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Abstract. This paper explores the connection between categories of models of Horn
theories and models of finite limit theories. The first is a proper subclass of the second.
The question of which categories modelable by FL theories are also models of a Horn
theory is related to the existence of enough projectives.

1. Introduction

Since both logical theories and sketches are used to present types of categories, the ques-
tion naturally arises as to what classes of logical theories are equivalent to what kinds of
sketches. In general, they give such different ways of organizing things that direct com-
parisons are not possible. It has been assumed, for example, that universal Horn theories
classify the same kinds of theories as finite limit (also known as left exact) sketches. It
turns out that this is not quite the case. In fact, all categories classified by universal Horn
theories can also be classified by FL sketches, but not conversely. The basic difference is
that a left exact theory allows one to define an operation whose domain is a limit, while
a Horn theory allows one only to say that one limit is a subset of another.

Results similar to these have been obtained, using logical methods, by Volger [1987]
and Makowsky [1985].
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2. Equational Horn theories

By an equational Horn theory we mean an equational theory augmented by a set of
conditions of the form

[φ1(x) = ψ1(x)] ∧ · · · ∧ [φn(x) = ψn(x)]⇒ [φ(x) = ψ(x)]

where φ, ψ, φi and ψi are operations in the theory and x stands for an element of a product
of sorts to which they all apply. Note that since we are using the whole theory (that is
the full clone), irrelevant arguments may be added to operations so that the operations in
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the above clause have the same arguments. Of course, if a sort is empty, any equational
sentence stated in terms of that sort is satisfied.

By a generalized equational Horn theory we mean an equational theory aug-
mented by a set of conditions of the form

[
∧

(φi(x) = ψi(x)]⇒ [φ(x) = ψ(x)],

allowing a possibly infinite conjunction.

We begin with,

2.1. Theorem. The category of models of a (generalized) equational Horn theory is
sketchable by a finite limit (resp. limit) sketch.

Proof. We give the proof in the finite case. It is well known that the models of a
multi-sorted equational theory can be sketched by an FP sketch, that is one that uses
only the predicates of finite products. For any equational Horn sentence

(
∧

(φi = ψi))⇒ (φ = ψ)

the operations φi, ψi, φ and ψ are all operations on some object in the theory. Next we
observe that it is only conventional notation that puts a meet in the antecedent. In fact,
that antecedent is the same as the single equation

〈φ1, φ2, . . . , φn〉 = 〈ψ1, ψ2, . . . , ψn〉 ◦

In a sketch, there are no distinguished generating sorts anyway. Thus a Horn sentence
can be given by (φ = ψ)⇒ (φ′ = ψ′). Now in any model, the set of solutions to φ = ψ is
simply the equalizer of two arrows. If we add those two arrows (along with their source
and target) to the sketch, we can also add their equalizer. We can do the same for φ′ = ψ′.
We can then add an operation from the one equalizer to the other along with commutative
diagrams that ensure that this operation is merely an inclusion between two subobjects
of the same object.

The following theorem appears to be closely related to the main result of [Banaschewski
& Herrlich, 1976], except that the condition on filtered colimits is replaced by closure under
ultraproducts, a trivial modification. See also the paper of Shafaat [1969].

2.2. Theorem. Let C be an equational category and D ⊆ C be a full subcategory.
A necessary and sufficient condition that D be the category of models of a generalized
equational Horn theory based on the operations of C is that D is closed under subobjects
and products. If the theory of C is finitary, then D is the category of models for a Horn
theory if and only if it is also closed under filtered colimits.

Of very similar import is,
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2.3. Theorem. Let C be the category of models of an FL sketch (or of an FL theory).
Then C is the category of models of a generalized equational Horn theory if and only if
C has a regular generating class of regular projectives. The Horn theory can be taken to
be finitary if and only if this generating set can be taken to be finite.

Proof. It is left to the reader to show that if A is the category of algebra for a
multi-sorted equational theory and C is the full subcategory defined by an equational
Horn theory, then A has enough projectives and their reflections in C are a sufficient set
of projectives there.

Let I be a sufficient set of projectives. There is a functor U : C // SetI that sends an
object C of C to the I-indexed set Hom(P,C), P ∈ I. Since C is the category of models
of an FL theory, it is complete and cocomplete, which implies that this functor has a left
adjoint F , which takes the I-indexed set {SP} to the algebra

∑
P SP ·P where we let S ·P

denote the sum of S copies of P . The adjoint pair induces a triple on the category SetI

whose category of algebras we denote by A . We have the standard structure/semantics
comparison Φ: C // A with left adjoint Ψ. Since I includes a generating family, the
embedding is faithful. Also it is a full, by a theorem of Beck’s which asserts that Φ is full
and faithful if and only if every object of C is a regular quotient of a free algebra. (See
[Barr & Wells, 1985], Section 3.3, Theorem 9 for single-sorted theories; the general case
offers no additional problem.)

Now we have C embedded as a full reflective subcategory of a multi-sorted equational
category; moreover, C contains the free algebras. What we will do is show that given an
algebra A which is not (isomorphic to an) algebra of the subcategory C , then there is a
generalized Horn clause that is not satisfied by A and is satisfied by every object of C .

Consider a presentation of A,

F1

d0
//

d1
// F0

d // A

with F0 and F1 free, say F0 free on the I-indexed set X and F1 free on the I-indexed
set Y . The pair of arrows d0 and d1 induces one arrow 〈d0, d1〉:F1

// F0 × F0. Each
generator y of F1 is taken by this map to a pair 〈φy(x), ψy(x)〉 of elements of F0. These
elements are words in the free algebra generated by the elements x ∈ X. Let K be the
kernel pair of the induced arrow F0

// ΦΨ(A). Then since A is not in the image of Φ,
there is an element 〈φ(x), ψ(x)〉 ∈ K, which is not in the image of 〈d0, d1〉. Thus A does
not satisfy the generalized Horn clause

∧
y

(φy(x) = ψy(x))⇒ (φ(x) = ψ(x) ◦ (∗)

I claim that this clause is satisfied by every object of C . In fact, let C be an object of
C . Choose a set of elements cx ∈ C in such a way that cx has the same sort as x and so that
every one of the equations φy(cx) = ψy(cx) is satisfied. There is a homomorphism f :F0

// C that takes x to cx by the property of free algebras. The fact that φy(cx) = ψy(cx)
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is equivalent to (f ◦ d0)(y) = (f ◦ d1(y). Since this is true for all the generators y of F1, it
follows that f ◦ d0 = f ◦ d1 and so f factors through A. But the adjunction property of Ψ
implies that f factors through ΦΨ(A) and hence that f(φ(x) = f(ψ(x) and hence that
φ(cx) = ψ(cx). Thus any tuple of elements that satisfies all φy(x) = ψy(x) also satisfies
φ(x) = ψ(x), so that (*) is satisfied by every object of C .

If the projectives are small, C is closed in A under filtered colimits. To see this, we
first note that the projectives are small in C and so the functors they represent commute
with filtered colimits. But then the triple induce also commute with filtered colimits and
then the underlying functors they represent on A also commute with filtered colimits and
hence the representing objects are still small. Now if C = colimCi is a filtered colimit in
C and A = colim ΦCi is the colimit in A then for any P ∈ X, we have

Hom(ΦP,A) ∼= Hom(ΦP, colim ΦCi) ∼= colim Hom(ΦP,ΦCi) ∼= colim Hom(P,Ci) ∼=
Hom(P, colimCi) ∼= Hom(P,C) ∼= Hom(ΦP,ΦC)

whence ΦC ∼= A.
This implies that Φ commutes with filtered colimits, while Ψ, being a left adjoint,

commutes with all colimits.
Repeat the proof using only finitely presented algebras A with the free algebras all

free on finite sets. We will find a set of finite (since the elements y range over a finite set)
Horn clauses that are satisfied by a finitely presented algebra if and only if the algebra is
isomorphic to an algebra coming from C .

Now let A be an arbitrary object of A that satisfies all the Horn sentences. Like any
object of A, A is a filtered colimit of finitely presented algebras. Write A = colimAi
with each Ai finitely presented. Exactly as in the proof of the first part, that fact that
A satisfies all those Horn clauses implies that each Ai // A factors Ai // ΦΨ(A)

// A. Then we have a diagram for each i

A ΨΦA
f

// //

Ai

A
��

Ai ΦΨAi
fi // // ΦΨAi

ΨΦA
��

ΦΨAi

A
||zzzzzzzzzzzzzzz

where the horizontal arrows are epic. The upper triangle commutes and the lower one
does too because the upper arrow is epic. Taking colimits, we get

A ΨΦA
f

// //

colimAi

A
��

colimAi colim ΦΨAi
fi // // colim ΦΨAi

ΨΦA
��

colim ΦΨAi

A
zzttttttttttttttttt
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From the fact that both vertical arrows are isomorphisms, it follows by an easy diagram
chase that the diagonal is too. Thus A is a filtered colimit of objects of C and hence is
one too.

As a consequence, we can conclude that neither the category of posets nor of small
categories can be the category of models of a generalized equational Horn theory. In fact,
in each case it is easy to see that the only projectives are discrete (posets or categories).
For if P is a projective, let a be an object of P that is the target of a non-identity arrow.
Construct a new category Q by adding a new object b and a single arrow a // b, subject
to no equations so that for any object c of P , the induced Hom(c, a) // Hom(c, b) is
an isomorphism, while Hom(b, c) = ∅. If dir is the category with two objects and one
arrow between and no other non-identity arrow, then Q is the regular quotient of P + dir
gotten by identifying a with the head of the non-identity arrow of dir. The functor P

// Q that takes the object a to b and everything else to itself does not lift to an arrow
P // P + dir. On the other hand, any regular quotient of a discrete is discrete and so
the regular projectives are not a regular generating family.

2.4. For the record, here is an example of a finitary equational theory and a full
subcategory closed under products and subobjects not closed under filtered colimits and
hence not the category of models of an ordinary Horn theory, at least not one based on
the given operations.

The equational theory is the category of commutative rings with countably many
constants a1, a2, . . . adjoined. Consider the generalized Horn theory

(
∧

aix = 0)⇒ (x = 0)

Let R be the free ring on one variable, which may be thought of as the ring of polynomials
R = Z[x, a1, a2, . . .]. In the filtered sequence of rings

R/(a1x) // R/(a1x, a2x) // · · ·
each of these rings is a model of the theory. It satisfies neither the antecedent nor the
consequent of the sentence. The colimit, on the other hand, satisfies the antecedent, but
continues not to satisfy the consequent and is thus not a model.

3. Relational Horn theories

We saw in the last section that the discrete posets (resp. categories) are a generating family
(in the sense of representing a faithful family of functors), but not a regular generating
family, for the category of posets, but not for categories. Since posets are the models of
a Horn theory, this suggests it may be possible to characterize the categories of models
of a Horn theory by the existence of a family of regular projectives that generate. This
may be so, but until now I have been able to verify only one half of this conjecture (but
it is the half that establishes that Cat is not the category of models of a Horn theory and
demonstrates that FL theories have more expressive power).
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In general, a Horn theory allows relations and predicates involving those relations.
I am unaware of any intrinsic characterization (one that is independent of particular
choices of sorts) of such categories analogous to those for equational categories. That
is the main reason the results are only partial. C. Lair claims that the answer to every
interesting question involving sketches in a series of articles appearing in the “publication”
Diagrammes, so all the answers can no doubt be found there.

3.1. Theorem. The category of models of a universal Horn theory has a generating
family of regular projectives.

Proof. Let C be the category of models of a universal Horn theory. Let A and B
be the categories of models of the corresponding equational and relational theories, resp.
That is, the algebras in A have all the operations and satisfy all the equations that of
the theory and those of B have additionally been equipped with the relations. We note
that we have C ⊆ B ⊆ A , with the first inclusion being full. Now let C1

// // C2 be
a regular epi among objects of C . I claim that this is also a regular epi in A . In fact,
for each sort s of the theory, let C3(s) be the image of the arrow C1(s) // C2(s). This
image is, as is well known, a model of the underlying equational theory. It can be made
into a model of the relational theory by letting, for a relation ρ ⊆ s1 × · · · × sn,

C3(ρ) = C1(ρ) ∩ [C3(s1)× · · · × C3(sn)] ◦

Call such a subalgebra of an algebra in B full. Then it is easy to see that every full
subalgebra of an algebra in C is still in C . Moreover the arrow C1

// C2 factors
through C3 and since it was assumed a regular epi, it follows that C3 = C2.

Next we observe that the underlying functors for the sorts of the operations are rep-
resentable (and in fact, have adjoints). Since these functors preserve regular epis, the
representing objects are regular projectives.

Finally we note that an arrow is monic if and only if it is injective on all sorts. In other
words that the inclusion of C into A reflects monos. It certainly preserves them, in fact
has a left adjoint. But since arrows in C are functions of the sorts, a non-mono is also not
injective on a sort. But then the kernel pair (which is preserved by the inclusion) provides
two distinct arrows that are identified by the given arrow. Thus the evaluations at sorts,
represented by the regular projectives, are collectively faithful and so the representing
objects are a generating family.

3.2. As observed above, the only projectives in the category of small categories are the
discrete ones, which represent the set of objects functor (and its powers) and these are
not faithful since two functors can agree on objects and not on arrows. A homomorphism
on a poset is determined by its value on elements.

The converse could be verified if I could show that given a category of models of a
coherent theory and homomorphisms that preserve positive sentences and given a faithful
set of representable functors, there is a coherent theory on that given set of functors for
which the given category is equivalent to the category of models. The point is that in
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model theory, the sorts are generally prescribed beforehand, whereas we are looking into
an intrinsic characterization.
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