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THE POINT OF THE EMPTY SET

by Michael BARR

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XIII - 4

The point, of course, is that there isn’t any point there. This ma-

nifests itself in various ways. For example, see [Barr,a], in which the

lack of splitting to a map O -&#x3E; X, X + O, plays an essential role. In [Barr,
b] the empty set came in in a different way, as a non-trivial subobject
of the terminal object. There it made the difference between being able

to embed an abelian category into a category of f, abelian ) M-sets while,

in the general case of an exact category, having to allow M to have se-

veral objects (i.e. be a category).
In this paper we study two more examples in which the empty set

complicates an otherwise straightforward situation. The first concerns

tripleableness of a functor category (over the base, or somewhat more

generally over a category over which the base is tripleable). This result

was first announced by Beck, who also introduced the notion of a pure

functor, thus being the first to recognize the distinguished role played by

empty set. The second example concerns many-sorted algebras. It is fre-

quently supposed that many-sorted algebras are special cases of 1-sorted

or ordinary algebras. Again the empty set rears its ugly head to compli-
cate the situation. One way around this problem is to adopt the point of

view of Gritzer ( see, e.g. [Grdtzerl , p.8) and simply legislate out of ex-
istence any empty algebra. This certainly works, but at the cost of both

completness and cocompletness (see, e.g., [Grgtzerl , § 9, Lemma 1 or

§ 24, Corollary 1 to Lemma 1 ) . And it is not clear that even Griitzer

would want to obviate the possibility of having many-sorted algebras in

which some components are empty and others not. But this is exactly
where the problem appears and must be faced.

The first three sections deal with preliminary material, including
an exposition of and the main application of the VTT. The next two sec-
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tions consider the two situations discussed above.

1. Def initions

A functor U:B- A is said to create limits if for any diagram D :

1-&#x3E;B for which a limit p: A -&#x3E; UD exists there is an object B E B and a

map f: B - D which are unique up to a unique isomorphism satisfying

Uf = p; moreover f: B -&#x3E; D is a limit of D .

A pair of maps Bo in B is called a split coequalizer

pair if there is an object B E B and maps d : B0 -&#x3E; B, s0 : B -&#x3E; B0 and sl : 

B0 -&#x3E; B1 such that

and

It easily follows from these equations that the diagram

is, in fact, a coequalizer under those circumstances.

The split coequalizer equations imply that

If we assume that idempotents spl it in B , the existence of an S I : B0-&#x3E; B1
satisfying those equations is equivalent to do, d 1 being a split coequa-
lizer pair. For then B may be defined as the object which spl its the idem-

potent d1 sl ’
If U: B -&#x3E;A is a functor, we say that is a U-split-

pair if U B 1 is a split pair.

The functor U: B -&#x3E; A is said to satisfy the VTT provided that it

creates limits and every U-split pair is a split pair; it is said to satisfy
the CTT if it creates limits and preserves all coequalizers; it’is said to

satisfy the PTT if it creates limits and if the coequalizers of all U-split

pairs exist and are preserved by U .

The point of these definitions is that the PTT conditions are not

invariant under composition of functors, (those of the VTT and the CTT
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are ) . The obvious theorem is that when U = U1 U2 U3 then U satisfies

the PTT provided that U, satisfies the VTT, U2 satisfies the PTT and

u3 satisfies the CTT. Of course, Beck’s theorem states that U is tri-

pleable if and only if U has a left adjoint and satisfies the PTT.

A category A is said to satisfy the weak axiom of choice ( WAC )

if it has a terminal object 1 and for each X, the terminal map X -&#x3E; 1 fac-

tors as X -&#x3E; S -&#x3E; 1 where S is a subobject of 1 and X -&#x3E; S is a split epi-

morphism. The object S is called the support of X and we will write

S=supp X.

For example, the category of sets, or any discrete power of it as

well as any pointed category, all satisfy this WAC. Note that the catego-

ry of abelien groups, being pointed, satisfies it while it does not satisfy
the AC .

If A satisfies the WAC we define, after Jon Beck [unpublished]
a functor D : X -&#x3E; A to be pure if every D X D X E X, has the same support.
If U : B -&#x3E; A is a functor, then D:X-&#x3E;B is called U-pure if UD is pure.

We define p (X, A) and U-P ( X , B ) to be the full subcategories of the

functor categories (X, A) and (X,B) respectively, consisting of the

pure and U-pure functors respectively.
We note that if U is itself pure, then U- p (X, B)= (X,B).

If A satisfies the WAC and the sub-objects of 1 form a complete

lattice, we define, for a functor D: X -&#x3E; A, 

2. The VTT

TH E O R E M 1 . Let U : B -&#x3E; A be the inclusion of a full subcategory. Then

if U creates limits, it satisfies the VTT.

PROOF. Trivial.

In particular, the inclusion of any full coreflexive subcategory
satisfies the VTT.

THEOREM 2 . L et I be a small discrete category and A be complete and

satis f y the WAC. Then the functor II : P ( I, A ) -&#x3E; A , which assigns to
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each I-indexed family its product, satisfies the VTT.

PROOF. A parallel pair is an I-indexed family with supp

supp A’ the same for all i, and it is n-split provided that

is a split pair where

Let s:A-&#x3E;A’ such that dOs=A and d1 sd1 = d1s d0. Let S =supp Ai
and ti: Ai -&#x3E; S respectively ti:A’i -&#x3E; S) be the unique maps of Ai (res-

pectively Ai’) to S . For each i let ui : S -&#x3E; Ai be a map so that t. u. = S.

Note that since S is a subobject of 1 , any diagram terminating in S com-

mutes. Let pi : A -&#x3E; AZ and Pi: A - Ai denote the product projections. Then

there is a map u : S -&#x3E; A determined by pi u = ui . By replacing, if necessa-

ry, u by dl s u , we may suppose that u = d1 s u . (This replacement will

affect the ui but they play no further role. ) If we define u’ : S -&#x3E; A’ by
u’ = s u , then dOu’= dOsu and d1 u’ = d1 su = u. Next define v.: A -&#x3E; A

by letting pi vi = Ai while for j f:. i, pj vi = pj u ti . We similarly define

vi: Ai-·A by

p’ i v’ = A’, i and for J. f:. i, p’ j vi’ = p’ j u’ t’
At this point we need a computation.

PROPOSITION 1 . and f or all

PROOF. We compute using the product proj ections. First,

Now we return to the proof of Theorem 2. Define

Then

Also
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Since we have assumed that A is complete, idempotents spl it, and by
the remark after the definition of spl it coequalizer pairs, it follows that

Ai ==* Ai is a split coequalizer pair for every z. The functor Fl has an

adjoint which associates to an object A E A the constant family {Ai = A
for all i}. It then follows that fl preserves all inverse limits. To see

that fl creates them, it is sufficient to show that p ( I,A) has inverse

limits and that II reflects isomorphisms.

PROPOSITION 2 . I f A E A and S is a subobject of 1 , then S - supp A
if and only if (S, A)+O and (A, S)+O.

PROOF. The direct impl ication is guaranteed by our assumption that sup-

ports split. If S -&#x3E; A is a map, then A - S is a split epic, since S has on-

ly one endomorphism. But it factors A - supp A - S, and the second fac-

tor is a monomorphism and simultaneously a spl it epic and consequently
an isomorphism.

P RO P OSITI ON 3 . Let {Ai |j E J} be a family of objects of A . Let Si =

supp A,. Then supp II Ai = TT Si = n Si ’
PROOF. The first equality is clear, since a product of split epimorphisms
is one again. The second is trivial for subobjects of 1 .

COROLLARY 1 . Let D : X -&#x3E; A be a functor. Let S=suppD. Then SXD

( the funct or whose value at X E X is S X D X ) is pure. Moreover if E :

X- A is pure, then (E, D)=(E, SxD).

PROOF. The first part is clear, since supp ( S X D X ) = S X supp D X = S.
For the second, note that (E, S X D ) =( E, S ) X ( E, D ), where S is deno-

ting the constant functor on S . Now there is at most one natural transfor-

mation F -&#x3E; S, so that ( E , S X D ) is either O or ( E, D ) according as

( E , S ) is or isn’t O. But if (E , S)=O, then TS where T = supp E .
Since S=supp D and E has constant support, it follows that for some

X E X, T supp DX. But then (EX , DX) =O also, which implies that

(E, D)=O=(E, D)&#x3E;C(E, S). In either case (E,D)=(E, DXS).

COROLLARY 2. T’he inclusion P(X, A)-&#x3E;(X, A) has a right adjoint
given by D-&#x3E;(supp D)XD.
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3. Generalities on Reflective Subcategories

Let X be a category. By a reflective subcategory (warning: [Mac
Lane] has interchanged the meanings of reflective and coreflective) is

meant a full subcategory whose inclusion functor has a right adjoint. Up
to categorical equivalence this is the same thing as an adjoint pair

for which the front adjunction n:X0 -&#x3E; II is an isomorphism. It will sim-

plify (without materially changing) the discussion below if we suppose

that Xo is always replete: that is, if X =X0 E X0, then X E X0 also. We
V

let e: II -&#x3E; X denote the back adjunction.

PROPOSITION 4. A necessary and sufficient condition that X be in Xo
is that there exist a map x : X -&#x3E; 11 X with eX . x = X .

PROOF. The necessity of this condition is obvious. We must show that

any such x must be an isomorphism. The other composite

v

is a map between objects of Eo and is the identity if and only if I of it
v v v

is. But I E X . nIX = X , together with nIX an isomorphism, implies that

I E 8 X = (nI X)-1. On the other hand, I E X. Ix = IX and I E X an isomor

phism implies that Ix = (I e X) -1 = nIX, from which the desired relation
follows.

THEOREM 3. Let be reflective subcatego-

ries and U : X -&#x3E; Y , Uo : Xo -&#x3E; Yo be functors such that j Uo = U1, 1 f U has

a right adjoint U, then 1 U j - Uo is right adjoint to Uo . 1 f U has a left

adjoint U and if, in addition, j U = U 0 1, then U J factors as 1 U 0 and

U 0 is left adjoint to U 0 ’ I f U is cotripleable, so is U0. If U is triplea-
ble, then subject to the same condition J U = U0 1, so is U0.
PROOF. The first assertion follows from the computation, where Xo E X0
YO E YO ’ 
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with all isomorphisms natural. To prove the second, let a : UI -&#x3E; JU0 and
v

f3: U0 I-&#x3E; JU be the given isomorphisms. We let

and

denote the front adjunctions, while

and

denote the back adjunctions. As above, 1 61 is an isomorphism and natu-

rality of 8 implies the commutativity of

v

from which we infer that J U 6, is an isomorphism. But then the composite

is also an isomorphism. Hence, without loss of generality, we may sup-

pose that B= JU eI. Ja-1 I. nJ U0 I. Now we let

First we claim that E J U . y = U ei ’ In fact,

Here we used the fact, standard for adjoints, that E JJ. jnJ = j . Now de-
fine ç: UJ-&#x3E;IIUJ by the composite
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We compute

Hence for every Y0 E Y0, çY0: UJ Y0 11 U JY0 is a map whose compo-

site with E1 UJ Y0 is UJ Y0, which shows that Û j Y0 E X0; and we may
write UJY0=IU0Y0 where U0 =IUJ. Then we compute for Y0 E Y0, 
X0 E X0

which gives the adjointness.
Now suppose that U is cotripleable. Evidently I reflects isomor-

phisms and then UI = JU0 does, which, a fortiori, implies that U 0 does.

Then suppose that X0 -&#x3E; X’0 =&#x3E; X"0 is a U O-split equalizer diagram. Then it

is a J U0= UI-split diagram as well, which implies, since U is cotriple-

able, that I X0 -&#x3E;1 X’0 =&#x3E; I X"0 is an equalizer. Then for any X E X,

is an equalizer. If X =I X"0, then, since I is full and faithful, we see

th at

is an equalizer for all X" E X0, which means that X0-&#x3E;X0=&#x3E;X"0 is an

equalizer. The argument when U is tripleable is similar, since we never

used the fact that it has a right adjoint, only that it is full and faithful.

4. Functor Categories

The main theorem on pure functors follows. It was first given
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- more or less - by Beck with an ad hoc and somewhat mysterious proof.

TH E O R E M 4 . Let A satisfy the WAC and be complete and cocomplete.
Let U : B -&#x3E; A be tripleable and C be a small category. Then U - p ( C , 

B ) - A by the composite

is tripleable.

PROOF. First we establish the existence of an adjoint. Composition with

F, the left adjoint of U, gives a left adjoint to the functor (C, B) -&#x3E;

(C, A). The functor (C, A)-( |C|, A) has, since A is cocomplete, a
left adjoint given by the Kan extension. Here lCl is the discrete category

which is the set of objects of C. Finally, the product functor (lCl), A ) -&#x3E;
A has a left adjoint, the constant functor functor. The result then follows

from Theorem 3 applied to the diagram

Here the lower arrows are, of course, the identity funct or of A . Next, we

must show that the .composite satisfies the PTT. To do this we make use

of another chain, namely,

Since B is complete, (C, B)-&#x3E;( lCl, B) has a right adjoint, and, using
Theorem 3, so does U - P ( C , B ) -&#x3E; U - P (lCl, B). When B is cocomplete
it has a left adjoint as well, but in any case it preserves all inverse limits,

and by a simple modification of the proof of Theorem 3 , so does

The functor (lCl, B ) -&#x3E; (lCl, A) has whatever properties B-A does
and is, in particular, PTT . Then, by Theorem 3, the same is true for the

functor U - P (lCl,B) -&#x3E; U - P (lCl, A). Finally, by Theorem 2 , U-P ( lCl, ,
A ) -&#x3E; A satisfies the VTT. Putting it all together, we get the desired con-
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clusion.

This theorem is usually applied under hypotheses which make

U - P ( C, B ) = (C, B). For example, if A = S, the category of sets, and

B -A is tripleable, then B is a category of algebras for a theory t possi-

bly with infinitary operations ) . If we suppose that there is a nullary ope-
ration in the theory, then every object of B has the same support and eve-

ry functor is pure. On the other hand, regardless of the nature of B, if C

is strongly connected - ( C1 , C2 ) Cl ’ C2 E C - then every functor

is automatically pure. This is the case of the standard simplicial catego-

ry A, and hence, whenever B -A is tripleable and A satisfies the other

hypotheses of Theorem 4, we see that simp B = ( Aop, B ) is tripleable
over A. On the other hand, let B-S be tripleable but with no nullary

operations. Then the empty set is an algebra. Now if we look at simp+ B,
the category of augmented simplicial objects, this is not tripleable over

sets. There is the same adjoint pair but the algebras for the triple are the

full subcategory consisting of the constantly empty simplicial object and

those which are non-empty in all degrees, including - 1 - What gets omit-

ted are those which are empty in non-negative degrees but augmented to

a non-empty set.

5. Many-Sorted Algebras

An n-sorted algebra (where, for simplicity, we will imagine n to

be finite ) is a string (S1 , ... , Sn ) of sets together with operations of the

kind S1 e1 X ... X S ne n -&#x3E; Si and satisfying equations of the sort familiar

in algebra. A category of 1-sorted, or ordinary, algebras can be described

as a category of product preserving functors TBOP - S where there is gi-
ven a coproduct preserving functor i"" Th, which is an isomorphism on

objects. Similarly, we can describe n-sorted algebras by an n-fold theory,
Sn-&#x3E;Th.

The simplest category of 2-sorted algebras is the category (1+1,

S) = S X S of pairs of sets. The underlying functor is product and at first

glance it looks indeed to be tripleable. The operations are generated by a

single binary operation which is associative and idempotent. The catego-
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ry of algebras for that triple ( or that theory) is actually P (1+1,S),

those pairs of sets of which either both are empty or both are non-empty.
(What happens to tripleableness, by the way, is that the underlying func-

tor does not reflect isomorphisms. The map (O,O)-&#x3E;O) -&#x3E; (O, 1) is not an

isomorphism ; the induced O X cp - cp X 1 is.)

A rather typical example of 2-sorted algebras is the category of all

modules. Objects are pairs ( R, M ) where R is a ring and M is an R-mo-

dule. A map (p, f) : (R, M) -&#x3E; (R’, M’) consists of a ring homomorphism

f : R -&#x3E; R’, an abelian group homomorphism f : M -&#x3E; M’ such that f (rm )=

P(r) f(m) for rE R, mem.

An interesting w-sorted theory is the one whose algebras are the

finite algebraic theories. A finitary algebraic theory is determined by a

string (°0’ °1 ’ ... ) where On is the set of n-ary operations. For each k

and each nl ’ ... , nk , there is a map Qk X nn1 X... X nnk -&#x3E;nn1 +... +nk which
assigns to (w0, w1, ... wk) the operation W0 (w1 X ... X wk), These are

subject to associativity and unitary equations (the latter involving the

projections ) and give in obvious way an w-sorted theory. The existence of

the projections requires that ni+O for all i &#x3E; 0. However it is possible
that no=O. This corresponds to theories without constants. Evidently
it will not do to ignore theories without constants. Some of the most inte-

resting theories lack constants. One way out would be to omit the theories

with constants. A constant or nullary operation can always be replaced

by a unary operation plus an equation which makes the unary operation
constant. The only effect on the algebras would to make the empty set a

model of every theory. This is what happens when you present the theory
of groups by a single binary operation, (x, y) -&#x3E; xy -1, subject to some

equations.
If Th is an n-sorted theory, define a pure Th-algebra to be one all

of whose components are empty or all non-empty. Let P ( STh) denote this
category. It is, of course, the category of pure product preserving functors

of T’h°p to S .

TH E O R E M 5 . For any n-sorted theory Th ( where n may represent a finite
or in f inite cardinal), the category E (lTh) of pure Th-algebras is tri ple-
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able over S by the product functor.

PROOF. Let In I denote the discrete category with n objects. Then

is tripleable by the usual argument (see, e. g., [Mac Lane]). By Theorem

2 , the functor P ( ) lnl , S) -&#x3E; S satisfies the VTT and putting them toge-

ther, the result follows.

As with Theorem 4 , the main interest of this result is likely to be

when every algebra is pure. As in that case, this could result either be-

cause all components are required to be non-empty ( like the theory of all

modules ) or by a kind of connectedness. We leave to the reader the easy

exercise of constructing an example of the latter phenomenon.
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