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ISBELL DUALITY

MICHAEL BARR, JOHN F. KENNISON, AND R. RAPHAEL

Abstract. We develop in some generality the dualities that often arise when one
object lies in two different categories. In our examples, one category is equational and
the other consists of the topological objects in a (generally different) equational category.

1. Introduction

Many years ago, one of the authors heard Bill Lawvere say that a potential duality arises
when a single object lives in two different categories. When asked, Lawvere credited the
statement to John Isbell. From the literature, it seems that what is called “Isbell duality”
is the one between frames with enough points and sober spaces. The common object is
the boolean algebra 2 in the first category and the Sierpinski space S in the second.

The purpose of this paper is to explore the situation in some generality. Of course,
there are well-known examples such as the original Stone duality and many others that
follow the pattern, but we have general results that seem to be new. We study three
main examples. First, the duality between N-compact spaces, defined as spaces that are
closed subspaces of a power of N, and a class (which we have not been able to identify) of
lattice ordered Z-rings, defined as lattice-ordered rings that are algebraically and lattice-
theoretically embedded in a power of Z, (Section 6). The second is a similar duality
between realcompact spaces and a class of lattice-ordered R-algebras, (Section 7). The
third is the duality between certain categories of discrete and topological abelian groups
(Section 8). Other examples are briefly noted in Section 9.

Preliminary to this, we develop what appear to be new results in category theory.
There is some overlap between this article and some of the material in [Johnstone

(1986)], especially his VI.4. However, Johnstone begins with different assumptions on
the categories and is headed towards different conclusions. He begins with equational
categories and introduces the topology by looking at the algebras for the triples (monads)
associated to the homfunctors. Our general theory is less restrictive and the topology
is present from the beginning. He derives the duality between sober spaces and spatial
frames, but in a quite different way. He and many others have done the Gelfand duality.
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As far as we are aware the duality between N-compact spaces and a class of Z-rings is
new, as is the duality between a certain class of topological abelian groups and a class of
discrete groups.

Another paper that overlaps this one is [Porst & Tholen]. It Section 5, the existence
and some of the basic properties of both hom(-, ZC ) and hom(-, ZD), including that the
underlying sets are the respective Homs. Our paper is concerned more with constructing
the homs and proving their basic properties. The referee has pointed out that the largely
expository [Porst & Tholen] depends on [Dimov & Tholen (1993)] in which homs are
also constructed. He has also directed us to the following additional papers on duality,
[Borger, et al. (1981), Hofmann (2002), Davey (2006)].

1.1. Notation. We will be considering a number of special classes of monic and epic
morphisms. All our categories are concrete (with obvious underlying functors) and we
will use Â Ä // only for maps that, up to equivalences, are embeddings, algebraic as well
as topological (when a topology is present). All epic and all other monic arrows will be
denoted // // and // // , respectively. If they come from a special class (e.g. extremal
monics) we will say so. Another notational convention we will adopt for most of this
paper is that | − | is used to denote the underlying set of an object. The exceptions are
in Sections 6 and 7 where it is used to denote the absolute value of a real number and in
Section 8 where it is used to denote the discrete group underlying a topological group.

1.2. The setting. We consider categories C and D that are complete and cocomplete
and have faithful limit-preserving underlying functors |-|C : C //Set and |-|D : D //Set .
In addition, we specify objects ZC ∈ C and ZD ∈ D with |ZC | = |ZD |, denoted Z.

Let C and D be objects of C and D, respectively. By a bimorphism of C ×D to Z
we mean a function f : |C| × |D| // Z such that:

B1. for each c ∈ |C|, f(c, -) underlies a morphism D // ZD ; and

B2. for each d ∈ |D|, f(-, d) underlies a morphism C // ZC .

These morphisms are unique because of the faithfulness of the underlying functors.
We denote the set of these bimorphisms by Bim(C, D).

For any morphism g : C ′ // C in C , any object D ∈ D, and any f ∈ Bim(C,D),

we have a function |C ′| × |D| |g|×|D| // |C| × |D| f // Z. Thus if c′ ∈ |C ′|, then f ◦

(|g| × |D|)(c′, -) = f(|g|(c′), -) is a morphism in D , while for any d ∈ |D|, f ◦ (|g| ×
|D|)(-, d) = f(-, d) ◦ g and is a morphism in C . A similar computation for D shows that
Bim : C op × Dop // Set is a functor. One aim in this paper is to show that, under
reasonable hypotheses, this functor will be representable in the following sense:
There are functors hom(-, ZC ) : C // D and hom(-, ZD) : D // C such that hom(-, ZC )

is embedded in Z
|-|
D and hom(-, ZD) is embedded in Z

|-|
C in such a way that

|hom(-, ZC )| ∼= HomC (-, ZC ); |hom(-, ZD)| = HomD(-, ZD)

HomD(-, hom(-, ZC )) ∼= Bim(-, -) ∼= HomC (-, hom(-, ZD))
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and

Hom(-, ZC ) Z |-|Â Ä //

|hom(-, ZC )|

Hom(-, ZC )

∼=

²²

|hom(-, ZC )| |Z |-|
D |Â Ä // |Z |-|
D |

Z |-|

∼=
²²

Hom(-, ZD) Z |-|Â Ä //

|hom(-, ZD)|

Hom(-, ZD)

∼=

²²

|hom(-, ZD)| |Z |-|
C |Â Ä // |Z |-|
C |

Z |-|

∼=
²²

commute, where the bottom inclusions are the canonical ones.

2. Some categorical generalities

2.1. Fixed objects. Let A and B be categories. Let U : B // A be a functor with
left adjoint F . An object A ∈ A is fixed by UF if the inner adjunction A // UFA is an
isomorphism and an object B ∈ B is fixed by FU if the outer adjunction FUB // B is
an isomorphism. In our case of contravariant adjoints, both adjunction morphisms look
inner. Thus an object C ∈ C is fixed if the canonical map C // hom(hom(C, ZC ), ZD)
is an isomorphism and D ∈ D is fixed if D // hom(hom(D, ZD), ZC ) is. We denote
by Fix(UF ) ⊆ A and Fix(FU) ⊆ B the full subcategories of fixed objects. Nothing
guarantees that these categories are non-empty, but we do have:

2.2. Theorem. If F : A // B is left adjoint to U : B // A , then the restrictions of F
and U define equivalences Fix(UF ) ' Fix(FU).

For a proof, see [Lambek & Rattray (1979), Theorem 2.0].

2.3. The epic/extremal-monic factorization system. For the rest of this sec-
tion, we will suppose that A is a category with finite limits and colimits. A map
m : A1

//A2 in A is called an extremal monic if whenever m = f ◦ e with e epic, then e
is an isomorphism. The existence of coequalizers implies that extremal monics are monic.
We say that A has an epic/extremal-monic factorization system if every morphism f can
be written as f = m ◦ e with e epic and m extremal monic. It can be shown that, for any
commutative diagram

A′
1 A′

2
//

m
//

A1

A′
1

f1

²²

A1 A2
e // // A2

A′
2

f2

²²

with e epic and m extremal monic, there is a unique map A2
// A′

1 making both tri-
angles commute. That map is called the diagonal fill-in. This readily shows that the
factorization is unique up to unique isomorphism.

Isbell showed that a sufficient condition for such a factorization system to exist is
that A be complete and well-powered with respect to extremal monics, [Isbell (1966),
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Theorem 2.4].1 We next turn to results concerning extremal well-poweredness.
We note that in any category with pullbacks and pushouts, the class of extremal

monics is pullback invariant.
In the next three propositions assume that A has a faithful pullback-preserving under-

lying set functor, denoted |-|. We will use the well-known fact that pullback-preserving
functors preserve monics. In this case this means that monics are taken to injective (that
is, one-one) functions.

2.4. Proposition. If f : A′ // // A is an extremal monomorphism in A such that |f | :
|A′| // |A| is surjective, then A′ // A is an isomorphism.

Proof. If |f | is surjective, then, because of the faithfulness of |-| it follows that f is epic
and, since f is also extremal monic, it must be an isomorphism.

2.5. Proposition. Suppose we have a diagram in A of the form

A′
2 A2

//
g

//

A1

A′
2

A1

A2

f

²²

for which there is a function u : |A1| // |A′
2| such that

|A′
2| |A2|//

|g|
//

|A1|

|A′
2|

u

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ
|A1|

|A2|

|f |

²²

commutes. Assume either that g is extremal monic or that g is monic and |-| reflects
isomorphisms. Then there is a unique morphism h : A1

// A′
2 such that |h| = u.

Proof. We will prove this under the hypothesis that g is extremal monic. The other case
is similar. Form the pullback diagram

A′
2 A2

//
g

//

A′
1

A′
2

p

²²

A′
1 A1

// q // A1

A2

f

²²

1In reading Isbell, the statement that the category has a set of objects needs explanation. Isbell was
dealing with a three-universe set theory. Although his language is different, he assumes small sets, large
sets, and proper classes. His category is small-complete and small-extremally-well-powered, but may have
a large set of objects.
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Since extremal monics are pullback invariant, q is extremal monic. By assumption, there
is a function u : |A1| // |A′

2| making the lower right triangle commute

|A′
2| |A2|//

|g|
//

|A′
1|

|A′
2|

|p|

²²

|A′
1| |A1|// |q| // |A1|

|A2|

|f |

²²

|A1|

|A′
2|

u

zzvvvvvvvvvvvvvvv

As for the upper left triangle, we have that |g| ◦ u ◦ |q| = |f | ◦ |q| = |g| ◦ |p|. Since |g| is
injective, it can be cancelled on the left and the other triangle commutes. The underlying
diagram is also a pullback, and one easily sees that this forces |q| : |A′

1| // |A1| to be an
isomorphism in Set . It follows from the preceding proposition that q is an isomorphism
and then p−1q is the required map.

2.6. Proposition. The category A is well-powered with respect to extremal monics. If
|-| reflects isomorphisms, then A is well-powered.

Proof. We will prove the first claim; to get the second just drop “extremal” everywhere.
Suppose A1

// // A and A2
// // A are extremal subobjects with |A1| and |A2| the same

subset of |A|. Apply Proposition 2.5 in both directions to the diagram

A2 A// //

A1

A2

A1

A

²²

²²

It then follows that two extremal subobjects with the same underlying subset are equal
so the conclusion follows from the well-poweredness of sets.

From this and the previously cited theorem of Isbell’s we see the following:

2.7. Theorem. Suppose that A is complete with a faithful limit-preserving functor to
Set . Then A has an epic/extremal monic factorization system.

2.8. Factorization systems and the RSAFT. In addition to the Epic/Extremal-
monic factorization system, there are others. For example there is usually an Extremal-
epic/Monic factorization inherited from the dual category. The general definition is a pair
of subcategories E and M , each containing all the isomorphisms, with the property that
every arrow f has a unique, up to isomorphism, factorization f = m ◦ e with m ∈ M and
e ∈ E .

It is not required in an E/M factorization system that every arrow in E be epic nor
that every arrow in M be monic. But both conditions are satisfied in most common
factorization system. Such a system will here be called standard. To simplify our
exposition we will specialize to the standard case.

We state some of the well-known properties of factorization systems.
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2.9. Proposition. Let E/M be a standard factorization system in the category A .
Assume that A has finite limits and colimits. Then the following properties—as well as
their duals—hold:

1. The diagonal fill-in.

2. The converse of the diagonal fill-in: if a map m has the property that for every
e ∈ E and for every commutative diagram

· ·m
//

·

·²²

· ·e // ·

·²²

there is a diagonal fill-in, then m ∈ M .

3. Every regular monic belongs to M (because every e ∈ E is epic).

4. M is invariant under pullbacks.

5. M is closed under arbitrary products.

6. M is closed under arbitrary intersections.

7. M is closed under composition (because it is a subcategory).

8. If f ◦ g ∈ M , then g ∈ M .

The argument below follows closely that of [Barr & Wells (1984), Exercise SAFT], in
turn organized by G. M. Kelly.

2.10. Theorem. Suppose A is a complete category with a standard factorization system
E/M . Suppose Q is a set of objects of A with the property that every object A ∈ A has
an M -embedding into a product of objects from Q . Suppose objects of A have only a set
of M -subobjects. Then A has an initial object.

Proof. Since each object has a set of M -subobjects and M is invariant under intersec-
tion, each object has a least M -subobject. So let A be an object and A0 its least M -
subobject. Write A // //

∏
i∈I Qi with each Qi ∈ Q . Let J ⊆ I be an enumeration of the

set of distinct objects among the Qi. There is a canonical arrow s :
∏

j∈J Qj
//
∏

i∈I Qi

determined by proji ◦ s = projj where j is the unique element of J for which Qj = Qi.

Clearly s is a split monic and hence belongs to M . Form the pullback

A
∏

i∈I Qi
// //

P

A

²²

²²

P
∏

j∈J Qj
// //

∏
j∈J Qj

∏
i∈I Qi

²²

²²
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Let P0 be the least M -subobject of P . Then P is also an M -subobject of A so that
A0 ⊆ P0 since A0 is the least M -subobject of A. But since P0 has no proper M -subobject,
A0 = P0. Thus the least M -subobject of A is in fact a subobject of a product of a distinct
set of objects from Q which means that there is only a set of these least M -subobjects.
The product of these least subobjects is an object with at least one morphism to every
object of A . Its least M -subobject cannot have two maps to any object, else the equalizer
of those two maps would be smaller.

2.11. Corollary. [Relative Special Adjoint Functor Theorem] Suppose A is as above.
Then any limit-preserving functor U : A // B has a left adjoint.

Proof. For any object B ∈ B the category B/U has as objects (A, f) where A ∈ A and
(f : B // UA) ∈ B . A map g : (A, f) // (A′, f ′) is a map g : A // A′ such that

UA UA′
Ug

//

B

UA

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
B

UA′

f ′

ÂÂ?
??

??
??

??
??

??

commutes. The set of objects (Q, f) with Q ∈ Q gives the set B/Q and the set of
g : (A, f) // (A′, f ′) with g ∈ E (respectively, g ∈ M ), gives the classes B/E and B/M .
It is easy to see that B/U is complete and that the set B/Q of objects and the classes
(B/E)/(B/M ) satisfy the conditions of the theorem so that B/U has an initial object
(FB, εB) which gives the adjunction.

3. More categorical generalities: triples

3.1. The triple associated to an adjoint pair. Let F : A // X be left adjoint
to U : X // A with adjunction natural transformations η : Id // UF and ε : FU // Id.
Then for T = UF and µ = UεF , the triple T = (T, η, µ) will be called the triple associated
to the adjunction.

In this paper, all the triples we use arise in the following way. Let A be a complete
category, E be an object of A , and F = Hom(−, E) : A // Set op which is readily seen to
be left adjoint to U = E(−) : Set op // A . Then T is the triple associated to the adjoint
pair.

3.2. Definition. Suppose F : A // X is left adjoint to U : X // A with adjunction
morphisms η : Id //UF and ε : FU //Id. Let T = UF be the associated triple. Following
Paul Taylor, we say that an object A of A is T-sober if there is an equalizer diagram

A // UX //// UY
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In fact, we could take X and Y to have the form FB and FC so that UX = TB and
UY = TC, so the name is not a misnomer. However, this form is convenient for use. We
say that A is canonically T-sober if the diagram

A
ηA // TA

TηA //
ηTA

// T 2A

is an equalizer. Later, we will give an example that shows that T-sobriety is strictly weaker
than canonical T-sobriety (Example 3.8). If T is the triple derived from the powers of E as
described in 3.1 above, we will say that an object is E-sober (respectively, canonically
E-sober), when it is T-sober (respectively, canonically T-sober).

3.3. Proposition. Let A and X be categories. Let F : A // X be left adjoint to
U : X // A with adjunction morphisms η : Id // UF and ε : FU // Id. Suppose that
A has an epic/extremal-monic factorization system. Then for an object A ∈ A , ηA is an
extremal monic if and only if there is an extremal monic A // // UX for some X ∈ X .

Proof. By the universal mapping property of ηA every map A // UX factors through
ηA.

The meaning of the next result is that in a category with cokernel pairs a sufficient
(and obviously necessary) condition that a T-sober object A be canonically T-sober is
that the cokernel pair of ηA be embedded in an instance of T . In an abelian category,
cokernel pairs may be replaced by cokernels. The result has been known in one form or
another since the early days of the study of triples. It is probably due to Jon Beck, but
we have been unable to find a reference.

3.4. Proposition. Let A , X , U , F , and Tbe as above. Suppose that there is an equal-

izer diagram of the form A
ηA // TA

f //
g

// UY . Then A is canonically T-sober.

Proof. Define v = UεY ◦ Tf and w = UεY ◦ Tg both from T 2A // UY . From the
diagram

T 2A TUY
Tf

//

TA

T 2A

ηTA

²²

TA UY
f // UY

TUY

ηUY

²²
TUY UY

UεY
//

UY

TUY
²²

UY

UY

id

$$HHHHHHHHHHHHHHHH

we see that v ◦ ηTA = f and similarly w ◦ ηTA = g. From f ◦ ηA = g ◦ ηA we get
Tf ◦ TηA = Tg ◦ TηA so that

v ◦ TηA = UεY ◦ Tf ◦ TηA = UεY ◦ Tg ◦ TηA = w ◦ TηA

Thus if h : A′ // TA satisfies ηTA ◦ h = TηA ◦ h, we have

f ◦ h = v ◦ ηTA ◦ h = v ◦ TηA ◦ h = w ◦ TηA ◦ h = w ◦ ηTA ◦ h = g ◦ h

and thus we have a unique k : A′ // A such that ηA ◦ k = h.



8 MICHAEL BARR, JOHN F. KENNISON, AND R. RAPHAEL

3.5. Theorem. Suppose that every T-sober object is canonically T-sober. Then the
equalizer of two maps between T-sober objects is T-sober.

Proof. Suppose A′′ f // A
g //

h
// A′ is an equalizer and A and A′ are T-sober. It is

immediate that A′′ f // A
(g,id) //

(h,id)
// A′ × A is also an equalizer. Moreover, the two arrows

A // A′ now have a common left inverse. Thus we may suppose that g and h have a
common left inverse l. In the diagram

A′′ Ae //

TA TA′
Tf //

A

TA

ηA

²²

A A′
f //

A′

TA′

ηA′′

²²
TA TA′oo T l

A

TA
²²

A A′oo l A′

TA′
²²

TA TA′
Tg

//

A

TA

ηA

²²

A A′
g

// A
′

TA′

ηA′

²²

T 2A T 2A′
T 2f //

TA

T 2A

TηA

²²

TA TA′
Tf //

TA′

T 2A′

TηA′

²²
T 2A T 2A′

T 2g
//

TA

T 2A

ηTA

²²

TA TA′
Tg

// TA′

T 2A′

ηTA′

²²
T 2A T 2A′oo T 2l

TA

T 2A

OO

µA

TA TA′oo T l TA′

T 2A′

OO

µA′

the row and both columns are equalizers. There are many more commutativities, which
we leave to the reader to calculate. There are enough of them to apply the following
lemma, which will complete the proof.

The following folkloric result goes back, in dual form in degree zero, to the fact that
the diagonal chain complex associated to a double simplicial object is homotopic to its
total complex.

3.6. Lemma. Suppose in any category

A′′
0 A0

e0 //

A1 A′
1

f1 //

A0

A1

h

²²

A0 A′
0

f0 // A′
0

A′
1

h′

²²
A1 A′

1g1

//

A0

A1

h

²²

A0 A′
0g0

// A′
0

A′
1

h′

²²

A2 A′
2

f2 //

A1

A2

m

²²

A1 A′
1

f1 //
A′

1

A′
2

m′

²²
A2 A′

2
g2

//

A1

A2

k

²²

A1 A′
1g1

// A′
1

A′
2

k′

²²
A2 A′

2
oo l2

A1

A2

A1 A′
1A′
1

A′
2

OO

l′

is a diagram in which the row and two columns are equalizers. Assume the following
commutativities:
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1. f1h = h′f0;

2. g1h = h′g0;

3. f2k = k′f1;

4. g2k = k′g1;

5. f2m = m′f1;

6. g2m = m′g1;

7. l′k′ = l′m′ = id;

8. l2f2 = l2g2 = id.

Then A′′
0

he0 // A1

k′f1=f2k //

m′g1=g2m
// A′

2 is an equalizer.

Proof. First we calculate

k′f1he0 = k′h′f0e0 = k′h′g0e0 = k′g1he0 = g2khe0 = g2mhe0 = m′g1he0

so that he0 is equalized by the other two maps. It is sufficient to show this lemma holds
in the category of sets. So suppose that a1 ∈ A1 is an element such that f2ka1 = g2ma1.
Then apply l2 to conclude that ka1 = ma1. But then there is a unique element a0 ∈ A0

such that ha0 = a1. Using l′ we similarly conclude that f1a1 = g1a1 and then h′f0a0 =
f1ha0 = f1a1 = g1a1 = g1ha0 = h′g0a0 and h′ is monic so that f0a0 = g0a0 and therefore
there is a unique element a′′0 ∈ A′′

0 such that e0a
′′
0 = a0.

Since the full subcategory of A consisting of the T-sober objects is closed under prod-
ucts, we conclude immediately:

3.7. Corollary. If A is complete and if every T-sober object is canonically T-sober,
then the full subcategory of T-sober objects is a limit-closed subcategory of A

3.8. Example. We are indebted to George Janelidze for this example, posted on the
categories net 2008-05-12. It describes a triple Ton a complete category A for which
the category of T-sober objects is not complete. Hence there are T-sober objects not
canonically T-sober.

Let A be the category of commutative rings, let Q be the field of rational numbers,
E = Q[21/4] and K = Q[21/2]. Although it is not necessary, it might help to imagine
these are subfields of the real numbers and that the roots are the unique positive roots.
Then E has a unique element with the properties of being a square root of 2, while
being a square. Every power of E has such a unique element. The unicity implies that
under any ring homomorphism from one power to another, this element is preserved and
hence is in the equalizer of any two homomorphisms between powers of E. Thus every
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E-sober ring contains a square root of 2 (but generally not a fourth root) and hence Q
is not E-sober. On the other hand, K is the equalizer of the two automorphisms of E
and Qis the equalizer of the two automorphisms of K, which of course do not extend to
automorphisms of E.

3.9. Definition. Let U : X // A be a functor. We say that U is a cogenerating
functor if for any pair of distinct arrows f, g : A // B in A , there is an object X
of X and a map of the form h : B // UX such that hf 6= hg. We will say that U is a
coseparating functor if it is cogenerating and whenever f : A //B is not an epimorphism
and g : B // UX is a regular monomorphism, there is a pair of maps h, k : UX // UY
for some object Y of X such that hg 6= kg, but hgf = kgf .

Suppose U has a left adjoint F and Tis the associated triple. Then one can readily
show that U -cogenerating and U -coseparating are the same as T -cogenerating and T -
coseparating, respectively. This follows immediately from the fact that for any object
X, the map UηX : X // UFUX is a monomorphism split by the other adjunction
transformation εUX.

In the special case that T comes from the powers of an object E as described in 3.1
we will say that E is cogenerating respectively coseparating, when T is. We will also
say that E is a cogenerator, respectively, a coseparator.

It is worth noting that for a single object, both the definition of cogenerator and of
coseparator can be phrased in terms of maps to E, rather than involving its powers. For
cogenerators, this is well known, but we spell it out for coseparators. Namely that E is a

coseparator if and only if whenever we have A
f // B

g // EX with f not an epimorphism
and g a regular monomorphism, then there are maps h, k : EX // E such that hg 6= kg,
but hgf = kgf .

One way an object E can be coseparating is that it may happen that whenever f :
A // B is not an epimorphism and g : B // C is a regular monomorphism to any object
of A , then there are maps h, k : C //E such that hg 6= kg, but hgf = kgf . This stronger
form is significant since it is obvious that if E // // E ′ is a monomorphism, if E and E ′

cogenerate the same subcategory, and if E is coseparating in this stronger sense, then so
is E ′. This holds, in particular, if E is injective.

For example, both the unit interval and the real line are cogenerators in the category
of completely regular spaces. Since the interval is injective, it is coseparating. Therefore
the line is also coseparating even though it is not injective. In fact, every path connected
space with more than one point is coseparating since every such space contains a copy
of the unit interval (see [Whyburn, (1942), Remark 3 on page 39] for a proof of Kelley’s
celebrated theorem that any path in a space contains an interval). Another example is
that in the category of zero-dimensional spaces, every space with more than one point is
cogenerating and, once we show that the two point discrete space is coseparating, so are
all the others. Coseparating objects do not seem to be rare, unlike, say, injectives. In the
case of completely regular spaces, it is a challenge to find a cogenerating space that is not
coseparating.
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We will see in Proposition 8.11 that Z is coseparating in the category of Z-cogenerated
topological abelian groups. On the other hand, we do not know if Zis coseparating in the
category of (discrete) Z-cogenerated groups.

Before getting to these issues, we prove the main theorem which motivated the concept.

3.10. Theorem. Let F : A // X be left adjoint to U : X // A and T be the associated
triple. Assume that U is coseparating and that A is complete and well-powered with respect
to extremal monics. Then the following are equivalent for an object A of A :

(1) A is canonically T-sober;

(2) A is T-sober;

(3) there is an extremal monomorphism A // UX for some object X of X ;

(4) ηA : A // TA is an extremal monomorphism.

Proof. It is clear that (1) implies (2) implies (3) and Proposition 3.3 says that (3)

implies (4). Now assume (4). Let B
g // TA be an equalizer of TηA and ηTA. There is

a map f : A // B such that ηA = gf . Since f is a first factor of an extremal monic it
also an extremal monic and will be an isomorphism if it is epic. If not, there are maps
h, k : TA // UY such that hg 6= kg, but h ◦ ηA = k ◦ ηA. In the diagram

A B
f

// B TAg
//A TA

ηA

((

UX TUX
ηUX

//

TA

UX

k

²²

TA T 2A
ηTA //

T 2A

TUX

Tk

²²
UX TUX

ηUX
//

TA

UX

h

²²

TA T 2A
TηA

// T 2A

TUX

Th

²²

we have,

ηUY ◦ h ◦ g = Th ◦ ηTA ◦ g = Th ◦ TηA ◦ g = T (h ◦ ηA) ◦ g

= T (k ◦ ηA) ◦ g = Tk ◦ TηA ◦ g = Tk ◦ ηTA ◦ g = ηUY ◦ k ◦ g

and ηUY is monic, split by UεY , so we find that hg = kg, a contradiction. Thus (1)
follows by Proposition 3.4.

4. The leading examples

We now have to qualify what we mean by an “object living in two categories”. By way
of motivation, we consider a class of examples that includes all the ones that interest us.

Recall that a varietal category is one whose objects are sets with operations and
morphisms are functions that commute with the operations.
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Throughout this section, we will make two basic assumptions. First we suppose that D
is varietal and second, that for any n-ary operation ω in the theory of D, the corresponding
function ω : Zn // Z that defines the structure of ZD underlies a morphism Zn

C
// ZC .

The second assumption can be interpreted to mean that not only is ZD a model of the
theory in sets, but also that its counterpart ZC is a model in C . Note that the n above is
permitted to be an infinite cardinal.

The asymmetry is more apparent than real. If, for example, both C and D are
varietal, then the assumptions are symmetric since the assertions that ZC is a model of
the theory defining D and that ZD is a model of the theory defining C , turn out to be
equivalent. Each one means that for any n-ary operation ω in the theory of D and any
m-ary operation ξ in the theory of C , the diagram

Zm Z
ξ

//

(Zn)m

Zm

ωm

²²

(Zn)m ZnZn

Z

ω

²²

(Zn)m (Zm)n
∼= // (Zm)n Znξn

//

commutes. If C is the category of topological spaces, then it is the category of relational
models of the theory of ultrafilters and a similar diagram can be drawn, only now it will
only weakly commute in the relational sense. The one serious asymmetry, in the general
case we deal with in the next section, is that we will have to assume that the underlying
functor on D, but not the one on C , reflects isomorphisms.

4.1. The functor hom(-, ZC ) : C op // D . For any object C ∈ C , we describe an
object hom(C, ZC ) ∈ D . The underlying set of hom(C,ZC ) is Hom(C, ZC ). For each
n-ary operation ω in the theory of D, let ω̂ : Zn

C
// ZC be the lifting of ω on ZC . Let

ω : Hom(C, ZC )n // Hom(C,ZC ) be the composite

Hom(C,ZC )n ∼= // Hom(C, Zn
C )

Hom(C,ω̂) // Hom(C, ZC )

It is clear that hom(C,ZC ) satisfies the equations to be an object of D. If f : C ′ // C is
a morphism in C , then we have the commutative diagram

Hom(C ′, ZC )n Hom(C,Zn
C )∼=

//

Hom(C,ZC )n

Hom(C ′, ZC )n

Hom(f,ZC )n

²²

Hom(C,ZC )n Hom(C,Zn
C )

∼= // Hom(C,Zn
C )

Hom(C,Zn
C )

Hom(f,Zn
C )

²²
Hom(C,Zn

C ) Hom(C, ZC )
Hom(C′,ω̂)

//

Hom(C,Zn
C )

Hom(C,Zn
C )

Hom(C,Zn
C ) Hom(C, ZC )

Hom(C,ω̂) // Hom(C, ZC )

Hom(C, ZC )

Hom(f,ZC )

²²

which implies that Hom(f, ZC ) underlies a map, denoted hom(f, ZC ) in D. The proof of
functoriality is clear.
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4.2. Proposition. For any object C ∈ C , there is a monomorphism hom(C, ZC ) // θ //Z
|C|
D

such that |θ| is the canonical embedding of Hom(C, ZC ) into Z |C|.

Proof. Since hom(C, ZC ) is the set Hom(C, ZC ) with the structure map described above,
it is sufficient to show that the inclusion Hom(C,ZC ) ⊆ Z |C| underlies a morphism in D.
We have, for each n-ary operation ω, a commutative diagram

Hom(C, ZC ) Z |C|// //

Hom(C, Zn
C )

Hom(C, ZC )

Hom(C,ω)

²²

Hom(C, Zn
C ) (Zn)|C|(Zn)|C|

Z |C|

ω|C|

²²

Hom(C, Zn
C ) (Zn)|C|// //

Hom(C,ZC )n

Hom(C, Zn
C )

∼=

²²

Hom(C,ZC )n (Z |C|)n// // (Z |C|)n

(Zn)|C|

∼=
²²

which allows the desired conclusion.

4.3. Theorem. For any objects C ∈ C and D ∈ D, we have Hom(D, hom(C,ZC )) ∼=
Bim(C, D).

Proof. Suppose f : D // hom(C,ZC ) is given. Then |f | : |D| // Hom(C, ZC ) ⊆
Hom(|C|, Z) = Z |C| whose exponential transpose is ϕ : |D| × |C| // Z. Evidently, for
all d ∈ |D|, ϕ(-, d) = |f |(d) ∈ Hom(C,ZC ). Using the preceding proposition, we have

D
f // hom(C,ZC ) Â Ä θ // Z

|C|
D , so that for each c ∈ |C|, we get a D-morphism D

f // ZD so
that ϕ(c, -) underlies the composite. This shows that Hom(D, hom(C, ZC )) ⊆ Bim(C,D).

Let ϕ : |C| × |D| // Z be a bimorphism. Apply Proposition 2.5 to the diagram

hom(C,ZC ) Z
|C|
D

Â Ä //

D

hom(C,ZC )

D

Z
|C|
D

²²

whose underlying set diagram is

Hom(C, ZC ) Z |C|Â Ä //

|D|

Hom(C, ZC )
xxqqqqqqqqqqqqq

|D|

Z |C|
²²

which gives the opposite inclusion.
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5. The general case

5.1. Hypotheses. We now return to the general case as described in 1.2. Motivated
by the special case above, we will suppose that for each object C ∈ C , there is subobject
we will denote hom(C,ZC ) ⊆ Z

|C|
D , for which we have the following commutative diagram

Hom(C,ZC ) Z |C|Â Ä //

|hom(C, ZC )|

Hom(C,ZC )

∼=

²²

|hom(C, ZC )| |Z |C|
D |Â Ä // |Z |C|
D |

Z |C|

∼=
²²

We will also suppose that |-| : D // Set reflects isomorphisms.

5.2. Theorem. The object function C 7→ hom(C, ZC ) extends to a functor hom(-, ZC ) :
C op // D. Moreover, Hom(D, hom(C,ZC )) ∼= Bim(C, D).

Proof. If f : C // C ′ is a morphism in C apply Proposition 2.5 to the diagram

hom(C,ZC ) Z
|C|
D

Â Ä //

hom(C ′, ZC )

hom(C,ZC )

hom(C ′, ZC ) Z
|C′|
D

Â Ä // Z
|C′|
D

Z
|C|
D

Z
|f|
D

²²

in which the vertical map in 2.5 is the composite hom(C ′, ZC ) Â Ä //Z
|C′|
D

//Z
|C|
D and whose

underlying square is

Hom(C, ZC ) Z |C|Â Ä //

Hom(C ′, ZC )

Hom(C, ZC )

Hom(f,ZC )

²²

Hom(C ′, ZC ) Z |C′|Â Ä // Z |C′|

Z |C|

Z|f |

²²

The second claim is proved in exactly the same way as Theorem 4.3.

5.3. Proposition. The functor hom(-, ZC ) : C op // D preserves limits.

Proof. If C = colim Cα, we get the usual map hom(C, ZC ) // lim hom(Cα, ZC ) whose

underlying function is the isomorphism Hom(C,ZC )
∼= // lim Hom(Cα, ZC ). Since the

underlying functor on D reflects isomorphisms, the conclusion follows.
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For any object D ∈ D, there is a functor ΦD = Hom(D, hom(-, ZC )) : C op // Set and
it is immediate from the preceding proposition that this functor preserves limits.

5.4. Proposition. For any D ∈ D, the functor ΦD is representable.

Proof. It suffices to find a solution set. Let f : D // hom(C, ZC ) be an element of

ΦD(C). For all d ∈ |D| we have |f |(d) ∈ hom(C, ZC). Let f̃ be the map from C // Z
|D|
C

for which πdf̃ = |f |(d). Factor f̃ as C e // //C ′ // m //Z
|D|
C with e epic and m extremal monic.

By transposing, we have a commutative triangle

Hom(C ′, ZC ) Hom(C, ZC )
Hom(e,ZC )

//

|D|

Hom(C ′, ZC )
wwoooooooooooooooooooo |D|

Hom(C, ZC )

|f |

²²

which underlies the open triangle

hom(C ′, ZC ) hom(C,ZC )
hom(e,ZC )

//

D

hom(C ′, ZC )

D

hom(C,ZC )

f

²²

Since e is epic, Hom(e, ZC ) is injective, which implies, since the underlying functor on
D is faithful, that hom(e, ZC ) is monic and we can apply Proposition 2.5 to the above
triangles to get the map f ′ : D // hom(C ′, ZC ) that is the element of ΦD(C ′) for which
ΦD(e)(f ′) = f . Thus the set of all elements of the form f ′ ∈ Hom(C ′, ZC ), taken over all

extremal subobjects of Z
|D|
C , is a solution set, which shows that ΦD is representable.

We denote by hom(D, ZD) the object that represents ΦD. It satisfies

Hom(C, hom(D, ZD)) ∼= Hom(D, hom(C,ZC ))

which means that hom(-, ZD) is the object function of a functor Dop //C that is adjoint on
the right to the functor hom(-, ZC ). It follows from the preceding proof that hom(D,ZD)

is an extremal subobject of Z
|D|
C , a fact we will need later.

Putting this together with 5.2, we get the following:

5.5. Theorem. Under the conditions of 1.2 and 5.1, hom(-, ZC ) extends to a functor
C op // D which is adjoint on the right to a functor hom(-, ZD) : Dop // C . It satisfies

Hom(C, hom(D,ZD)) ∼= Bim(C, D) ∼= Hom(D, hom(C,ZC ))
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5.6. Notation. When there is no chance of confusion, we will usually denote by C∗, the
object hom(C, ZC ) of D . Similarly, D∗ will denote the object hom(D, ZD) of C . Obviously,
this notation must be used with care. We will usually use the notation C, C ′, C0, . . . for
objects of Cand similarly for objects of D .

5.7. The underlying functor of hom. We wish to show that |hom| = Hom. When
C ∈ C , we have assumed that |C∗| ∼= Hom(C, ZC ), so it will be necessary to do this only
for D∗. We will have to make an additional assumption (see 5.10 below), which actually
holds in every case in which the internal homs exist. But first, there is some housekeeping
to carry out.

Suppose U : A // Set is representable by an object R. If U has a left adjoint F , then
R = F1. Then the set of unary operations is the set of natural transformations U // U ,
which is the set of natural transformations Hom(R, -) // Hom(R, -) ∼= Hom(R,R) ∼= UR.
Thus the unary operations are in one-one correspondence with the the elements ω ∈ UR.
Let us examine how this works. Given ω ∈ UR we must interpret ω as a unary operator
on each object A ∈ A . So if a ∈ UA then we must define ωa ∈ UA. But a ∈ UA
corresponds to â ∈ Hom(R,A) (as R represents U) in which case we define ωa = U(â)(ω).

Now we return to the situation we are dealing with. Let C0 denote the full subcategory
of C consisting of all objects that are extremal subobjects of a power of ZC .

5.8. Proposition. The category C0 is complete.

Proof. Suppose {Ci} is a family of objects of C0. Let Ci
Â Ä // ZXi

C . Then we claim that∏
Ci

Â Ä // Z
∑

Xi

C . Suppose C // // C ′ is epic and we have a commutative square

∏
Ci Z

∑
Xi

C
// //

C

∏
Ci

²²

C C ′// // C ′

Z
∑

Xi

C

²²

For each i, we have

Ci ZXi

C
// //

C

Ci

²²

C C ′// // C ′

ZXi

C

²²

C ′

Ci

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

and these diagonal maps C ′ // Ci combine to give a map C ′ //
∏

Ci with the required

commutativity. Now Proposition 2.9(2) implies that
∏

Ci
Â Ä // Z

∑
Xi

C .
If C ′ //C ////C ′′ is an equalizer, then C ′ is an extremal subobject of whatever power

of ZC that C is.
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5.9. Proposition. The restriction of |-| to C0 has a left adjoint.

Proof. Let E0 and M0 consist of those maps in C0 that are epics (respectively, extremal
monics), in C . This is obviously a factorization system in C0. Each object of C0 has only
a set of M0-subobjects and each object has an M0-embedding into a power of ZC . We
now apply the RSAFT, Corollary 2.11, to show the existence of the left adjoint.

5.10. That additional assumption. There is an equational theory associated to each
concrete category. This theory has for its n-ary operations the natural transformations
Un // U . Any equation satisfied by these natural transformations becomes an equation
of the theory. An algebra for this set (or even class) of operations is a set X, which
is equipped with a map Xn // X for each n-ary operation in such a way that all the
equations of the theory are satisfied. Evidently, every object of the form UA is a model
of the theory and we get a full embedding of A into the category of all models.

Note that, in general, the operations of the theory are functions on the underlying
set, not morphisms in the category. In the very special case that they are morphisms in
the category, it is easy to see that the category of algebras is closed. This happens in
the category of modules over a commutative ring and, in particular, in abelian groups.
For ω an n-ary operation in the theory of |-| on C , a lifting of ω to ZD is a morphism
ω̂ : Zn

D
// ZD such that |ω̂| = ω. As we see in the following theorem, the additional

hypothesis is that every unary operation in the theory of C lifts to ZD .

5.11. Theorem. The following are equivalent:

(1) Every operation on |-| : C // Set lifts to ZD ;

(2) Every unary operation on |-| : C // Set lifts to ZD ;

(3) |D∗| = Hom(D, ZD) as subobjects of Z |D|.

Proof.

(1) ⇒ (2) Obvious.

(2) ⇒ (3) Let F : Set // C0 be the left adjoint to the underlying functor. Since F1
represents the underlying functor, we have Bim(F1, D) ∼= Hom(F1, hom(D,ZD)) ∼=
|hom(D, ZD)|. Therefore, it suffices to show that Bim(F1, D) ∼= Hom(D, ZD). Let
ϕ : |F1| × |D| // Z be a bimorphism and let η ∈ F1 be the generator. Then f =
ϕ(η, -) ∈ Hom(D,ZD). We claim that there is a one-one correspondence under which
ϕ corresponds to f . First f determines ϕ. Let d ∈ |D| be given. Then ϕ(-, d) must
underlie a morphism of C0 and so it is determined by ϕ(η, d) which is f(d). Conversely,
let f ∈ Hom(D, ZD) be given. Define ϕ : |F1| × |D| // Z by letting ϕ(ω, d) = ω(f(d)).
Then ϕ(ω, -) = ωf which, by hypothesis, underlies a map of D. For fixed d ∈ |D|,
we see that ϕ(−, d) maps ω to ω(f(d)). But to evaluate ω at f(d), we consider the
morphism (in C ) F1 // ZC that sends η to f(d) and evaluate this map at ω. This
readily shows that ϕ(-, d) underlies a morphism of C . Thus ϕ is a bimorphism.
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(3) ⇒ (1) Since D∗ is an object of C it admits all the operations of the theory. This
means that every operation in the theory of C acts on the underlying set |D∗| =
Hom(D, ZD). Thus if ω is an n-ary operation, we have

Hom(D, Zn
D) ∼= Hom(D, ZD)n ω(hom(D,ZD )) // Hom(D,ZD)

which is readily seen to be natural in D. The Yoneda Lemma implies that natural
transformation Hom(-, Zn

D) // Hom(-, ZD) is induced by a map ω̂ : Zn
D

// ZD .

In the situation of Section 4, ZC is a model of the operations of D and, as we saw at
the beginning of that section, this means that ZD is also a model of any operations on C .
Thus in that case the conclusion follows with no further hypotheses. These observations
lead to,

5.12. Theorem. Suppose D is a full subcategory of an equational category. Under the
hypotheses of 5.10, we have that |hom(-, ZD)| ∼= Hom(-, ZD) in such a way that

Hom(-, ZD) Z |-|Â Ä //

|hom(-, ZD)|

Hom(-, ZD)

∼=

²²

|hom(-, ZD)| |Z |-|
D |Â Ä // |Z |-|
D |

Z |-|

∼=
²²

commutes.

Proof. By the preceding theorem it is sufficient to show that every unary operation on
C applied to Z lifts to a morphism on ZD . The object hom(C, ZC ) is in D so that any
n-ary operation ω on D , determines a function |hom(C,ZC )|n // |hom(C, ZC )|. Since
|hom(C,ZC )| = Hom(C, ZC ), and the underlying functor preserves products this leads to
Hom(C,Zn

C ) // Hom(C, ZC ). This map is readily shown to be natural in C (similar to
the argument in 4.1) and therefore comes from a map Zn

C
// ZC , a lifting of ω to ZC .

Since this is a map in C , it must commute with any operation on C . In particular, for
any unary operation ξ in the theory of C , the square

Zn Zω
//

Zn

Zn

ξn

²²

Zn Z
ω // Z

Z

ξ

²²

commutes. Since ZD is an object in an equational category, this means that ξ lifts to a
morphism ZD // ZD .
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6. 0-dimensional spaces and Z-rings

In this example, we begin with C = Top and D the category of lattice-ordered rings,
henceforth known as LO-rings. A lattice-ordered ring is a ring with identity that is
also a lattice such that x ≥ 0 and y ≥ 0 implies xy ≥ 0 and x ≥ y if and only if x−y ≥ 0.
We will use without further mention the fact that any (weak) inequality can be expressed
as an equation: x ≤ y if and only if x ∨ y = y. Homomorphisms must preserve the
ring-with-identity as well as the lattice structure.

An LO-ring is called a Z-ring if it is a sub-LO-ring of a power of Z. Clearly Z-
rings satisfy all equations and all the Horn sentences satisfied by Z. A weak-Z-ring is a
quotient of a Z-ring by a map that preserves all the structure and satisfies all equations,
although not all Horn sentences. The category of weak Z-rings is the closure of Z under
products, subobjects, and homomorphic images in the category of LO-rings. For example,
any non-standard ultrapower of Z is a weak-Z-ring. It therefore satisfies all first order
sentences (including all the finite Horn sentences) satisfied by Z, but is non-Archimedean.
Examples of equations that are satisfied by weak-Z-rings, but not all LO-rings are the
commutativity of multiplication and the fact that for all x, x2 ≥ 0.

We describe some of the operations and equations satisfied by weak-Z-rings. In any
LO-ring R, for any r ∈ R, we let r+ = r ∨ 0, r− = (−r) ∨ 0 and |r| = r+ + r− = r+ ∨ r−.
Of course, r = r+ − r−. We also denote by r! the derived operation r 7→ |r| ∧ 1. In Z,
this operation takes any non-zero element to 1 and fixes 0. This is an idempotent with
the property that r!r = r. Note that 0 ≤ r! ≤ 1. These equations (including inequalities,
since they can be reduced to equations) are then satisfied by all weak-Z-rings. We also
note that in a weak-Z-ring all squares are non-negative, since squares are non-negative in
Z.

An example of an LO-ring that is not a weak Z-ring is the field Q of rational numbers
since (1/2)! = 1/2, which is not idempotent.

6.1. Proposition. The following properties hold when e and f are idempotents and r
and s are arbitrary elements in a weak-Z-ring R:

(1) e = e!;

(2) e ∧ f is idempotent;

(3) e ∧ f = ef ;

(4) e ∨ f = e + f − ef .

(5) (rs)! = r!s!;

(6) if r = es, then r! ≤ e;
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Proof.

(1) We observe that e = e2 ≥ 0 and the same is true for 1−e, which implies that 0 ≤ e ≤ 1.
But then e! = |e| ∧ 1 = e.

(2) 0 ≤ e ∧ f ≤ 1 so that (e ∧ f)! = e ∧ f ∧ 1 = e ∧ f and hence is idempotent.

(3) From 0 ≤ e ≤ 1 and f ≤ 1, we conclude that ef ≤ f and similarly that ef ≤ e and
hence ef ≤ e ∧ f . The other direction comes from 0 ≤ e ∧ f ≤ e and 0 ≤ e ∧ f ≤ f
implies that e ∧ f = (e ∧ f)2 ≤ ef .

(4) e ∨ f = 1− ((1− e) ∧ (1− f)).

(5) This equation (in the form (rs)! = (rs)! ∧ (r!s!) = (r!s!)) is trivial in Z and hence is
true in any weak-Z-ring.

(6) If r = es, then r! = e!s! = e! ∧ s! ≤ e.

If R is a weak-Z-ring, an ideal I ⊆ R is called a convex ideal if it contains, for each
r ∈ I, the interval [0, r].

The development below is modeled on that for completely regular spaces as found, for
example, in [Gillman & Jerison (1960), Chapter 5]. One big difference is that in Z-rings,
every convex ideal is also absolutely convex.

6.2. Proposition. In any weak-Z-ring, we have the inequality

|(x1 ∧ y)− (x2 ∧ y)| ≤ |x1 − x2|
Proof. It is sufficient to prove this in Z. Since both sides are invariant under the inter-
change of x1 and x2, we can suppose x1 ≤ x2 and look at the three cases of the location
of y with respect to the interval [x1, x2].

6.3. Proposition. If I is a convex ideal in a weak-Z-ring, then the following are equiv-
alent:

1. r ∈ I;

2. |r| ∈ I;

3. r! ∈ I.

Proof. In fact if r ∈ I, then r2 ∈ I and 0 ≤ |r| ≤ r2 so |r| ∈ I. If |r| ∈ I, then from
0 ≤ r! ≤ |r|, we see that r! ∈ I. If r! ∈ I, then from r = r!r, we see that r ∈ I.

6.4. Proposition. Every convex ideal is generated by idempotents. Conversely, every
ideal generated by idempotents is convex.

Proof. The first claim is an immediate consequence of the previous proposition. For the
second, let I be an ideal generated by idempotents. Then r ∈ I if and only if there is an
idempotent e for which r = er. This will hold (for example, in ZD) if and only if r! ≤ e.
For any s ∈ [0, r] it will be the case that s = r!s and, a fortiori, that s = es.



ISBELL DUALITY 21

6.5. Theorem. Let R be a weak-Z-ring and I ⊆ R an ideal. Then the following are
equivalent.

(1) R/I is an LO-ring and the canonical map R //R/I is a homomorphism of LO-rings;

(2) R/I is ordered;

(3) I is convex.

Proof. That (1) implies (2) implies (3) is obvious. So let I be a convex ideal in R.
For x, y ∈ R, let us write x 'I y when x − y ∈ I. If x1 'I x2, then we see from
Proposition 6.2 that, for any y ∈ R, we have x1 ∧ y 'I x2 ∧ y. If x1 'I x2 and y1 'I y2,
then two applications of this congruence imply that x1 ∧ y1 'I x2 ∧ y2, so that R/I has
∧ and the quotient mapping preserves them. As for ∨, we have x ∨ y = −(−x ∧ −y).

6.6. Remark. For the rest of this section, R denotes a weak-Z-ring and ideals of R
will be assumed proper. By a maximal convex ideal we mean a proper ideal that is
maximal among convex ideals. Since being a convex ideal is an inductive property, there
is a maximal convex ideal containing any convex ideal.

We denote by B(R) the boolean algebra of idempotents of R with the usual boolean
operations. In particular, if e and f are idempotents, then e∧f = ef and e∨f = e+f−ef .
Although B(R) is a ring, it is not a subring of R since it is not closed under addition,
although it is closed under sup, inf, and multiplication, and contains 0 and 1.

Since convex ideals are generated by their idempotents, we have an easy proof of:

6.7. Proposition. There is a one-one correspondence between convex ideals of R and
boolean ideals of B(R) such that maximal convex ideals correspond to maximal boolean
ideals.

6.8. Proposition. Let R be a weak-Z-ring and I a convex ideal. Then the following
are equivalent:

(1) I is maximally convex;

(2) I is prime;

(3) R/I is an integral domain;

(4) R/I is totally ordered.

Proof. (1) and (2) are equivalent by the preceding Proposition and the same fact for
boolean rings. (2) and (3) are obviously equivalent. (3) implies (4) because r+r− = 0
implies that either r− = 0 (in which case r ≥ 0), or r− = 0 (in which case r ≤ 0). (4)
implies (1) because if e is any idempotent, then either e ≤ 1−e in which case, multiplying
by e gives e ≤ 0, whence e = 0 or 1− e ≤ e, which implies that e = 1. Since there are no
proper idempotents, there are no proper convex ideals.
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6.9. Proposition. Let R be a weak-Z-ring that is an integral domain. Then no element
of R lies between two integers and every element of R− Z is infinite (either greater than
every integer or less than every integer).

Proof. For any integer n, the equation

(
(x ∧ n)− x

)(
x ∧ (n + 1)− (n + 1)

)
= 0

holds in Z and therefore in any weak-Z-ring, since it expresses the fact that for every
integer x either x ≤ n or n + 1 ≤ x. This equation, in a domain R, says the same thing
about R.

6.10. Spec and Spec0. Let R be a weak-Z-ring. We let Spec(R) denote the set of
maximal convex ideals of R, topologized by the Zariski topology. Since every ideal is
generated by idempotents, we can take as a basis of open sets, those of the form {M ∈
Spec(R) | e /∈ M} where e is an idempotent of R. Since every maximal ideal contains e or
1− e (their product is 0) and not both this is the same as {M ∈ Spec(R) | 1− e ∈ M}. It
will be convenient to denote by N(e) the set of maximal ideals that contain the idempotent
e. Clearly this set is clopen since its complement is N(1 − e). For idempotents d and e,
we see that N(d)∪N(e) = N(d∧ e) and N(d)∩N(e) = N(d∨ e) so that these sets are a
basis for both the open and the closed sets.

Let Spec0(R) ⊆ Spec(R) consist of those maximal ideals M for which R/M = Z.
Since there are no non-identity ring homomorphisms Z // Z, we see that Spec0(R) =
Hom(R,Z). We topologize Spec0(R) as a subspace of Spec(R). A subspace of a com-
pact Hausdorff totally disconnected space is completely regular Hausdorff and totally
disconnected. There is a basis for the clopens that consists of all sets of the form
N(e) ∩ Spec0(R). We will show below that the topology on Spec0(R) is the same as
the topology on hom(R,Z). The functor in the other direction takes the space X to
hom(X,Z), the set Hom(X,Z) with LO-ring structure induced by the structure on Z.

6.11. Proposition. The topology on Spec0(R) is inherited from the product topology
on Z|R|.

Proof. Although we have used the sets N(e) to define the topology, we could use N(r)
for any element r since when I is any convex ideal, r ∈ I if and only r! ∈ I. One subbase
for the closed sets in the product topology on Z|R| consists of sets of the form V (r, n) =
{f : |R| // Z | f(r) = n} for r ∈ R and n ∈ Z. Then V (r, n) ∩ Spec0(R) = N(r − n),
which is closed. Conversely, any set of the form N(r) = V (n, 0) ∩ Spec0(R) is clopen.

From 6.7 and the known properties of Stone duality, we get:

6.12. Proposition. For any weak-Z-ring R, Spec(R) is compact, Hausdorff, and to-
tally disconnected.
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The proof of the following proposition is straightforward. It implies, among other
things, that fixed weak-Z-rings are Z-rings.

6.13. Proposition. Let R be a weak-Z-ring and X = hom(R,Z). Then R is a Z-ring
if and only if R // R∗∗ = hom(X,Z) is injective.

6.14. Lemma. If R is a Z-ring, then Spec0(R) is dense in Spec(R).

Proof. For some set X there is an embedding R // //ZX . For x ∈ X, denote by px : R //Z

the composite R // ZX px // Z. Recall that for an idempotent e ∈ R, the set N(e) =
{M ∈ Spec(R) | e ∈ M} is a basic neighbourhood in Spec(R). Since e is idempotent,
pm(e) can only be 0 or 1. If e 6= 1, then there is some x ∈ X for which px(e) = 0 and then
ker(px) ∈ N(e).

6.15. Examples. We look at Spec(R), Spec0(R), B(R), and R∗∗ for several subrings of
ZN.

(1) R = ZN. In this case, B(R) = 2N, the set of all subsets of N, Spec(R) is the Stone
space of 2N, which is βN, and Spec0(R) = N, since R mod any non-principal ultrafilter is
a non-standard model. Also R∗∗ = hom(N,Z) = ZN = R.

(2) R consists of the bounded sequences in ZN. In this case, B(R) is still 2N since the
characteristic function of any subset is bounded. Therefore Spec0(R) = Spec(R) = βN
since no quotient contains an unbounded element. Then R∗∗ = hom(βN,Z) = R since
every bounded function on N has a unique extension to βN.

(3) R consists of the functions in ZN that are eventually constant. The characteristic
function of a subset of N lies in R if and only if the set is either finite or cofinite, so B(R)
consists of the finite/cofinite subset algebra. Then Spec0(R) = Spec(R) = N∗, the one-
point compactification of N, again since all elements of R are bounded; R∗∗ = hom(N∗,Z)
clearly consists of all the functions that are eventually constant, that is R∗∗ = R.

(4) R consists of all f : N // Z of polynomial growth. This means that there is an n
depending on f such that |f(m)| ≤ mn for all sufficiently large m. (Actually, this could
be stated for all m > 1 without changing the class.) This class is closed under the lattice
operations in ZN and thus is a Z-ring. The characteristic function of every subset is in R,
so evidently B(R) = 2N and Spec(R) = βN. We claim that for every M ∈ βX −X there
is a function in R that is unbounded mod M . In fact, the inclusion function N Â Ä // Z is
an unbounded function since it exceeds every integer with finitely many exceptions and
a non-principal ultrafilter contains no finite set, so that it is greater than n modulo any
such ultrafilter. Thus R/M is non-standard and Spec0(R) = N and R∗∗ = ZN 6= R.

(5) We say that f : N // Z is eventually a polynomial if there is a polynomial p in one
variable such that f(m) = p(m) for all sufficiently large m. Let R be the subset of ZN

consisting of all the eventually polynomial functions. We claim that R is closed under the
lattice operations. For example, let us calculate f ∨ g for two such functions. Suppose f



24 MICHAEL BARR, JOHN F. KENNISON, AND R. RAPHAEL

is eventually p and g is eventually q. The claim is that p ∨ q is eventually either p or q
and hence that is the case for f ∨ g. But p− q is a polynomial and has only finitely many
real roots, so it crosses the x-axis only finitely often and hence is eventually positive or
negative (leaving out the case p = q). In the first case, p ∨ q is eventually p and in the
second it is eventually q.

A characteristic function is eventually polynomial if and only if it is eventually 0 or
eventually 1, so B(R) is again the finite/cofinite boolean algebra and Spec(R) = N∗. On
the other hand, Spec0(R) = N since there are unbounded functions and R∗∗ = ZN 6= R.
Notice also that B(R∗∗) = 2N 6= B(R). This is the only one of the five examples for which
these boolean algebras are unequal.

6.16. Fixed spaces. Recall that a space X is fixed if the canonical map X // X∗∗

is an isomorphism. Here we give a useful characterization of the fixed spaces. We begin
by observing that a subspace inclusion in the category of completely regular (or even
Hausdorff) spaces is epic if and only if the image is dense. It follows immediately that an
extremal monomorphism is precisely the inclusion of a closed subspace. As the following
proposition shows these are also the regular monics.

6.17. Proposition. For any space X, the map X // X∗∗ has dense image.

Proof. For a map f : X // Z and an integer m ∈ Z, let

Um(f) = {θ : hom(X,Z) // Z | θ is a map in D and θ(f) = m}
These sets form a subbase for the topology on X∗∗ induced by the product topology on
Zhom(X,Z). Suppose that the homomorphism θ : hom(X,Z) // Z of LO-rings is in the
closure of X. Let Um1(f1) ∩ Um2(f2) ∩ · · · ∩ Umn(fn) be a basic neighbourhood of θ,
which means that θ(fi) = mi, for i = 1 . . . , n. We want to find an x ∈ X such that
fi(x) = mi, for i = 1, . . . , n. If no such x exists, then at least one of the (fi(x)−mi)

! = 1
for all x ∈ X and then

∏n
i=1(1 − (fi(x) − mi)

!) = 0 for all x ∈ X, which implies that∏
(1− (fi −mi)

!) = 0. But θ is a map of LO-rings, which preserves the (-)! operation. It
follows that θ

(∏
(1− (fi −mi)

!)
)

= 0, which contradicts the hypothesis that θ(fi) = mi

for all i.

In the statement of the next theorem, we have used the notion of N-compactness,
which was introduced as part of a more general notion in [Engelking & Mrowka] as an
obvious analog of realcompactness. Recall that a space is realcompact, if it is a closed
subspace of a power of R and it is N-compact, [Engelking & Mrowka], if it is a closed
subspace of a power of N. A useful summary of the properties of N-compact spaces is
found in [Schlitt, (1991), Introduction]

Many of the results proved below can be found in [Eda, et al. (1989)]. Unfortunately,
the book in which this appears is out of print and widely unavailable. We thank the
referee for bringing it to our attention. However, given its general unavailability, we have
retained our original development in order that the theorems and proofs be more widely
available.

From Theorem 3.10 and the discussion preceding it, we conclude that,
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6.18. Theorem. Let X be a topological space. Then the following are equivalent:

(1) X is N-compact;

(2) X is N-sober;

(3) X is a canonically N-sober;

(4) X is fixed under the adjunction.

The following result will be needed for the analysis of fixed rings.

6.19. Proposition. A 0-dimensional Lindelöf space is N-compact.

Proof. Let X be such a space and Φ = Hom(X,Z). In order to sort out the various
spaces and function spaces, we will adopt the following notation for this proof. Small
roman letters will denote elements of X and elements of NΦ; roman capitals will denote
subsets of X. Small Greek letters will denote functions X // N and Greek capitals
will denote sets of such functions. We will show that X is homeomorphic to a closed
subspace of NΦ by evaluation. This means that ϕ(x) = x(ϕ) where x denotes an element
of X on the left side of that equation and the corresponding element of NΦ on the right.
Continuity is clear. Since X is 0-dimensional, Φ separates points. If U ⊆ X is clopen and
χU is its characteristic function, then {f : Φ // N | f(χU) = 1} is a clopen set in NΦ

whose intersection with the image of X is U . Hence X has the subspace topology. For
the rest of this proof, we will treat X as a subspace of NΦ.

If ϕ, ψ ∈ Φ we let ϕψ denote their pointwise product. Now suppose that f ∈ NΦ is
in cl(X) − X. For U a clopen subset of X, the function χU takes on only the values 0
and 1 on X. It follows that when f ∈ cl(X), f(χU) can only be 0 or 1. We will say that
f adjoins U when f(χU) = 1. Note that when V ⊆ U and f does not adjoin U then it
does not adjoin V . The reason is that χUχV = χV and the equation s(ϕψ) = x(ϕ)s(ψ)
which holds for x ∈ X extends by continuity to cl(X).

Since f /∈ X, there is for each x ∈ X a function ϕx ∈ Φ such that x(ϕx) 6= f(ϕx). Let
u : N // N be the characteristic function of {x(ϕx)}. Then u ◦ϕx is the characteristic
function of ϕ−1ϕ(x) = Ux ⊆ NΦ, which contains x and not f . Since X is Lindelöf, a
countable set, say U1, U2, · · ·, of these clopen neighbourhoods covers X and f does not
adjoin any of them. If we replace Un by Vn = Un −

⋃
i<n Ui we get a cover by disjoint

clopen subsets of X and f does not adjoin any of them either. Now let ϕ be the function
that takes the value n on Vn. Let v : N // N be the characteristic function of {f(ϕ)}.
Then f(v ◦ϕ) = 1 (otherwise we can find a neighbourhood of f which misses X). But
v ◦ϕ is the characteristic function of Vn for n = f(ϕ), so this contradicts the fact that f
does not adjoin Vn.
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6.20. Fixed rings. In contrast to the situation with fixed spaces, we know rather little
about fixed rings. One important property is this:

6.21. Theorem. For any 0-dimensional completely regular space X, the ring hom(X,Z)
is fixed.

Proof. Since X∗∗ is fixed, it follows from Theorem 2.2 that hom(X∗∗,Z) is a fixed ring.
Thus it is sufficient to show that X // // X∗∗ induces an isomorphism hom(X∗∗, R) //

hom(X, R). Since the underlying set functor on rings reflects isomorphisms, it suffices
to show that Hom(X∗∗,Z) // Hom(X,Z) is surjective since the fact that X // // X∗∗ is
dense guarantees that it is injective. This amounts to showing that every continous map
X // Z has a continuous extension to X∗∗.

If f ∈ R = hom(X,Z) and ϕ ∈ X∗∗ = hom(R,Z) then the map |X∗∗| × |R| // Z
given by (ϕ, f) 7→ ϕ(f) is an element of Bim(X∗∗, R) and thus continuous on X∗∗. But
this implies that the extension of f to X∗∗ given by ϕ 7→ ϕ(f) continuously extends f on
X∗∗.

We now introduce a necessary, but not sufficient, condition that a ring be fixed under
the adjunction. The condition suffices to show that the rings of Examples 6.15, 4 and 5,
are not fixed.

Let Th denote the theory whose n-ary operations are of the continuous functions
Zn // Z and whose equations are those satisfied by these functions. Among the opera-
tions are all the LO-ring operations but there will obviously be many more, including in
particular, infinitary operations. Among the unary operations there are four, α1, · · · , α4,
with the property that |n| =

∑4
i=1 α2

i . This characterizes the elements that are greater
than or equal to 0 in the partial order as the sums of four squares. If X is any space and
ω : Zn // Z is continuous, then we have the composite map

Hom(X,Z)n ∼= Hom(X,Zn)
Hom(X,ω) // Hom(X,Z)

so that hom(X,Z) is a model of Th. It is evident that for any X // Y , the induced
hom(Y,Z) // hom(X,Z) is a morphism of models. Thus the category of fixed rings is a
subcategory of the category Th-Alg of Th-algebras. The inclusion Fix(D) // Th-Alg is
full since the composite Fix(D) // Th-Alg // D is. Since fixed rings are, by definition,
of the form hom(X,Z) for some X, we conclude:

6.22. Theorem. The category Fix(D) is a full subcategory of Th-Alg.

To see that the converse is false, we first show by example that Z is not injective for
inclusions of closed subspaces of 0-dimensional spaces.

Let S denote the Sorgenfrey space, which is the real line with the topology in which
basic open sets have the form [a, b). It is known that S is Lindelöf and it is obviously
0-dimensional so that Proposition 6.19 implies that it is N-compact. The space S × S is
not Lindelöf, but it is still N-compact and we will see that it has a closed subspace and
an N-valued map on that subspace that does not extend to the whole space.
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6.23. Proposition. Let Y = S × S. Then there is a closed subspace X ⊆ Y and a
function ϕ : X // Z that does not extend to Y .

Proof. Let X = {(x,−x) | x ∈ S}. One easily sees that X is discrete since [x, x + 1)×
[−x,−x+1) is a neighbourhood of (x,−x) that contains no other point of X. It is closed
because it is closed in the ordinary topology which is coarser. Finally, as is well known,
the characteristic function of the rational points in X cannot be extended to Y .

6.24. Proposition. There are Th-algebras that are not fixed rings.

Proof. Suppose that Y is N-compact (and therefore fixed) and f : X ⊆ Y is the inclusion
of a closed subspace (so X is also fixed) for which Y ∗∗ // X∗∗ is not surjective. Then

there is an equalizer diagram X
f //Y

d //
e

//W in which W = Y +X Y is also fixed. Apply

hom(-,Z) to get

W ∗∗ d∗∗ //

e∗∗
// Y ∗∗ f∗∗ // X∗∗

Since Fix(C ) is equivalent to Fix(D), this diagram is a coequalizer in Fix(D). These are

maps of Th-algebras of course and f ∗∗ can be factored Y ∗∗ g // //R // h //X∗∗ in that category,
where g is surjective and h injective. Since h is monic, the fact that f ∗∗d∗∗ = f ∗∗e∗∗ implies
that gd∗∗ = ge∗∗. If we apply the hom functor and use the fact that X and Y are fixed,

we get X
h∗∗ // R∗∗ g∗∗ // Y . The arrow h∗∗ is monic since f = g∗∗h∗∗ is and g∗∗ is monic

since g is epic. Thus g∗∗ : R∗∗ // Y is a subobject of Y that includes the equalizer of d
and e. Then dg∗∗ = eg∗∗ implies that h∗∗ is an isomorphism. But then R∗∗ = R∗∗∗∗ = X∗∗

which strictly contains R and then R is a Th-algebra that is not in Fix(D).

6.25. The weak-Z-rings. Our example that shows that not every LO-ring is a weak-
Z-ring uses the fact that Q has elements between 0 and 1 that are not idempotent. This
raises the question whether that condition characterizes weak-Z-rings. The answer, with
the help of a private communication from Andreas Blass is no.

If R is an LO-ring in which every element between 0 and 1 is idempotent, then for
any maximal convex ideal I, the quotient R/I has no element between 0 and 1 since it
contains no proper idempotent. If R = S/J where S is a Z-ring and J a convex ideal, then
R/I = S/M where M is some maximal convex ideal of S. If S ⊆ Zn for some cardinal
n, then from B(S) ⊆ B(Zn) and Stone duality, we conclude that Spec(Zn) // Spec(S)
is surjective and so there is a maximal ideal N ⊆ Zn such that N ∩ S = M and then
R ∼= Zn/N . Since the latter is a non-standard model of Z, we could then conclude that
R/I could be embedded in a non-standard model of Z. The following paragraph from
Andreas Blass shows that one cannot infer that every LO-domain with every non-integer
infinite is embeddable in a non-standard model of Z.

Not all such rings can be embedded in an ultrapower of Z. The collection
of diophantine equations that have integer solutions is recursively enumerable
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but (by Matijasevich’s negative solution of Hilbert’s 10th problem), not re-
cursive. So its complement isn’t recursively enumerable and, in particular, is
not the same as the set of diophantine equations for which Peano arithmetic
(PA) proves that there’s no solution (as the latter set is r.e.). So there is a
diophantine equation D that has no solution but PA can’t prove that fact.
Thus, there is a model of PA in which D has a solution. Such a model is
the non-negative part of a ring that satisfies your hypotheses but can’t be
embedded into an ultrapower of Z (because D has no solutions in any such
ultrapower).

Note that the counterexample ring in the preceding paragraph looks a great
deal like Z, since PA proves a lot of number theory. And the same argument
applies, mutatis mutandis, to stronger theories, like ZFC, which will make the
ring look even more like Z.

7. Tychonoff spaces and real-LO-algebras

We will now carry out a similar analysis for Tychonoff spaces and, in this section, we
restrict to such spaces, unless explicitly mentioned otherwise. For a fuller and somewhat
different treatment of these questions, see [Gillman & Jerison (1960), Chapter 5].

There are some serious differences. The notion of convex ideal separates into two
classes, the convex ideals and the absolutely convex ideals ([Gillman & Jerison (1960),
5.1, 5.2]). The definitions of r+, r−, and |r| remain the same, but there is no analog of
r!. Although there is such an operation in R, its values are not generally idempotent and
it leads nowhere. Every maximal convex ideal is absolutely convex and the quotient is
a totally ordered field containing R. We let Spec(R) and Spec0(R) denote the set of all
convex maximal ideals, respectively, those for which the quotient is R. The latter ideals
are called real and the others hyper-real in [Gillman & Jerison (1960)].

We topologize Spec(R) by letting a basis of open sets be U(r) = {M | r /∈ M} for an
element r ∈ R. This is a base since U(r)∩U(s) = U(rs), since maximal ideals are prime.
We topologize Spec0(R) as a subspace of Spec(R).

7.1. Proposition. The topology on Spec0(R) is the one induced by the inclusion of
Spec0(R) = Hom(R,R) ⊆ R|R|.

Proof. The sets of the form {θ : R // R | θ(r) ∈ (a, b)}, in which r ∈ R and a < b are
real numbers, are a subbase for the topology of R|R|. The intersection of this set with
Spec0 consists of those LO-algebra homomorphisms ϕ : R //R for which ϕ((r−a)+) 6= 0
and ϕ((b− r)+) 6= 0, since for any s ∈ R, ϕ(s+) 6= 0 if and only if ϕ(s+) > 0. Obviously,
{ϕ | ϕ(r) 6= 0} is the intersection with Spec0(R) of {θ | θ(r) 6= 0} which is open in the
product topology.
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We have, by analogy with 6.18 the following. Once more we use Theorem 3.10 and
the discussion preceding it. Only the part that (2) implies (4) needs modification, so we
include the argument. The spaces that satisfy these conclusions are called realcompact,
[Gillman & Jerison (1960), 5.9], rather than R-compact

7.2. Theorem. Let X be a topological space. Then the following are equivalent:

(1) X is realcompact;

(2) X is R-sober;

(3) X is canonically R-sober;

(4) X is a fixed space.

Proof. The equivalence of the first three is immediate from Theorem 3.10. To see that
(2) implies (4), it will be sufficient to show that X is dense in Spec0(hom(X,R)) since it
is closed there. It will be convenient here to use the definition of Spec0(hom(X,R)) as a
subspace of the space of maximal ideals (since R is rigid). We must show that every non-
empty open subset of Spec0(hom(X,R)) meets X. A basic open set is U(f) = {f | f /∈ M}
for some f : X // R. If U(f) 6= ∅, f is not identically 0, so there is some x ∈ X with
f(x) 6= 0. Let Mx = {g : X // R | g(x) = 0}. This is a maximal ideal. Thus Mx ∈ U(f)
and h ≡ h(x) (mod Mx) and so the homomorphism determined by Mx is evaluation at
x.

8. Z-groups

8.1. Definitions, notation, and preliminary remarks. In this section, all groups
are abelian and “free” means “free abelian”. We let C denote the category of topological
abelian groups and D the category of abelian groups. If we let Z be the circle group, we
would be generalizing Pontrjagin–Van-Kampen duality. This is interesting, but quite well
known. Instead, will use the group Z of integers. In this section |C| denotes the discrete
group underlying a topological group C.

As usual, we have that the contravariant functors homC (−,Z) : C // D and
homD(−,Z) : D // C are adjoint on the right. We want to work out what topo-
logical groups are fixed under the composite C // D // C and what groups are fixed
under the composite D // C // D .

Generally speaking an object of Cwill be denoted by a C and an object of D by a D.
One exception to the latter is that P will generally be used for a free group in D . If X
is a free generating set for P , we write P = X · Z.

When C and C ′ are objects of C , we will write C ′ Â Ä // C, to mean that the object C ′

is embedded, algebraically and topologically in C. For discrete groups, D′ Â Ä // D simply
means it is embedded. For an object C of C , we write |C| for the underlying discrete
group.



30 MICHAEL BARR, JOHN F. KENNISON, AND R. RAPHAEL

We note that since (−)∗ is a right adjoint, it preserves limits. In this contravariant
context, this means it takes an exact sequence

D′′ // D // D′ // 0

in Dto an exact sequence
0 // D′∗ // D∗ // D′′∗

in which the first map is a topological embedding. Similarly, when

C ′′ // C // C ′ // 0

is exact in C , so is
0 // C ′∗ // C∗ // C ′′∗

For the latter, it is critical that the given C //C ′ be a quotient mapping. We will actually
apply the latter only in the case that C and C ′ are discrete.

There is, as usual, a canonical map D // D∗∗ and similarly for an object of C . We
will say that an object is fixed when the double dualization map is an isomorphism.

8.2. Fixed groups in C . We will show that the fixed groups of Care those that are
the kernel of a homomorphism between powers of Z, that is the Z-sober groups.

From adjointness, it follows that when P = X · Z, then its dual is P ∗ = ZX .
There is an obvious necessary condition that a topological group be fixed. If D is an

abelian group, it has a resolution by free groups:

0 // P1
// P0

// D // 0

where P0 and P1 are free. Dualizing, we get an exact sequence

0 // D∗ // P ∗
0

// P ∗
1

which enables us to conclude:

8.3. Proposition. A necessary condition that a topological group be fixed is that it be
Z-sober.

In order to prove that that condition is also sufficient, we begin with:

8.4. Proposition. Free groups are fixed as objects of D.

Proof. Let P = X · Z be free. Since P ∗ = ZX , we must show that (ZX)∗ ∼= X · Z. It
is known (but far from obvious) that this is true even without continuity when X has
non-measurable cardinality. But it is much easier using continuity. The kernel of a map
f : ZX // Z has to be an open subgroup. Every open subgroup contains one of the form

ZX−X0 for some finite subset X0 ⊆ X. This means that f factors as ZX // ZX0
f0 // Z,

which means that

hom(ZX ,Z) ∼= colim hom(ZX0 ,Z) ∼= colim X0 · Z ∼= X · Z
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8.5. Proposition. Suppose C is a topological subgroup of P ∗ with P free. Any contin-
uous homomorphism f : C // Z factors through the image of C in P ∗

0 for some finitely
generated subgroup P ∗

0 ⊆ P ∗.

Proof. Let P = X · Z. Since the kernel of f is open it must contain a set of the form
A ∩ ZX−X0 for some finite subset X0 ⊆ X.

8.6. Proposition. Suppose D is a subgroup of a finitely generated free group P . Then
for any f : D // Z there is a positive integer n such that nf extends to a homomorphism
on P .

Proof. Consider the diagram

Z Q//

D

Z

f

²²

D P// P

Q

Since Q is injective, f extends to a homomorphism g : P // Q. If n is the lcm of the
denominators of all the fractions needed to express g on the generators of P , it is clear
that ng is Z-valued.

8.7. Proposition. Suppose P is free and C is a topological subgroup of P ∗. For any
continuous homomorphism f : C // Z, there is an integer n such that nf extends to a
homomorphism P ∗ // Z.

Proof. From 8.5, we know that f factors through the image C0 of C in P ∗
0 for some

finitely generated subgroup P0 ⊆ P . We now apply the previous proposition to the
inclusion C0

// P ∗
0 , both topologized discretely.

8.8. Corollary. If C is a topological subgroup of P ∗, then the cokernel of P // C∗ is
torsion.

8.9. Corollary. If C // // C ′ is an inclusion of Z-cogenerated topological groups, then
the cokernel of C ′∗ // C∗ is torsion.

Proof. Let C ′ // // P ∗ be an embedding. For any ϕ : C // Z there is an n > 0 and a
ψ : P ∗ // Z such that ψ|C = nϕ. Then ψ|C ′ is an element of C ′∗ whose restriction to C
is nϕ.

8.10. Theorem. A topological group is fixed if and only if it is Z-sober.

Proof. We have one direction in 8.3. Suppose that 0 // C // P ∗
0

// P ∗
1 is exact. If we

let T = coker(P0
// C∗), then we have a sequence

P1
// P0

// C∗ // T // 0



32 MICHAEL BARR, JOHN F. KENNISON, AND R. RAPHAEL

The subsequence P1
// P0

// C∗ is not exact, but the composite is 0. From Corollary
8.8, we know that T is torsion, and hence has no non-zero homomorphisms to Z. Thus
we have a sequence

0 // C∗∗ // P ∗
0

// P ∗
1

The initial three term subsequence is exact and the remaining composite is 0 so that C∗∗

is a subgroup of the kernel of P ∗
0

// P ∗
1 , which is C, while C is canonically embedded in

it. The composite C // C∗∗ // C is the identity since when followed by the inclusion
into P ∗

0 it is the inclusion. When the composite of monics is an isomorphism, both factors
are isomorphisms as well.

8.11. Proposition. Let C0 be the full subcategory of Cconsisting of those topological
abelian groups that are cogenerated by Z. Then Z is coseparating in C0.

Proof. Suppose that f : A // B is not epic in C0 and g : B // C is a regular monic,
which implies it is a closed subgroup. Then there is a map ϕ : B // Z for which ϕ 6= 0
but uϕf = 0. From 8.9, there is an n > 0 and ψ : C // Z such that ψg = nϕ. Since
ϕ 6= 0, also nϕ 6= 0 while ϕf = 0 implies the same for nϕ.

8.12. Corollary. If there is an extremal monic C // ZX in the category of Z-
cogenerated topological abelian groups, then C is canonically T-sober.

Of course to apply this, we have to know what the extremal monics are. Certainly
regular monics are extremal. In any category, regular monics are extremal, so any fixed
object is canonically T-sober. On the other hand any T-sober object is fixed, so we see
that an extremal monic into a power of Zis regular. Thus the canonically Z-sober objects
of Dare just the fixed ones.

8.13. Corollary. Fix(C ) is the limit closure of Z in C .

Proof. We have seen in Theorem 8.10 that every fixed group is in the limit closure of Z.
The other direction follows immediately from Corollary 3.7.

8.14. Theorem. For any object D of D, D∗ is fixed.

Proof. Let P1
// P0

// D // 0 be a free resolution of D. This gives an exact sequence
0 // D∗ // P ∗

0
// P ∗

1 and the conclusion follows from 8.10.

8.15. Theorem. A group in C is fixed if and only if it is canonically Z-sober.

Proof. According to 3.4 a Z-cogenerated group A is canonically Z-sober if and only the
cokernel B of A // Z|A

∗| is Z-cogenerated. And that happens if and only if B // B∗∗ is
monic. The significance of the map A // Z|A

∗| is that it dualizes to |A∗| ·Z // A∗ which
is obviously surjective. Thus from 0 // A // Z|A

∗| // B // 0, we get the exact sequence
0 // B∗ // |A∗| ·Z // A∗ // 0 whose second dual is the second row of the commutative
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diagram with exact rows:

0 A∗∗// A∗∗ Z|A
∗|// Z|A
∗| B∗∗//

0 A// A Z|A
∗|//A

A∗∗
²²

Z|A
∗| B//Z|A
∗|

Z|A
∗|

²²

B

B∗∗
²²

B 0//

The snake lemma implies that ker(B // B∗∗) ∼= coker(A // A∗∗), from which the equiv-
alence is immediate.

8.16. Fixed objects of D. Here we will characterize fixed objects of Das those that
have a pure embedding into a power of Z. Recall that if D is an abelian group, a subgroup
D′ ⊆ D is said to be pure if every element of D′ is as divisible in D′ as it is in D. It is
easily seen that when D is torsion free, then D′ ⊆ D is pure if and only if D/D′ is torsion
free. This is equivalent (in the torsion-free case) to the assumption that whenever x ∈ D
and nx ∈ D′ for some positive integer n, then x ∈ D′.

8.17. Proposition. Let D be Z-group. Then D∗∗/D is torsion.

Proof. Let P // // D // 0 be exact with P free. Then 0 // D∗ // P ∗ is exact, whence
we have, from 8.8 that there is an exact sequence P // D∗∗ // T // 0 with T torsion.
The map P // D∗∗ factors as P // // D // // D∗∗ so that D∗∗/D ∼= T .

8.18. Proposition. For any discrete group D, the bijection |D∗| // D∗ induces a pure
inclusion D∗∗ Â Ä // |D∗|∗ so that the quotient |D∗|∗/D∗∗ is torsion free.

Proof. If ϕ : |D∗| // Z is a homomorphism and n > 0 an integer such that nϕ is
continuous on D∗, then the kernel of nϕ is an open subgroup of D∗. But ker nϕ = ker ϕ
so the latter is also open in D∗ and hence ϕ ∈ D∗∗.

8.19. Theorem. Let D be a Z-group and X be a set of generators for the abelian group
Hom(D,Z). Then D is fixed if and only if coker(D // ZX) is torsion free.

Proof. Since X generates Hom(D,Z) the induced map X ·Z // |D∗| is surjective so we
have an exact sequence 0 // C // X ·Z // D∗∗ // 0 of discrete groups in C . Applying
the duality functor gives us a commutative diagram with exact rows:

0 |D∗|∗// |D∗|∗ ZX// ZX C∗//

0 D// D ZX//D

|D∗|∗

f

²²

ZX D′//ZX

ZX
²²

D′

C∗

g

²²

D′ 0//

The snake lemma gives us that cokerf ∼= ker g. If D is fixed, then D ∼= D∗∗ so that the
preceding proposition implies that cokerf is torsion free and hence so is ker g. Since the
image of g is a subgroup of the torsion free group C∗, we see that D′ is also torsion free.
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For the converse, suppose that D′ is torsion free. Then we see that ker f is also torsion
free. Then D∗∗/D is isomorphic to a subgroup of cokerf = |D∗|∗/D and is thereby torsion
free, while we have just seen that it is torsion.

8.20. Theorem. Suppose there is a pure embedding D // ZX for some set X. Then
the canonical embedding D // ZHom(D,Z) is pure.

Proof. There is a simple argument using the snake lemma, but we will give a direct
proof. An mapping D // ZX is determined by it product projections which gives a
function u : X // Hom(D,Z). To say that D is pure in ZX means that for all integers
n > 0, if d ∈ D is an element such that u(x)(d) is divisible by n for all x ∈ X, then d is
divisible by n in D. The contrapositive is that if d is not divisible in D by any integer,
then for all n > 0, there is an x ∈ X such that n does not divide u(x)(d). Since for each
x ∈ X there is a such a function, then there is one in the entire set Hom(D,Z).

8.21. Theorem. For any object C of C , C∗ is fixed.

Proof. Let 0 // P1
// P0

// |C| // 0 be a free resolution of |C|. We have an exact
sequence

0 // |C|∗ // P ∗
0

// P ∗
1

which shows that |C|∗ has a pure embedding into P ∗
0 . But C∗ // |C|∗ is also pure just as

in the proof of Proposition 8.18 and so C∗ is a pure subgroup of P ∗
0 .

If D Â Ä // D′ we write pc(D) (for pure closure) for the set of elements of D′ that
have a non-zero multiple in D. Evidently, pc(D) is the smallest pure subgroup of D′ that
contains D.

8.22. Theorem. Suppose D is Z-cogenerated. Then D∗∗ = pc(D) in ZHom(D,Z).

Proof. From the preceding theorem, we know that pc(D) is fixed. The inclusion
D // pc(D) induces (pc(D))∗ and then pc(D) // D∗∗. Since D∗∗ ⊆ ZHom(D,Z), we
have D ⊆ pc(D) ⊆ D∗∗ as subobjects of ZHom(D,Z). Since D∗ is fixed, we know that
X ·Z // D∗∗∗ = D∗ is fixed and it follows from Proposition 8.18 that D∗∗ // ZHom(D,Z) is
pure. But pc(D) is the smallest pure subgroup of ZHom that contains D and so we must
have that D∗∗ = pc(D).

8.23. Remark. We do not know if every pure subgroup of a power of Z is a regular
subobject of a (possibly different) power of Z. If there are such examples, then Fix(D) is
larger than the limit closure of Z. Since a pure subobject of a pure subobject is pure, it
follows that Fix(D) is complete.

8.24. Example. As an application, we see that any power of Z is, as an object of D,
fixed. For F = Hom(−,Z) : D // Set op is left adjoint to U = Z(−) : Set op // D. Since,
for any set X,

UX
ηUX // TUX

TηUX //
ηTUX

// T 2UX
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is a split equalizer, it follows that

0 // UX
ηUX // TUX

TηUX−ηTUX // T 2UX

is exact and hence TUX/UX is torsion free, being embedded in a power of Z. From [Eda,
et al. (1989), Corollary 6.9], we know that when X is non-measurable,

(
ZX

)∗ ∼= X · Z
and thus the second dual is ZX , but this shows it for all cardinalities, even though the
first dual is more complicated.

8.25. Example. We describe an abelian Z-cogenerated group G with an element t such
that every homomorphism G // Z takes t to an even integer but t is not twice any other
element of G. Thus the canonical map G // ZHom(G,Z) is a non-pure embedding.

We begin with the group A = ZN ×N · Z. Let en ∈ ZN be the element with 1 in the
nth coordinate and 0 in all others. Similarly, let gn be the similar element in N · Z. Let
H be the subgroup of A generated by all elements of the form (en− e1, 2g1− 2gn) and let
G = (ZN ×N · Z)/H. In G elements of the form (en,−2gn) are equal for all n.

We treat elements of A as elements of G with equality being congruence mod H.

8.26. Lemma. Let ϕ : ZN × 0 // Z be a homomorphism. For any integer k there is a
homomorphism ψ : G // Z such that ψ(0, g1) = k and ψ(u, 0) = 2ϕ(u) for all u ∈ ZN.

Proof. Let ψ0 : A // Z by

ψ0(u,
∑

kngn) = 2ϕ(u) +
∑

knϕ(en − e1) + k
∑

kn

It is a simple computation to show that ψ0 vanishes on H and therefore induces the
required map ψ.

8.27. Lemma. G is Z-cogenerated.

Proof. Let (u,
∑

kngn) be a non-zero element of G. If every kn is an even integer, this
element is equal mod H to an element of the form (v,

∑
kng1). If

∑
kn = 0 there is a

homomorphism ZN // Z that does not vanish on v and the preceding lemma provides
ψ : G //Z with the required property. If

∑
kn 6= 0, then the preceding lemma applied to

the 0 map on ZN provides ψ : G //ZN for which ψ(0, g1) = 1. Then ψ(v,
∑

kng1) =
∑

kn.
Finally, we consider the case that km is odd for at least one m. In that case, let ψ0 : A //Z
be a homomorphism such that ψ0(em, 0) = 2, ψ0(0, gm) = 1, ψ0(en, 0) = ψ0(0, gn) = 0 for
all n 6= m. The first equation is possible using the projection of ZX on the mth coordinate.
It is clear that ψ0(u, 0) is even for all u ∈ ZX . Then ψ0(em − e1, 2g1 − 2gm) = 2− 2 = 0
and so ψ0 induces ψ : G // Z for which ψ(u,

∑
kngm) = ψ(u, 0) + km 6= 0 since ψ(u, 0) is

even and km is odd.

8.28. Lemma. Let t ∈ G be the common value of (en,−2gn). Then ϕ(t) is even for
every ϕ : G // Z.

Proof. Since Hom(ZN,Z) ∼= N ·Z there is an integer n such that ϕ(en, 0) = 0. But then
ϕ(t) = −2ϕ(gn).



36 MICHAEL BARR, JOHN F. KENNISON, AND R. RAPHAEL

8.29. Lemma. There is no element s ∈ G with 2s = t.

Proof. We will show that there is a map ϕ : G // Z2 = Z/2Z for which ϕ(t) = 1. There
is a canonical map f : ZN×N ·Z //(Z2)

N×N ·Z2 and f(H) is the subgroup generated by
all elements of the form (e1−en, 0) and so f induces a map G //(Z2)

N/f(H)×N ·Z2 and
under this map f(t) = f(e1, 0) = f(e2, 0) = · · ·. There is a map to Z2 from the subgroup
of (Z2)

N generated by t that takes t to 1. The injectivity of Z2 in the category of Z2-
modules allows the extension of this map to the whole group and provides the required
mapping.

9. Concluding remarks

9.1. General Aims. The main goals of this paper are to define what is meant by say-
ing that an object Z lives in two different categories, Cand D , and to explore the duality
that usually results. We show that when the categories have well-behaved underlying set
functors, the Hom-functors, HomC (−, Z) and HomD(−, Z) can usually be lifted to con-
travariant functors between Cand Dwhich are adjoint on the right. The duality between
a subcategory of Cand a subcategory of Dthen follows from the contravariant equivalence
between the full subcategories of fixed objects, as in Theorem 2.2. We note that many
familiar dualities arise in this way and we construct some new examples.

We also develop some useful categorical tools to help us identify the fixed objects. In
particular, the fixed objects are often the Z-sober objects. When dealing with Hausdorff
spaces, the Z-sober objects may be the “Z-compact” objects, but for a non-Hausdorff
space, this won’t work. For example, Let S denote the Sierpinski space, the two point
space with one point open and the other not. The notion of “S-compact” is usually left
undefined (and if we extend the standard definition as a closed subspace of a power, we
do not seem to get a useful concept–an S-compact space would have at most one closed
point.) The notion of an object coseparating the subcategory it cogenerates often proves
to be quite useful. Every injective object is coseparating, but being coseparating is much
weaker than being injective. In fact it is not easy to find objects in reasonable categories
that are not coseparating. Further categorical tools are discussed in Sections 2 and 3.

9.2. More examples. Here we list some well-known additional examples of this kind
of duality. Most of these are found in [Johnstone (1974)]. The example of linearly compact
vector spaces (see after the table for the definition) is found in [Lefschetz (1942)], where
it was introduced to make homology and cohomology more nearly dual.
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C D Z Fix(C ) Fix(D)
Topological
abelian groups

Abelian groups R/Z compact abelian
groups

abelian groups

Topological
spaces

Spatial frames S sober spaces spatial frames

Topological
spaces

Boolean algebras 2 Stone spaces Boolean algebras

Sets Complete atomic
boolean algebras

2 Sets Complete atomic
boolean algebras

Linearly compact
vector spaces

Vector spaces K Linearly compact
vector spaces

Vector spaces

Complete sup
semi-lattices

Complete sup
semi-lattices

2 Complete sup
semi-lattices

Complete sup
semi-lattices

The vector spaces are over some field K. A linearly topologized vector space is one
that has a neighbourhood basis at 0 consisting of linear subspaces. Such a space is
linearly compact if every cover by affine translates of such open neighbourhoods has a
finite subcover. It turns out (and that is the essence of the duality) that such a space is
necessarily a cartesian power of the field.

A complete sup semi-lattice is of course a complete lattice but the category has maps
that preserve infinite sups but not necessarily any infs. This category is the only one we
are currently aware of in which C = D = Fix(C ) = Fix(D). Usually, this duality appears
as a duality between complete sup semi-lattices and complete inf semi-lattices, with right
adjoint as the dual of a morphism. But in the framework of this paper, it appears naturally
as an auto-duality on the category of complete sup semi-lattices. Needless to say, there
is a similar duality on the category of complete inf semi-lattices.

References

M. Barr and C. Wells (1984), Toposes, Triples and Theories. Springer-Verlag.

R. Borger, W. Tholen, M.B. Wischnewsky, H. Wolff (1981), Compact and hypercomplete
categories, J. Pure Appl. Alg. 21, 129–144.

B. A. Davey (2006), Natural dualities for structures, Acta univ. M. Belii 13, 3–28.

G.D. Dimov and W. Tholen (1993), Groups of Dualities, Trans. Amer. Math. Soc. 336,
901–913.

K. Eda, T. Kiyosawa and H. Ohta (1989), N-compactness and its applications, in: Topics
in general topology, 459-421, North-Holland.

R. Engelking and S. Mrowka 1958, On E-compactness. Bull. Acad. Sci. Polon., Sér. Sci.
Math. Astronom. Phys. 6, 4429–426.



38 MICHAEL BARR, JOHN F. KENNISON, AND R. RAPHAEL

L. Gillman and M. Jerison (1960), Rings of Continuous Functions. D. Van Nostrand,
Princeton.

D. Hofmann (2002), A generalization of the duality compactness theorem, J. Pure Appl.
Alg. 171, 205–217.

J.R. Isbell (1966), Structure of categories. Proc. Amer. Math. Soc. 72, 619–655.

P. Johnstone (1974), Topos Theory. Academic Press.

P. Johnstone (1986), Stone Spaces, Cambridge University Press, second printing.

J. Lambek and B.A. Rattray (1979), A general Stone Gel’fand duality. Trans. Amer.
Math. Soc., 248, 1–35.

S. Lefschetz (1942), Algebraic Topology. Amer. Math. Soc. Colloquium Pub. 27.

J. Nunke (1961), Slender groups. Bull. Amer. Math. Soc. 67, 274–275.

H.-E. Porst and W. Tholen (1991), Concrete dualities. In H. Herrlich and H.-E. Porst,
eds., Category Theory at Work, Heldermann, 111–136.

G. M. Schlitt (1991), N-compact frames, Comment. Math. Univ. Carol. 32, 173–187.

G. T. Whyburn (1942), A decomposition of compact continua and related the-
orems on fixed points under continuous transformations, Amer. Math. Soc.
Colloquium Publications, XXVIII.

Department of Mathematics and Statistics
McGill University, Montreal, QC, H3A 2K6

Department of Mathematics and Computer Science
Clark University, Worcester, MA 01610

Department of Mathematics and Statistics
Concordia University, Montreal, QC, H4B 1R6
Email: barr@barrs.org, jkennison@clarku.edu, raphael@alcor.concordia.ca

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/20/0/20-00.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information. Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LATEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Georgia Southern University: gseal@georgiasouthern.edu

Transmitting editors.
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