset in βX that contains
X. A cozeroset in a compact space is locally compact and Lindelöf and hence CNP
([Barr, et al. (2007b), Example 5.1]).

Now let Z = V ∪clβX(A). Since A ⊆ X ⊆ V , it follows from Theorem 4.6 that Z
is Lindelöf CNP. Since K is a compactification of X∪clβX(A), it follows that θ maps
clβX(A) homeomorphically on its image in K. Thus θ−1(U∪clβX(A)) = V ∪clβX(A)
and it follows from 3.4 that θ|Z is closed. From 4.7, we see that W = θ(Z) is
CNP. Since it is obviously Lindelöf, it is absolute CR-epic and the map f that
we started with extends to an open subset of K that contains W and, a fortiori,
X ∪ clβX(A). ¤

Theorem 5.4. Suppose X is Lindelöf absolute CR-epic and A ⊆ βX is either a
zero-set or a cozero-set. Then X ∪A is Lindelöf absolute CR-epic.

Proof. The case of a zeroset is already covered in 2.9. A cozero-set is the union of
zero-sets and the result follows from 2.8. ¤

6. Extensions that satisfy the UEP

Lemma 6.1. A space X satisfies the UEP if and only if for every closed X-
admissible equivalence relation E on βX, there is an E-compatible βX-neighbourhood
of X.

Proof. Suppose X satisfies the UEP. Suppose that E is a closed X-admissible
equivalence relation on βX and K = βX/E with canonical map θ : βX // K. Let
V be a K-neighbourhood of X such that every f ∈ C∗(X) extends to V . Clearly
U = θ−1(V ) is a neighbourhood of X. Suppose E is not U -admissible. Then there
is a point p ∈ U and a point q ∈ βX (the latter might or might not belong to U)



Local extension of maps 15

such that p 6= q, but (p, q) ∈ E. There is an f ∈ C(βX) such that f(p) = 0 and
f(q) = 1. Then it is obvious that f |X has no extension to U .

For the converse, let K be a compactification of X and let θ : βX // K be the
canonical map. If E is the kernel pair of θ, then E is X-admissible, hence there
is an E-compatible U ⊇ X. Since every f ∈ C∗(X) extends to βX, it follows
immediately that every such f extends to U . ¤

Theorem 6.2. Suppose X satisfies the UEP and {Aα} is a family of zerosets in
βX, each disjoint from X. Then if A =

⋃
Aα, X ∪A satisfies the UEP.

Proof. Let K be a compactification of X ∪ A, and E be the kernel pair of the
canonical map βX // K. Since X satisfies the UEP, there is a βX-open set U
containing X such that E is also U -admissible. Theorem 2.7 supplies an open
set V ⊇ A such that every A-admissible equivalence relation is V -admissible and
hence every (X∪A)-admissible equivalence relation is also (U ∪V )-admissible. The
conclusion now follows from Lemma 6.1. ¤

Corollary 6.3. Suppose X is Lindelöf. Then the conclusion of the preceding the-
orem is true without the assumption that the Aα are disjoint from X.

Proof. Let K be a compactification of X ∪ A. Let E be the kernel pair of the
canonical map θ : βX // K and let U be an E-admissible βX-neighbourhood of
X. Since X is Lindelöf, Smirnov’s Theorem implies that we may take U to be a
cozeroset. But then U is locally compact Lindelöf and has the UEP. For each α,
Aα−U is then a zeroset and the preceding theorem implies that U∪(A−U) = U∪A
satisfies the UEP. Thus there is an E-admissible open set V ⊇ A. It follows that
U ∪ V is an E-admissible open set containing X ∪A. ¤

Corollary 6.4. If X is Lindelöf and satisfies the UEP and U is an open set in
βX, then X ∪ U satisfies the UEP.

Proof. An open set in a Tychonoff space is a union of cozerosets and every cozeroset
is a (countable) union of zerosets. ¤

6.1. Levy’s question. Ronnie Levy has shown that any Tychonoff space X that
is not pseudocompact can be densely and properly embedded into a space Y with
the property that for any p ∈ Y −X there is an f ∈ C∗(X) that cannot be extended
to p, [Levy (1980), Corollary 6.2]. He further raised the question of whether Y could
be taken as pseudocompact or even compact. Here we use the preceding corollary
to provide a negative answer to this question.

Our counter-example uses the space X of [Barr, et al. (2009), 6.1–6.4]. Begin
with a countable family {Xn}. For this example, we will suppose the Xn are
locally compact, non-compact, and Lindelöf (and therefore not pseudocompact).
The space β(

∑
Xn) can be viewed as the union of three disjoint subsets: A =
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β(
∑

Xn)−∑
(βXn), B =

∑
(Xn), and C =

∑
(βXn−Xn), which can be pictured:

B =
∑

Xn C =
∑

(βXn −Xn)

A = β(
∑

Xn)−∑
βXn

We let f : β(
∑

Xn) // [0, 1] be the continuous extension of the map on
∑

Xn that
takes every element of Xn to 1/n. It is clear that f is identically 1/n on all of βXn

and hence the zeroset of f is exactly A. We let X = A∪B, which is Lindelöf. Now
let X //Y be a dense embedding of X into a pseudocompact space. Then K = βY
is a compactification of X which means it is quotient of βX. For each n, the set
Xn is clopen in B. If it were clopen in Y , Y could not be pseudocompact. In fact,
let θ : A∪B∪C //K be the canonical surjection and Z = θ−1(Y ). A clopen set is
C-embedded and, since Xn is not pseudocompact, there is an unbounded function
on Xn. Since Xn is open, it cannot be closed, which means that some point of its
frontier βXn − Xn meets Z. But for sufficiently large n, every bounded function
on A ∪ B extends to all of βXn −Xn. This is inconsistent with a positive answer
to Levy’s question.

We note that the same argument shows that we cannot ensure that Levy’s space
is connected since if there were no point of βXn −Xn in Y , Xn would be a clopen
subset of Y .

Example 6.5. We have just seen that the space X above satisfies the UEP (and
therefore the CEP), but it was shown in [Barr, et al. (2009), 6.1–6.4] that it did
not satisfy the CNP. This demonstrates that CNP is stronger than the CEP (and
independent of the UEP). Added in proof: The one-point Lindelöfization of an
uncountable discrete space provides an example of a space that satisfies the CNP
and not the UEP.

6.2. Open questions.

1. Are finite products of Lindelöf CNP spaces either Lindelöf or CNP?
2. Since both open and closed images of Lindelöf CNP spaces are Lindelöf
CNP, it is natural to ask about general quotient maps. Note that if X // Y
is a quotient map that factors into a finite sequence of alternately open and
closed maps and X is Lindelöf CNP, so is Y .

3. The results on the Egyptian topology on Q, suggests the question of
which countable spaces are absolute CR-epic. Such spaces, if Tychonoff,
are necessarily totally disconnected, and we can start by considering the ex-
tremely disconnected case. (There is a countable extremally disconnected
space in βQ−Q that has no isolated points and is not absolute CR-epic (see
[Barr, et al. (2005), 4.4]. On the other hand assuming that there are P-points
in βN−N, there is a countable extremally disconnected Lindelöf CNP space
without isolated points constructed in [Dow, etal (1988)].)
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