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0.1. Theorem. Suppose E is an open subset of Rn, V ⊆ Rn and f : E // V is a
diffeomorphism of class at least C2. Then for any x0 ∈ E there is a ∆ > 0 such that for
any number δ with 0 < δ < ∆ the image f(B(x0, δ)) is convex.

Proof. Assume without loss of generality that x0 = 0. Choose a compact subset V ∗ ⊆ V
that contains f(0) in its interior. Choose ε > 0 such that B(0, ε) ⊆ f−1(V ∗). The
differentiability implies that there is a constant K > 0 such that for x, u = x + h and
v = x− h all in B(0, ε),

f(u) = f(x) +
n∑
j=1

hj
∂f

∂xj
(x) +R(x, h)

f(v) = f(x)−
n∑
j=1

hj
∂f

∂xj
(x) +R(x,−h)

and ‖R(x,±h)‖ < K ‖h‖2. Now we have, on adding the last two equations and dividing
by 2 that

(f(u) + f(v))/2 = f(x) + (R(x, h) +R(x,−h))/2

with ‖(R(x, h) +R(x,−h))/2‖ ≤ K ‖h‖2 This can be written

(f(u) + f(v))/2 = f((u+ v)/2) +R∗(u, v) (∗)

where ‖R∗(u, v)‖ ≤ K ‖(u− v)/2‖2. Since f−1 is also differentiable, there is a constant L
such that

f−1(z + k) = f−1(z) + S(z, k)

where ‖S(z, k)‖ < L ‖k‖. Combining this with (∗), this gives us the formula

f−1((f(u) + f(v))/2) = f−1 (f((u+ v)/2) +R∗(u, v))

= f−1 (f((u+ v)/2)) + S((f(u) + f(v))/2, R∗(u, v))

= (u+ v)/2 + S((f(u) + f(v))/2, R∗(u, v))

and an upper bound on the error term inside B(0, ε) is given by

‖S((f(u) + f(v))/2, R∗(u, v))‖ ≤ ‖LR∗(u, v)‖

≤ KL ‖(u− v)/2‖2

Let ∆ be the minimum of ε and 1/2KL. We will show that for all δ ≤ ∆, f(B(0, δ))
is convex. To show an open set convex it is sufficient to show it is closed under the
operation x, y 7→ (x+ y)/2 since that implies that it is closed under the operation x, y 7→
λx+(1−λ)y for any dyadic rational λ. Other points can be reached by using dyadic convex
combinations of points sufficiently near x or y. (A slightly different argument allows one
to draw the same inference for closed sets.) So let δ ≤ ∆ and choose x, y ∈ f(B(0, δ));
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we must show that (x + y)/2 ∈ f(B(0, δ)). Let u = f−1(x) and v = f−1(y). Then
u, v ∈ B(0, δ) or ‖u‖ < δ and ‖v‖ < δ. We have to show that∥∥f−1((f(u) + f(v))/2)

∥∥ < δ

We have ∥∥f−1((f(u) + f(v))/2)
∥∥ < ‖(u+ v)/2‖+ 1/(2δ) ‖(u− v)/2‖2

so it suffices to prove that ‖(u+ v)/2‖ < δ − 1/(2δ) ‖(u− v)/2‖2. Since ‖u‖ < δ and
‖v‖ < δ, the right hand side is positive so we can prove it after squaring both sides. Thus
we must show that

‖(u+ v)/2‖2 <
(
δ − 1

2δ
‖(u− v/2)‖2

)2

Now the parallelogram law says that ‖(u+ v)/2‖2+‖(u− v)/2‖2 = ‖u‖2 /2+‖v‖2 /2 < δ2

so that
‖(u+ v)/2‖2 < δ2 − ‖(u− v)/2‖2

< δ2 − ‖(u− v)/2‖2 + (1/2 ‖(u− v)/2‖)2

= (δ − 1/2 ‖(u− v)/2‖)2

0.2. Theorem. Every convex open subset of Rn is C∞-contractible.

Proof.

0.3. Theorem. Let M be a paracompact manifold of class Cm, m ≥ 2. Then M has an
m-simple open cover, that is one in which each finite intersection is either empty or has
a contracting homotopy of class Cm.

Proof. Let n be the dimension of the manifold. Choose a locally finite open cover U
that refines an atlas. Thus for each U ∈ U , there is a diffeomorphism (of class Cm) ψU
of U onto an open subset EU ⊆ Rn. Choose an open cover W = {WU | U ∈ U} such that
WU ⊆ U , which is possible in a paracompact manifold.

Now fix x ∈ M . Let V ′′x be an open neighborhood that intersects only finitely many
sets in U . Since V ′′x meets only finitely many U there is an open subset V ′x with the
following properties:

1. x ∈ V ′x ⊆ V ′′x ;

2. x ∈ U ∈ U implies V ′x ⊆ U ;

3. x ∈ W ∈ W implies V ′x ⊆ W ;

4. x /∈ W ∈ W implies V ′x ∩W = ∅.
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The last condition is also finite since it need be imposed only for the finitely many WU

that meet V ′′i . Let Ux = {U ∈ U | x ∈ U}. Fix some U0 ∈ Ux. Let ψ0 = ψU0 , x0 = ψ0(x),
E0 = ψ0(V

′
x) and VU = ψU(V ′x), the last for U ∈ Ux. Let fU : E0

// VU be the composite
across the top of the diagram, whose vertical arrows are inclusions:

Rn U0
ψ0

−1
//

E0

Rn
��

E0 V ′0// V
′
0

U0

��
U Rn

ψU

//

V ′0

U
��

V ′0 VU// VU

Rn
��

V ′0 V ′0
= //

Then fU is a diffeomorphism. For all U ∈ Ux there is a ∆U > 0 such that 0 < δ ≤ ∆U

implies that fU(B(x0, δ)) is convex. Since Ux is finite, it follows that there is a single
∆ such that 0 < δ ≤ ∆ implies that fU(B(x0, δ)) is convex for all U ∈ Ux. Let Vx =
ψ0
−1(B(x0,∆)). Then Vx has the following properties:

1. x ∈ Vx ⊆ V ′x;

2. x ∈ U ∈ U implies Vx ⊆ U ;

3. x ∈ W ∈ W implies Vx ⊆ W ;

4. x /∈ W ∈ W implies V ′x ∩W = ∅.

5. U ∈ Ux implies ψU(Vx) is convex.

Then I claim that {Vx | x ∈M} is a simple cover. For x ∈ U ∈ U , we have x ∈ Vx ⊆ U ,
so that {Vx | x ∈ M} is a refinement of U . Now suppose x0, x1, . . . , xn are points of M
such that Vx0 ∩Vx1 ∩ · · · ∩Vxk 6= ∅. Choose U ∈ U so that x0 ∈ WU . Then Vx0 ⊆ WU . For
0 ≤ j ≤ k, xj ∈ U . Otherwise

Vxj ∩ Vx0 ⊆ Vxj ∩WU ⊆ Vxj ∩WU = ∅

from the fourth point above. Thus Vxj ⊆ U for all 0 ≤ j ≤ k and ψU(Vxj) is convex.
Therefore ψ(Vx0 ∩ Vx1 ∩ · · · ∩ Vxk) = ψ(Vx0) ∩ ψ(Vx1) ∩ · · · ∩ ψ(Vxk) is also convex and
therefore smoothly contractible.


