Factorizations, Generators and Rank
by Michael Rarr

Introduction

The notion of a factorization system in a category is nearly
as old as the notion of category itself., The first definition seer
to have been given by Mac Lane [&aé}, Eﬁacf} under the name "bi-~
category structure". Even then it was recognized that there will
not in general be a "natural" such structure., However the structur
considered in the Mac Lane paper were considerably complicated by
the attempt to formalize (and hence dualize) the notion of actual
inclusion rather than Just monomorphism. It can readily be seen
that even in the category of sets the dual notion is going to
cause trouble., (Decomposition mappings are not closed under compo-
sition.) However the notion has been in the process of refinement
ever since, notably by J.Isbell ([Ié], [Isf}, [isf}), Z.S5emadeni
([Sem]), G¢.M.Kelly ([Xe1]) and J.Kennison ([Xen]). At some point
- apparently by mutual consent - the term bicategory disappeared
and we speak now of factorizations.

The fact that generators were connected with factorizations has
also been apparent for a long time (see [Gré} and [$eﬁﬂ).

The purpose of this paper is two-fold. The first is to collect
in one place a distillation of all this development. This is
carried out in the first two sections. Probably nothing in those
two sections ig really new except the organization, but not all
of it has appeard previously in print. Section three studies the
relation between factorizations and generators and prepares for
section 5. Section 4 gives a negative result on the possibility
of using general factorization systems for embeddings. Finaglly in
section 5 we consider the case of generators with rank. In this
case we show that there is a canonical generating subcategory which
has very good properties. This will be central in a forthcoming
paper which extends the results of [Ba] and [Ba'] to large cate-
gories when they are cocomplete and have a set of generators

with rank,



1.Pactorization systens .

(1.1) Let X be any category. We define the following subcate-
gories of X. Each econtains all the objects of X and consists of
the morphisms described,

i) I(X) is the class of all isomorphisms of X.

ii) M. (X) is the class of al] monomorphisms of X,

iii) ¥ (X) is the class of all strong monomorphisms in X
vhere we say that m ig a strong monomorphism if 4in any
diagram

e
T
n which e ig an ep*morphlsmit lere 1s a unigque morphism fron
codomain e to domain m making both triangles commute,

iv) ﬁg(g) consists of all split monos, i,e. those with s
left inverse,

v)  Dually, we define @.(X), i=0,1,2, to consist of all,

strong;and split epimorph 1sms,respsct1vely.

(1.2) When L is fixed (or understo 0ou), we will consistently drop
the argument in the above notation., Tt is clear that I,M ,mg,E
and L, are subcategories, i,e., closed under compaition and con-
taining the identities (in fact all isomorph lisms ). That Eﬁ and
E. are subcategories follows from [Kei}, proposition 3,2 ,
(1.3) The classes of regular mo nomorpvhisms and regular epimor-
h

fa

o]

isms(those which are equalizers, resp, coequalizers,
family of pairs of maps) are also interesting, These, ho owever,
are not usually subcategories, When they are, it requires only
very mild hypotheses to see that they then coinecide with gl’

.

resp. El‘ (see [?el] proposition 3.8 and section 4. E.g. the



existence of kernel pairs and coegualizers of them is sufficient

to show that they then coincide.)

(1.4) A pair (

ied
e

rization system if

i) ICEAN .
ii) X = M.E . That is, every feX has a factorization as
= m.e with mell and eel .

iii) In any commutative square

Mwmii-§

m

—_—

E, M) of subcategories of X is said to be a facto-

in which eeEk and mell, there is a unique map from the

codomain e to the domain m making both triangles commute,

This is often called the diagonal fill-in.

(1.5) Proposition. In any factorization system (E,M) on X,
L

= BAM.

Proof. We need only show ISEAM, siice the other inclusion is

assumed, If feEAM, consider the s uare
— e ¥

<

and the existence of a diagonal fill-in gives the result.

1.6)Proposition. Suppose (E,M) is a air of subcategories satig-
k Ly &

fying (1.4)1i) and 1ii). Then the following are equivalent,

2 Er i : -~ 3
i) (E,M) is = itactorization systemn,
sl



ii) The factorization 1ifts to the morphism category of X.

I.e., in any diagram

g

with €1s€,€E, my,m-€M, there is a unique hi domain

m3—-§ domain M, making both squares commute,

ot

Febe

e
e

Any two factorizations of the same map are unigue up
to a unique isomorphism. That is, given two fact-
orizations f = elml = égmz of the same map,there is a

unigue u:domain m, ——>domain m, such that both triansles
1 2 ©

in
.
[
€5 /lrl

commute and that u is an isomorphisnm,

Proof. 1)=31i1). Just redraw the diagram

1)=31i1) given a commutative diagram

<

we deduce the existence of maps usdomain mlwwmgﬁgmain m, and

v

v

domaein m2*~9.£9¢aiﬁ my such that myu = m ue, = €py MV = o

and ve,. = e

13



both vu and the identity with make both triangles commute, so

by uniqueness vu = 1 and similarly uv = 1, so that u and v are

1ii) ==i). Given a commutative square
e
——
gi ff
* SV
I?‘?

with eel and mel, let f

i

ml;mgeﬁ, Then there is a unique map u such that

e e1
—_—
T

e?i / my
Mo

commutes and then m2ué1 is the required map. Now suppose h:

domain elw~w>domain m is another such map., Write h = nm

m36§, egeg and consider the diagrar

Then there are unique maps Uy and Uy as mdicate

diagram
e e
3“\
T : v
e,
B/ﬂl/
e ' .
ol 1
2
/m’z :
o~
L' A 5 v
> >
it m

mg ey and g = Mse with el,egeﬁ

s

that the



commutes, and it then follows by uniqueness that u = Uy .Uy .

1 h = My = : s Un e .« e = Myl € .

Then 1 93 MpeUselye€q 15 1

ii) = 1). This is easy, since i) is just a special case of ii)

with my and e, being the identity.

(1.7)Proposition. Let (E,M) be a factorization system on X and

suppose that feX is such that for any neM and any commutative

diagram

there is a gi:codomain f— domain m making both triangles commut
Then fel.

Proof. Let f = m, e with mleﬁ, eeE. Consider the diagram

The existence of g with me = 1 and gf = e implies the diagram

e

ik

can be filled in with either 1 or gy and then uniqueness

implies that gy = 1. Thus mlﬁi and f = mlesﬁ .

-

(1,8) Corollary. If the diagram
e

il lg
e?

e

is a pushout and cef , then e'€l .



Proof. Suppose we have given a commutative diagram

with meM. Then there is a map k such that h.e = f',f and m.h =
g'.g., The first of these equations implies the existence of a
unique h' such that h'e' = f' and h‘g': h. To diow that mht =-g!,
1t is sufficient, by the uniqueness of maps from a pushout, to
show that they became equal when composed with e' and g. We have

mhie' = mf' = g'e' and mh'g = mh = g'g.

9 : '
(1.9) Corollary. If {ei.XimwﬁéYi} is such that each eiég and
e :JLei:iLXi--<a_&Yi exists, then ceR .

Proof. Similar to above.

2, Right and left factorization systems

(2.1) We say that a factorization system (E.M) is a right (resp.
left) factorization system if Mo M, (resp. EDE_ ). If both of

these conditions hold, we call it a bifactorization system,

(2.2) We say that M has left cancellation (resp. E has right

cancellation) if fgel —3geM (resp., fgeE —>TeE),

(2.3) Theorem, Suppose (E.M) is a factorization system in X.
en of the f wiz statements, i) =—=1ii iii iv

Then of the following statements, 1) =—>ii)&=pii Q%:jla) .

If X has kernel pairs (or even weak kernel pairs) then all are

equivalent,



i) MM, i.e. (E,M) is a right factorization system,
ii)  E has right cancellation,

1ii) f.geE, gel = fel .

iv)  f.g = 1==3feE, i.e. EycE.

Proof, i)=a1i) Por let f.geE. Write f = m.,e and then e.g = my.€q

with mym, M, €ye,£E. Then in the diagram

f.g
*
n .-~
el P 1
e
M, M >
011

we can find an h with m.ml.h = 1, Then m.ml.h‘m = mand m is a
mono, so that ml.h.m = 1 also, which shows that m is an iso-
morphism and that f = m,eek.

iv)==1i) Exactly the same except that from m.ml.h = 1 we con-
clude that meE and so f = m.e€k.

11)==%1ii) =>1iv):Trivial,

iv) + weak kernel pairs ==3i): Let meM, and suppose there is a

weak kernel pair diagram

jﬂ___}?
—l
>
e, .

Then the properties of weak kernel pairs imply the existence of
an s such that €y¢8 = €98 = 1, This in turn gives that €,1€1€E.
Now m.e = m.eq being two factorizations of the same map, there
must be an isomorphism u such that m.u = m and Vee = €, . But
then u = ue .8 = e48 = 1, s0 that e = €. Thus m is mono, for

G
‘f iig = iie ; ) £ ia %ﬂ 'g‘ i = r's = - = *
if m fO m fl there must exist f with fg f eQ f ez f1



(2. 4)Examgie. To show that assumption of weak kernel pairs is

necessary, let X be the category with three objects X,Y,Z with

maps generated by eg,eY:X-~>Y, miY—3 7 and wi¥—> 7, subject
sk

to the identities me, = mey, mu = m, ue_ = €psue, = e, and

2 .
u = 1, Let the class E consist of e €4 and all isomorphisms y

and M consist of m and all isomorphisms. E, = I, so that ExE ,

—

while M i)m, since clearly mﬁﬁ@. It is clear from the fact that

u is an isomorphism that (B.l) satisfies (1.6), 1ii) and hence

£

is a factorization system,

3,Generators

(3.1) Here we define the notion of generator with respect to a
right factorization system (E,M). With thie we will be able to
clarify proposition 4.6 of [Kei]. None of the arzument seems
to apply to factorization systems which are not right factori-
zation systems, In particular, even the definition of generator

seems reasonable only in this case,

[

(3.2)Definition. Let (§ M) be a right factorization system,

(E M) generator A is a set of objects of X such that for any

meli-I there is a YeA with (Y,m) not an isomorphism,

4]
oy
ey
o
w
ot
c5
o
AV
s
e
3
o]
e
¢
4]
ot
[

(3.3) If A is any set of object of X an

al A -induced cotr riple ¢ = (G,e,§)

e}
O
‘“§
c*%
i"ﬁ

coproducts, there i

(D

where GX = Y EE s Section 10.1 for details,

GX is equipped with a map <ud:¥—> GX corresponding to each

jon)

possible u:¥—os X, YeA and a map from GX is prescribed an

uniquely by giving its composite with each <u>. For example



(3.4)Theorem: Let ¢ be the A-

=

&

with right factorization sys

equivalent,

i) For all X, there is a
and an E-morphism.
er ll v, —>x.

ii)  For all X, eXeE,.

iii) A is an (E,M) set of

Proof. i)==ii): Suppose there

yi:Yi—«~1>ﬂYi is the coproduct

induced cotriple on a category X

tem (E.M). Then the following are

of
iel objects of A

family {?:},
i
generators,

is 2 map e:.ﬂin.wﬁ;X. Suppose
injection and let fs.ﬁ.Yi-wm_GX

be given by f.yi <e.yi>, Then sX.f.yi 6X.<eyi> €.y for

each ieI, so that eX.f = e, and since ecE, it follows from (2,3%)
that eX€E.
ii) ==iii): Suppose meX —aX'€ M is such that (Y,m) is an iso-

morphism for all meM. It follows that Gm is an isomorphism. But

m.eX = €X', Gm gives, by the cancellation property of (2.3), that

meE., Since also melM, m is an isomorphism,

1ii)==11i): Factor the map eX = m.e with mel, e€E, Then it is

¥

il ow *

sufficie to show that (¥,m) is an isomorphism for all Ye A

But (Y,m) is 1-1, since mega To see that it is onto, let

*

us¥—>X, Then e.<u> is a map with m.e.<us u, so that (Y,m)

is an isomorphism,
1i)==i) is, of course, trivial.

(3.5)Theorem: Let X have a factorization {§¥§} and an (E.M)
generating set A ., Then if L has coproducts (of families of
objects of ﬁx}§ X has arbitrary intersections of M-subobjects

and pullbacks along maps of M.

Proof, Let {Xi} 1eT be a family (we could even permit that I be

& proper class, except that one conseguence of even finite inter-

sections, subobject 17 *ices are small) of M-sub~-

o #
{;hat Efi-—

objects of
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Congsider 7 = mﬂu “H»Y, the second coproduct indexed by the set
TeA
of maps Y——> X which factor through each Xi’ Then Z is a co-

factor of GX and we can factor the composite Z—> X — X as

AN Iy v dip aem
Z 3 X, > X with eel

o

nd mel. Now from the definition of Z,

it is clear that the map 2—> GX factors through each X

so we have a diagram

7 g

; o
GX.,

3t v
Xi, > X

which is easily seen to be commutative by putting in the arrows
GX£~f>GX-f9X. Then the diagonal fill-in shows that Xé:Xi for
all iel. Conversely, let X'—> X factor through each Xi‘

Factoring the map, we may suppose that X is an M-subobject of X.

@ g

Then any Y —3¥' with YeA is a map X —» X which factors through
each Xi’ so that GX{'—= GX factors through Z. Then consider the

diagram
GX' ——————3 Y

¥ — 5 X

which is similarly shown to be commutative, and again the diagonal

4

fill-in gives that XﬁCXO.

!m

T
Hes
-
:"Eﬂ:‘:
p——
k\ff
bt
-

(3.6)Proposition. Let X have a factorization system

ey

s

an (E,M) generating.set A ., I

by
e
% ok
3
L
ot
4]
fod
]
ot
0]
Y
93]
D
@]
b
-
o]
:
¥
(L
b
bt
[0}
C—.f.m
ot
g
€]
]

X is M-well-powered,



11

(3.7) Theorem. Let X have = bifactorization system (E,M) and an
(E,M) generating set A, and be cocomplete and E-co-well-powered

(or else have the Isbell property that the E quotient lattices

be complete). Then X is complete,

Proof. First we construct products. Given a family {?i}bzl of
objects of X, let 7 = ~ﬂ~ ~ﬂ— Y , where the second coproduct is
indexed by the set jT' (Y X, ). {; *Y—-axé} is an i indexed
family, let <{ﬁi!i€%§§ denote the corresponding coproduct in-
jection, Then define qi:Z-f;X€ by letting qizé{ﬁi$i§1}> =
u.:YwmauX.. Now consider all E-auotients of Z through which
every q. factors. This class is closed under any cointersections
which exist, and the hypothesis of the theorem gquarantee that
the cointersection of all them exists. Let e:Z—>X be the B-
quotient mapping and let pi:X-4§Xi be the maps such that

pj.e = s for 2ll i, Now if pi:X‘~»§»Xi is given for all i,
there is induced a map f:GX'—3 Z by f.,<u> = <{p£.u}>. Porm the

pushout
GX! £ S 7
eX% e!
Y A
y A SN T

By (1.8),e'€E . Moreover, for all i€l and WY —>3 X', g .fo<w

¥
= q. <{§ . }> = pl.u = p;.eX,<u>, so that qi.f = gé.e? yand there
is induced a unique gi:2‘-~>Xi such that gi,e? = qy and
gi.f* = p!. But then since X was the cointersection of =11
o

such Z', there is a map e":2'—3 ¥ such that e".e' = o, Pinally
e, f':X'—>X satisfies p,.e".f'.eX = §i.e”.e’.f = pi.e.f = qi.fm
gie' L = g, ' el = qi.ax, By assumption eX is an epimorphism
and so pi.e”,f* = ¢.. Thus X together with the p; is at least

a weak limit., If two maps X'—3 X factored 211 the Qs we could

form their coequalizer.. Since wa‘, one can easily see that
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any coequalizer must stisfy (1.7) 2nd be in E. Then this co-
equalizer would be a further E-quotient of 7 through which all
he ay would factor, which would be a contradiction, Hence X

together with the by is the product. The construction of
T
equalizers is similar. Given two maps X ? X', we form
by : | N;
‘H“ uﬂ,Y, the second coproduct 1@4@xeﬁ by all Yoo s X which
YeA e n
equalize f and g. Pactoring the map 7 —»GX —> % as 7 *ﬂm;xo s X

"

with eeE and mel, we use the fact that e€f  to conclude f.m=g.m ,

If X' —= X equalizes f ang g€, we may, by factoring it, suppose

=1
ot

is a map in M. From here, the proof proceeds exactly as the

proof of (3.5).

(3.8)Remark. The assumption that this is a bifactorization
system, while obviously not a necessary result of completeness,
is clearly needed for this proof, since the equalizers con-
structed are all in M. In particular ggc%, which by the dual
~of (2.3) implies that §C§o' The assumption that X ig, co-well-

powered is also necesecary. Consider the category of ordinals as an

i

ordered set, Take M = I and E = E a1l maps,., This is evidently

= = = =0
a factorization system and o is a generator, Cocompleteness is

clear but the category lacks a terminal object,

"

(3.9) CGabriel and Ulmer have shown however, in the case M = gg

E = @l where the generators have rank (defined in section 5),
that the category is c well-powered and complete. When the class

El consists of regular epimorphisms, this was also s result
of ¥9115<[}61] proposition 4.6) based on the ob

a regular epimorphism e with domain X is determined
pairs of maps Y=3X, YeA which are coecualized by e, This

loes not depend on rank. Inc entally, the generator

D
93]

C"r

egult

s

5

in the above example has rank trivially.
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4 ,Embedding

(4.1) Suppose that X is a category with finite limits, co-
equalizers of kernel pairs, and & factorzation system (g,@).

If E is closed under pullbacks, then it would seem that Lubkin®
construction as described i [Ba I and Ei} would work. It is
true that the construction will work and provide a left exact
functor §§§--§A where A is the discrete category of nonempty
subobjects of the terminal object of X. It will be faithful, for
example, provided Ec@@. It cennot, however, have all the nice
properties described in those papers without being actually an
instance of the theory described there, more precisely, we

prove,

(4.2) Theorem. Suppose U:K-Wf}§$ has the property that U preserves
finite limits, U(E)E,(8), v(men (sh), UTH(E, (84) )cE and
U~1(EO(§A))€§. Then M = M _(X) and E = E, (X) is the set of

regular epimorphisms.

Proof., First observe that I = EnM together with the other con-

ditions implies U reflects isomorphisms. Then if f%g, form the

equalizer £
n > .
-

It remains an equalizer when U is applied and Uh not an iso-
morphism implies that 1 f%ﬁg. Thus U is faithful. Now if meM
is not mono, there are f% with mf = mg. Then Um,Uf = Um.Ug
with Uf$Ug shows Um not mono, which is a contradiction, so that

Ui
¥

4]

il

Cf)
}m:

&
e
fomy

rly, ECE . Now if ﬁg@e, Uf is mono, since U preserves

o

@

—0

|
|

the kernel pair of f, which are equal if and only if f is mono.

Thus Vel and so M = M,y which, by (1.7), imples that E = E, .

is invariant under pullbacks, then every regular epi

f E
[ R

=1
has 2 pullback which is an epimorphism, and by EK@Q}, 4.1, and

%mb

But

5.14, every strong epimorphism is regular,
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S5.Generators with rank

(5.1) Let X be an ordinal number., We say that a category I is
X-filtering if every diagram D:J—=1 in which the cardinal

<K has an bound in I. In

-

of the set of morphisms of d is upper

practie  this means two things,.

i) For every X -indexed family {?nfnéﬁﬁjof objects of I,
there is an i for which there is a map iﬁw~a»i for each

negk

ii)For two objects i,i' and any o -indexed family of maps

there is a map i'—3 i" which simultaneously coequalizes

all of them,

In our applications I will be a partially ordered set and COn~-
dition ii) will be vacuous, Then we will call I an X ~directed

set,

(5.2) Let (E M) be a factorization system and & be a cardinal

b4
number, An (o,}) filter in X consists of an K -filtering cate-
gory I, a functor DtI—=2X such that there is an object X of X,

and a map D —3 ¥ with the broperty that for all i€I, the map

Di—> Xel. If Eﬁﬁe, then we can as well

. . P )
AK-directed set, since for i y 1, the

suppose that I is an
map Di—* ¥ must co-

must have been equal,

egqualize Di' —=Di, and being mono they

b

that a functor U:X—3Y has M-rank

3
provided that for every (§¢%)~filt§r Del——=X, U(colinm D)
UD. We will also say M-rank U< (or M-rank
least such). An object ¥eX will be said to

vided the hom functo: (X,-):X—> S does.

5
]
<
@
T
-
o
-
by
:

I~

3
5
o
wl
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(5.4) A set of (E,M) generators with rank is a set A of (E,M)
generators with each YEA having some M-rank. This is clearly
equivalent to the existence of ok such that for all YeA, M~-rank

Y (K,

(5.5) We 1list three properties of an object X with respect to

an (B,M) factorization, an (E,M) generating set A, and a cardi-
nal ok .[(Rl). M-rank X< ex,

(Ro®) . Cardinal Agot and for each YEM, cardinal (Y,X) <.
(R%®), There is an E-morphism, 7“_ Y X in which Yiaﬁ‘for all
i€l and cardinal ILOA. We let gigf R2x and R3o respectively

denote the full subcategory consisting of those XeX which

satisfy that respective condition.,.

(5.6) Throughout the rest of this section, X will be a cocomplete
category with a bifactorization system {gl,go) which we will
still denote by (E,M). This is the situation in which Gabriel
and Ulmer are working and it seems likely that these results

are derivable from theirs, but I have not secen precise shtements
of them. We will suppose that A is a set of (E,M) generators
with rank. As mentioned above, Gabriel-Ulmer have shown that

this implies that X is E-co-well-powered., We also suppose that

Bis a cardinal numer such that cardinal Agjgand for each YEA

M~rank Y<§3.

—

(5.7) Theorem., There is an ol with Rlek = RZ2e& = R3oL ,

The proof will be given in three steps., The first is the trivial

(5.8) Proposition, For allol) |

Proof. Suppose there is an E-morphism ﬂ Y,—3X with cardinal
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Let X —>colim Yn be given. Then for each i€l there is an niéN
such that the map Yivwwaltiiw->X«~m}colim Zn factors through
Zn,‘ Since this is an X-filter and cardinal I{k, there is some
&n%forg n such that every Yi-ﬁ§JiYi-~§X*-goslim Zn factors
through Zn . This means that JlwawéiX~mé/colim Zﬂ factors

through Zﬁ, and then the result follows by considering the dia-

gonal fill-in in the diagram

I

7

n

(o]
=]
03

J‘ o W

(5.9) Proposition., Let {Zn}. be an (QJB) filter of lM-subobjects
of Z. Then the induced map f:colim Z,~—=>17 1s in M.

4
Proof. Since M = go, it is necessary to show only that the map

4

is mono. If not, there are maps gth such that f.g = f.h, and

they have an equalizer which is in M-I, so there is a map k

with domain in A such that g.k + h.k, Thus we have

Y — 2 colim Z

jo N

istinct maps coequalized by f., But there i= an n such that each

iy
jo 7

actors through Z an

n’ then since ZﬁMWsz is mono, we would have
&

v — i,
Y 2, ——> 7

also distinet,

(5.10)Proposition. For allely B, RixC

Proof. Consider X&Rlok and let {Xa denote the set of all
subobjects of X which are in R3e , This is ei%arlyf3~§recﬁed,
For if §g:§ is a subset of N of carinality ng, chooge for meNo

an E-morphism “ﬁ, Y§-f>Xp. Then the image Xo of iLYiwmg}L
iE,In -

e



17

where the coproduct is indexed by ij I
neﬁo
In fact, just fill in +the diagonal in the diagram

_ﬁ{ﬁi’il iﬁIﬁ} > X

1 {é

contai .
n? contains each Xn

<.
Ty

X ' : . > X,

Now the map colim Xﬁw~45X€§, while on the other hand, every
Y3 X, Kaf\, factors through a subobject of X which is in
RlX (in fact R1l), and thus through colim Xn, so that
(Y,colim X ) = (Y,X) for all YeA . By definition (3.2) this
implies that colim X535a X. Since XeR1X, every map X—3 X
factors through some Xn’ In particular the identity map does,
so0 we have X-*~>Xﬁ-avX whose composite is the identity.
Since the second factor is in M, they are isomorphisms, and

XERZX gince Xn is,

(5.11)Proposition. For any e , R3x is small.

Proof, Of course, this really means that it has a small skeleton,

Since A is a set, the class of object .U. Yi where cardinal I<ex
iel
and YiaA is also small and since the category is E-co-well-

powered, the class of E-quotients of these is also small,

(5.12) YNow consider a ¥ sufficiently large that R3BCR24 . This

I—— at—————

clearly exists, since R3P is a small category and X is locally

smell,

(5.13)Froposition., If R3Bc 2%, 1>, aﬁﬁ<1:é}; then R3IXCR2%,

Froof. Let XeR3x and consider an E-movphism L ¥ — % witn
il
each Y.€A and cardinal I¢o . Consider all subgsts of I of



18

cardinal <[3. Let these be denoted by {?nfnéﬁ} . Each of these
determines a map of§3~ﬁaci, and so there are at mostcxpm Eéxgi
2zg =&, For each n, let X, denote the image of EgE Yi-9»X. Just
as in the proof of (5,10), the X, are an (M,f3) filger on X and
colim X = X. For any e, (7,%) = colim (Y,Xﬂ) which is of

at most X sets, each of size at most 4, and so (Y,X)<ok . Since

also [3< ok, it follows that XeR2 ,

(5.14) The smallest cardinal G for which Rlo — R2o = R3ck 1is a

characteristic of the generating set which might be called the
rank af;ﬁ (since M = EO, it is now appropriate to omit its

name from these notions). Among all generating sets one might
then choose the one for which o is as small as possible. Forming
RIX for that ok gives a canonical generating set for X. Notice
that 1t will contdn all the minimum rank generating sets, This
Ot might be described as the rank of X. The existence of such

set
a canonical generating answers a guestion raised by Lawvere.

(5.15)Proposition., When o is as above, Rlek is & cocomplete

and & complete for any 4 such that é?%ix. In particular it
is finitely complete,

Proof. Let {Xifiéll} ve an I indexed family of X,€R1&, with
cardinal I o,

Since RIX = R3ct, we can choose, for each i€l ,an index set 3}

with cardinal J.< X and an E-morphism 3~33 > X, . Then by
I,
T i
, T
{1»9>y with L}:Ux}i, the map

is also in E and cardinal J{ &, Coequalizers are trivial since

every regular epi is in E. As for limits, if {xi i€i}' where

i 1
2 cardinal I g g XERIX for all i€I, then for all Yeh, (Y,TX, )=
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‘WYY,Xi) has cardinality gp&B: XK, Equalizers are clear by

similar reasoning,

(5.16)Propositi@n. Let & be as above and suppose JL,X»-9,K is
ieTl
an E-morphism and X€R1X ., Then there is some I ol with cardinal

IO L0 such that the composite

U4 x, —s Al x —x
1CI i€l
is still in E.
Proof. For eachyliﬁl of cardinal LK, let Xn be the image of

.lL X « This is an (M,x) filter on X and by (5.9) and the fact
1&1

that XeR1X, we have (X, X)égia(X colim X, ) = colim (X,X ). Then
the identity map factors throug some X s, which implies that

“Xno

(5.17)Proposition. With the same 04 as above, the category Rl

is closed under formation of E-quotients and M-subobjects.
Proof. For it is evident that R2 is closed under M-subobjects

and that R3X is closed under E-quotients,



[itad]
[iac]
[14]

[1s7]
[157]
[Ser]

References

S.Mac Lane, Duality for groups, Bull.Amer.Math.Soc.
6 (1950), 485-51%,

JMac Lane, Groups, cmum*ﬁrzes, and duality, Proc.Nat,.
ﬁcad Sci.U.S.A., 34 (1948), 263-267.,

€3]

J.R.Isbell, Some remarks concerning cotegories and
subspaces, Canad.J. Jath. 9 (1957), 563-577.

Jd.R.Isbell, Subobjecss, adequacy, completeness and
categories of algebrss, Rozprawy Mat. 36 (1964),

J.R.Isbell, Structure of categories, Bull.imer.Mzth.
Soc., 72 (1966), 61c-0655,

Z.Semadeni, Projectivity, dinjectivity and duslity,
Rozprawy Mat.35 (1G¢:3).

G.M.Kelly, Monomorpiismus, epimorphisms and pullbacks,
J.Austral.Math,Soc.2 (1969), 124-142.

J.F.Kennison, Full reflective subcategories and
generalized coverins spaces, 111, J.mch 12 (1968),

553-365.,

A.Grothendieck, Sur cuelaues points d'algdbre homo-
logique, Tohoku Ma-a.Jd. Ser, 2 9 (1957), 119-221,

M.Barr, Non-abeliar full embedding, I, (to appear).

M.Barr, Non-abelian full embedding, II, (to appear).

M,Barr and J.Beck, dﬂmology and standard constructions,
in "Seminar on Triples and Categorical Homology Theory",

Lecture notes no.£0 (1969), Springe r-Verlag, Berlin.




