0.1. THEOREM. Suppose E is an open subset of \mathbb{R}^n , $V \subseteq \mathbb{R}^n$ and $f : E \longrightarrow V$ is a diffeomorphism of class at least C^2 . Then for any $x_0 \in E$ there is a $\Delta > 0$ such that for any number δ with $0 < \delta < \Delta$ the image $f(B(x_0, \delta))$ is convex.

PROOF. Assume without loss of generality that $x_0 = 0$. Choose a compact subset $V^* \subseteq V$ that contains f(0) in its interior. Choose $\epsilon > 0$ such that $B(0, \epsilon) \subseteq f^{-1}(V^*)$. The differentiability implies that there is a constant K > 0 such that for x, u = x + h and v = x - h all in $B(0, \epsilon)$,

$$f(u) = f(x) + \sum_{j=1}^{n} h_j \frac{\partial f}{\partial x_j}(x) + R(x, h)$$
$$f(v) = f(x) - \sum_{j=1}^{n} h_j \frac{\partial f}{\partial x_j}(x) + R(x, -h)$$

and $||R(x, \pm h)|| < K ||h||^2$. Now we have, on adding the last two equations and dividing by 2 that

$$(f(u) + f(v))/2 = f(x) + (R(x,h) + R(x,-h))/2$$

with $||(R(x,h) + R(x,-h))/2|| \le K ||h||^2$ This can be written

$$(f(u) + f(v))/2 = f((u+v)/2) + R^*(u,v)$$
(*)

where $||R^*(u,v)|| \le K ||(u-v)/2||^2$. Since f^{-1} is also differentiable, there is a constant L such that

$$f^{-1}(z+k) = f^{-1}(z) + S(z,k)$$

where ||S(z,k)|| < L ||k||. Combining this with (*), this gives us the formula

$$f^{-1}((f(u) + f(v))/2) = f^{-1} (f((u+v)/2) + R^*(u,v))$$

= $f^{-1} (f((u+v)/2)) + S((f(u) + f(v))/2, R^*(u,v))$
= $(u+v)/2 + S((f(u) + f(v))/2, R^*(u,v))$

and an upper bound on the error term inside $B(0,\epsilon)$ is given by

$$||S((f(u) + f(v))/2, R^*(u, v))|| \le ||LR^*(u, v)||$$
$$\le KL ||(u - v)/2||^2$$

Let Δ be the minimum of ϵ and 1/2KL. We will show that for all $\delta \leq \Delta$, $f(B(0, \delta))$ is convex. To show an open set convex it is sufficient to show it is closed under the operation $x, y \mapsto (x+y)/2$ since that implies that it is closed under the operation $x, y \mapsto \lambda x + (1-\lambda)y$ for any dyadic rational λ . Other points can be reached by using dyadic convex combinations of points sufficiently near x or y. (A slightly different argument allows one to draw the same inference for closed sets.) So let $\delta \leq \Delta$ and choose $x, y \in f(B(0, \delta))$;

we must show that $(x + y)/2 \in f(B(0, \delta))$. Let $u = f^{-1}(x)$ and $v = f^{-1}(y)$. Then $u, v \in B(0, \delta)$ or $||u|| < \delta$ and $||v|| < \delta$. We have to show that

$$\left\| f^{-1}((f(u) + f(v))/2) \right\| < \delta$$

We have

$$\left\|f^{-1}((f(u)+f(v))/2)\right\| < \|(u+v)/2\| + 1/(2\delta) \|(u-v)/2\|^2$$

so it suffices to prove that $||(u+v)/2|| < \delta - 1/(2\delta) ||(u-v)/2||^2$. Since $||u|| < \delta$ and $||v|| < \delta$, the right hand side is positive so we can prove it after squaring both sides. Thus we must show that

$$||(u+v)/2||^2 < \left(\delta - \frac{1}{2\delta} ||(u-v/2)||^2\right)^2$$

Now the parallelogram law says that $||(u+v)/2||^2 + ||(u-v)/2||^2 = ||u||^2/2 + ||v||^2/2 < \delta^2$ so that $||(u+v)/2||^2 < \delta^2 - ||(u-v)/2||^2$

$$(u+v)/2\|^{2} < \delta^{2} - \|(u-v)/2\|^{2}$$

$$< \delta^{2} - \|(u-v)/2\|^{2} + (1/2\|(u-v)/2\|)^{2}$$

$$= (\delta - 1/2\|(u-v)/2\|)^{2}$$

0.2. THEOREM. Every convex open subset of \mathbf{R}^n is C^{∞} -contractible.

Proof.

0.3. THEOREM. Let M be a paracompact manifold of class C^m , $m \ge 2$. Then M has an m-simple open cover, that is one in which each finite intersection is either empty or has a contracting homotopy of class C^m .

PROOF. Let *n* be the dimension of the manifold. Choose a locally finite open cover \mathcal{U} that refines an atlas. Thus for each $U \in \mathcal{U}$, there is a diffeomorphism (of class C^m) ψ_U of *U* onto an open subset $E_U \subseteq \mathbb{R}^n$. Choose an open cover $\mathcal{W} = \{W_U \mid U \in \mathcal{U}\}$ such that $\overline{W}_U \subseteq U$, which is possible in a paracompact manifold.

Now fix $x \in M$. Let V''_x be an open neighborhood that intersects only finitely many sets in \mathcal{U} . Since V''_x meets only finitely many U there is an open subset V'_x with the following properties:

- 1. $x \in V'_x \subseteq V''_x;$
- 2. $x \in U \in \mathcal{U}$ implies $V'_x \subseteq U$;
- 3. $x \in W \in \mathcal{W}$ implies $V'_x \subseteq W$;
- 4. $x \notin W \in \mathcal{W}$ implies $V'_x \cap \overline{W} = \emptyset$.

across the top of the diagram, whose vertical arrows are inclusions:

Then f_U is a diffeomorphism. For all $U \in \mathcal{U}_x$ there is a $\Delta_U > 0$ such that $0 < \delta \leq \Delta_U$ implies that $f_U(B(x_0, \delta))$ is convex. Since \mathcal{U}_x is finite, it follows that there is a single Δ such that $0 < \delta \leq \Delta$ implies that $f_U(B(x_0, \delta))$ is convex for all $U \in \mathcal{U}_x$. Let $V_x = \psi_0^{-1}(B(x_0, \Delta))$. Then V_x has the following properties:

- 1. $x \in V_x \subseteq V'_x;$
- 2. $x \in U \in \mathcal{U}$ implies $V_x \subseteq U$;
- 3. $x \in W \in \mathcal{W}$ implies $V_x \subseteq W$;
- 4. $x \notin W \in \mathcal{W}$ implies $V'_x \cap \overline{W} = \emptyset$.
- 5. $U \in \mathcal{U}_x$ implies $\psi_U(V_x)$ is convex.

Then I claim that $\{V_x \mid x \in M\}$ is a simple cover. For $x \in U \in \mathcal{U}$, we have $x \in V_x \subseteq U$, so that $\{V_x \mid x \in M\}$ is a refinement of \mathcal{U} . Now suppose x_0, x_1, \ldots, x_n are points of Msuch that $V_{x_0} \cap V_{x_1} \cap \cdots \cap V_{x_k} \neq \emptyset$. Choose $U \in \mathcal{U}$ so that $x_0 \in W_U$. Then $V_{x_0} \subseteq W_U$. For $0 \leq j \leq k, x_j \in U$. Otherwise

$$V_{x_j} \cap V_{x_0} \subseteq V_{x_j} \cap W_U \subseteq V_{x_j} \cap \overline{W}_U = \emptyset$$

from the fourth point above. Thus $V_{x_j} \subseteq U$ for all $0 \leq j \leq k$ and $\psi_U(V_{x_j})$ is convex. Therefore $\psi(V_{x_0} \cap V_{x_1} \cap \cdots \cap V_{x_k}) = \psi(V_{x_0}) \cap \psi(V_{x_1}) \cap \cdots \cap \psi(V_{x_k})$ is also convex and therefore smoothly contractible.