
ON CATEGORIES WITH EFFECTIVE UNIONS

MICHAEL BARR

Abstract. We study an exactness condition that allows us to treat many of the
familiar constructions in abelian categories and toposes in parallel. Examples of such
constructions include Grothendieck’s theorem on the existence of injective cogenerators,
the exactness of right exact functors and torsion theories/topologies.

1. Introduction

One of the most surprising results in the early days of category theory—the one that
demonstrated that there was power in the notion —was Grothendieck’s theorem that what
we now call a Grothendieck abelian category has an injective cogenerator, [Grothendieck,
1957]. The hypotheses of that theorem include two fundamental ideas. The first is
that of an abelian category [Buchsbaum, 1956] that people had been zeroing in on since
Mac Lane’s influential paper, [Mac Lane, 1950]. The second was the infinite exactness
condition that characterizes a Grothendieck category and, for abelian categories, goes
under the name AB5.

It is easy to divorce the latter condition from that of additivity. One simply supposes
that finite limits commute with filtered colimits. And indeed, this has been a very im-
portant concept in equational categories and many other places. Not so successful have
been attempts to translate the finite exactness conditions into a non-additive setting.
For example, it has been difficult to find a finite exactness condition that, together with
exactness of filtered colimits, guarantees the existence of enough injectives. Of course,
toposes have enough injectives, but the conditions defining toposes are much more than
exactness conditions. (By an exactness condition, I mean any condition that says a limit
and a colimit commute.)

Another interesting property that abelian categories share with toposes is that a func-
tor between abelian categories is left exact if it preserve finite products and monos and is
right exact.

One would hope that results like these could be shown to follow from well chosen
exactness conditions. Unfortunately, insufficiently many exactness conditions are known
that would permit one to prove the results above. In fact, the principal exactness property
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of toposes—the universal effective sums—is not enjoyed by abelian categories, while they
in turn have exactness properties not possessed by toposes.

The main purpose of this paper is to explore an exactness condition which is satis-
fied by both abelian categories and toposes and which is strong enough to prove (under
relatively straightforward additional conditions) both the theorem on the existence of in-
jective envelopes and the left exactness of certain functors. For example, this gives a new
proof of the left exactness of the associated sheaf functor as a special case of reflectors for
certain kinds of topologies on categories.

We apply these results to topologies, also known as torsion theories, by proving that,
under appropriate additional conditions, the sheaf, that is torsion-free divisible, reflector
exists and is exact. Although it was previously known that topologies were a non-abelian
analog of torsion theories (see [Barr, 1973], the analogy has rarely, if ever, been fully
exploited.

2. Effective unions

Definition. A category is said to have effective unions if in any pullback diagram

C D// //

A

C

��

��

A B// // B

D

��

��

(∗)

if all the indicated arrows are regular monomorphisms, then the pushout B +A C exists
and the arrow B +A C // D is also a regular mono. This condition is satisfied in
abelian categories and toposes. For the former, it follows from the fact that when (∗) is
a pullback, then

0 // A // B ⊕ C // D

is exact and then that (B ⊕C)/A // // D. For toposes, it is proved in [Johnstone, 1977],
p. 41. It is readily inferred from the following:

2.1. Proposition. A regular category with finite limits and colimits in which finite
sums are disjoint and universal and every mono is regular has effective unions.

Proof. Let E be the union in the subobject lattice of D of the subobjects B and C.
Then

(B + C)×E (B + C) //// B + C // E

is a kernel pair/coequalizer diagram. Since E ⊆ D, the pullback over E is the same as
that over D. Because of the universality of sums,

(B + C)×D (B + C) ∼= B ×D B +B ×D C + C ×D B + C +D C ◦
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But with B // // D and C // // D, the first and last terms add up to the diagonal and
the two middle terms are simply the symmetric versions of each other. In other words,
B ×D C = C ×D B = B ∩ C. Thus,

B ∩ C //// B + C // E

is a coequalizer which implies that

C E// //

A

C

��

��

A B// // B

E

��

��

is a pushout.

2.2. The condition is inherited by slices, coslices, products and disjoint unions of
categories and the formation of functor categories. It is also satisfied by the category of
sheaves for a topology. (For the definition of topology, see Section 5 below.) The reason
is that in all these cases connected finite limits and connected finite colimits are created
in the original category.

Other examples include the category of compact Hausdorff spaces as well as by various
full subcategories, like Stone spaces. The reason is that subspaces in those categories are
closed and a function on a union of closed subspaces is continuous if its restriction to
the subspaces is. John Isbell has observed that this condition will be satisfied in any
variety or even quasi-variety whose theory includes no non-trivial finitary operation. The
reason is that in those cases, the underlying set functor creates finite limits and colimits.
Nevertheless, effective unions remain a relatively rare property.

In various parts of this paper, there will other exactness conditions required. In order
to avoid having to impose different and quite technical conditions, we will simplify the
presentation by supposing our categories to be biregular by which we mean that every
morphism factors as a regular epimorphism followed by a regular monomorphism and
that these factorizations are preserved by pushouts and pullbacks.

3. Injectives

Definition. Let G be a full subcategory of C . We say that an object Q is G -injective
if whenever H // // G is a regular monic in C between objects of G , then Hom(G,Q)

// Hom(H,Q) is surjective. An object is called injective if it is C -injective.

3.1. Lemma. Suppose the category C and full subcategory G satisfy the following
conditions:

(a) C has finite limits and exact filtered colimits;
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(b) C has pushouts of regular monos and they are regular monos;

(c) G is small;

(d) C is well-powered with respect to regular subobjects.

Then each object of C can be embedded by a regular mono into a G -injective.

Proof. Fix an object C of C . Begin by well-ordering the set of all diagrams

C

H

C
��

H G// // G

in which H // // G is a regular monomorphism between objects of G . We will take this
to mean that a one-one correspondence has been chosen between a set of ordinals α〈λ
and diagrams

C

Hα

C
��

Hα Gα
// // Gα

We will construct an ordinal sequence of objects Cα and regular monos mαβ:Cβ // Cα,
for β ≤ α, subject to the usual commutativity conditions as follows. Begin by letting
C0 = C. If α is a limit ordinal and Cβ has been constructed for all β〈α, we let Cα =
colimβ〈αCβ. For β ≤ α, we define mαβ to be the transition map to the colimit. We leave
it to the reader to show, using the exactness of the filtered colimits, that it is a regular
monic. We define Cα+1 so that

Cα Cα+1
//

fα+1,α

//

H

Cα

H G// mα // G

Cα+1

��

H

C

fα
��
C

Cα

mα
��

is a pushout and mα+1,β = fα+1,α ◦mαβ. We let Q1(C) = Cλ. It is evident that each
diagram

C Q1
// //

H

C

fα

��

H G// mα // G

Q1

���
�
�
�
�
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can be completed as shown. Next we choose a regular cardinal µ with the property that
each object of G has a regular subobject lattice of cardinality less than µ. Then we define
an ordinal sequence Qα(C) and regular monics nαβ:Qβ(C) // Qα(C) for β ≤ α〈µ by
letting Qα(C) = colimβ〈αQβ(C) when α is a limit ordinal and Qα+1(C) = Q1(Qα(C)).
Finally, Q(C) = Qµ(C). I claim that any arrow f :G // Q(C) with G an object of G
factors through Qα(C) for some α〈µ. In fact, filtered colimits commute with finite limits
so if we let Gα = f−1(Qα(C)), we have that colimGα = G. However, this colimit is taken
over a set of regular subobjects of G of cardinality larger than that of the whole subobject
lattice of G. If we eliminate repetitions, we get G as the colimit of a set of subobjects
Gα where now the index set runs over a set of ordinals smaller than µ. If we denote
this index set by I, the fact that µ is regular implies that sup{α‖α ∈ I} = ν〈µ. But
colimα∈I Gα = G which means that f factors through Qν(C). Now if we have a diagram

Q(C)

H

Q(C)

f

��

H G// m // G

it can be factored and then filled in as indicated

Qν(C) Qν+1(C)// //

H

Qν(C)

f

��

H G// m // G

Qν+1(C)
��

Qν(C) Qν+1(C)//Qν(C)

Q(C)
��

Qν+1(C)

Q(C)
��������������

3.2. Proposition. Suppose that in addition to the hypotheses of 3.1, C has effective
unions and cokernel pairs and G is closed under epimorphic images and regular subobjects
and includes a set of strong generators. Then a G -injective is injective.

This argument is adapted from the one found in [Grothendieck, 1957] and really goes
back to Baer’s proof that a divisible abelian group is injective.

Proof. Let Q be a G -injective and consider a diagram

Q

B

Q

f

��

B A// // A
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in which B // // A is a proper regular mono. There is an object G of G and an arrow G
// A that does not factor through B. Under the hypothesis 3.1(b) and the existence of

cokernel pairs every arrow factors as an epi followed by a regular mono and G is closed
under quotients, we can suppose that G // A is a regular mono. Then H = G×A B is
a proper regular subobject of G. We have the diagram

B A// //

H

B

��

��

H G// // G

A

��

��
B

Q

f

��

The pushout G +H B is by hypothesis a regular subobject of A that properly contains
B and the mapping property of the pushout implies that the map extends to it. This
shows that f can be extended a little and a standard Zorn’s lemma argument (using the
exactness of filtered colimits) takes us the rest of the way.

3.3. Theorem. Suppose the category C is a category and G a full subcategory that
satisfy the following conditions:

(a) C is regular and coregular and all monos are regular;

(b) C has exact filtered colimits;

(c) pushouts of regular monos are regular monos;

(d) C has effective unions;

(e) C is co-well-powered;

(f) G includes a set of strong generators.

Then C has enough injectives.

Proof. Since C has a set of generators, it is also well-powered and so we can suppose
that G is closed under subobjects and regular quotient objects. Then the hypotheses of
3.1 and 3.2 are satisfied and the conclusion follows.
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3.4. Injective cogenerators. We have shown that there are enough injectives. We
wish to show that Grothendieck’s argument about the existence of injective cogenerators
can also be adapted to this setting. We begin by closing up the set of generators under
finite sums and also under quotients. Then every object is a monomorphic filtered colimit
of generators. For each generator G, let Q(G) denote an injective container of G. Let Q
denote the set of the Q(G).

3.5. Theorem. A locally finitely presentable category in which all epis are regular and
which has exact filtered colimits, a small generating subcategory, and sufficient injectives
has a small injective cogenerating family.

Proof. We can suppose that the generating subcategory is small and closed under finite
sums, finite products, subobjects and quotient objects. Let C and G denote the category
and the small generating subcategory, respectively.

Given a proper epimorphism B // // A, let K //// B be the kernel pair. Write
B = colimGi a monomorphic filtered colimit with the Gi objects of G . Since K = B×AB,
it follows that K is the colimit of the diagram

(colimGi)×A (colimGi) ∼= colim(Gi ×A Gi)

Since the two arrows from K to B are distinct (otherwise B // // A is not a proper epi),
it follows that for some index i the two composite arrows

Gi ×A Gi
// B ×B //// B // // A

are distinct. Now consider the serially commutative diagram

B ×A B B
d0

//

Gi ×A Gi

B ×A B

��

��

Gi ×A Gi Gi

e0 //
Gi

B

��

��
B A// //

Gi

B

Gi Q(Gi)// q // Q(Gi)

AB ×A B B
d1

//

Gi ×A Gi

B ×A B

��

��

Gi ×A Gi Gi
e1

// Gi

B

��

��
B A// //

Gi

B

Gi Q(Gi)// // Q(Gi)

A

The injectivity forces the existence of an arrow g:B // Q(Gi) making the triangle
commutative. Since e0 6= e1 and q is mono, it follows that q ◦ e0 6= e1 hence g ◦ d0 6= d1

whence g cannot factor through A. This shows, by a standard argument, that B can be
embedded into a product of the Q(Gi).

3.6. injective envelopes. By combining our results with those of Banaschewski
[1970], we easily obtain,

3.7. Corollary. Under the same hypotheses, every object can be embedded into an
injective envelope.
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4. Left exact functors

It is a familiar fact of abelian categories that a right exact functor is left exact as soon
as it preserves monos. In some ways this is a very surprising fact. Despite the example
of the exact sheaf reflector, no non-additive version of this has ever been stated. It is
interesting that we have such a theorem for categories with effective unions. A similar
theorem has been discovered by Borceux and Veit [unpublished manuscript].

4.1. Theorem. Suppose F : C // D is a functor such that C has finite limits, cok-
ernel pairs and effective unions and F preserves finite products, regular monomorphisms
and cokernel pairs. Then F preserves finite limits.

In the case of an abelian category, a right exact functor automatically preserves finite
products and cokernel pairs, so this implies that every right exact functor that preserves
(regular) monos is left exact.

Proof. It is sufficient to show that F preserves equalizers. The diagram

C // C ′ //// C” (1)

is an equalizer if and only if

C // C ′ //// C ′ × C” (2)

is and in 2, the two arrows have a common left inverse. Since also

FC // FC ′ //// FC”

is an equalizer if and only if

FC // FC ′ //// F (C ′ × C”) ∼= FC ′ × FC”

is, it is sufficient to show that an equalizer of type 2 is preserved. Hence we can suppose
without loss of generality that 1 is an equalizer of two split monos with a common left
inverse. We observe that if 2 is an equalizer of that sort, then

C ′ C ′′//

C

C ′
��

C C ′// C ′

C ′′
��

is a pullback. The arrows are all regular monos, two of them by hypothesis and the
other two being split monos. It follows from the effective unions that the induced arrow
C ′ +C C

′ // // C” is a regular mono. If we apply F to the diagram

C C ′//

C

C

=

��

C C ′// C ′

C ′

=

��
C ′ C ′′//

C ′

C ′

C ′ C ′ +C C
′//

C ′ +C C
′

C ′′

��

��
C C ′//

C

C
��

C C ′// C ′

C ′
��
C ′ C ′′//

C ′

C ′

C ′ C ′ +C C
′// C ′ +C C
′

C ′′

��

��
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we get the diagram

FC FC ′//

FC

FC

=

��

FC FC ′// FC ′

FC ′

=

��
FC ′ FC ′′//

FC ′

FC ′

FC ′ FC ′ +FC FC
′//

FC ′ +FC FC
′

FC ′′

��

��
FC FC ′//

FC

FC
��

FC FC ′// FC ′

FC ′
��

FC ′ FC ′′//

FC ′

FC ′

FC ′ FC ′ +FC FC
′// FC ′ +FC FC
′

FC ′′

��

��

We have used the fact that F preserves cokernel pairs. The arrow FC // // FC ′ is a
regular mono, hence is the equalizer of its cokernel pair. Moreover, since F preserves
regular monos, the induced arrow FC ′ +FC FC

′ // FC” is also a (regular) mono. It is
now a trivial diagram chase to see that the bottom line is also an equalizer.

5. Topologies

Not surprisingly, Theorem 4.1 can be used to give a ‘soft’ proof of the fact that the
sheaf reflector is left exact. At that the same time, it shows that the torsion-free divisible
reflector with respect to a torsion theory on an abelian category is exact. In fact, categories
with effective unions and sufficient injectives seem to be the right kind of category in which
to study topologies in general. We begin with a definition.

5.1. A topology, also known as a torsion theory, on a category with finite limits
is a natural endomorphism of the subobject functor which is monotone, inflationary and
idempotent. This means that if j: Sub // Sub is the endomorphism, that with each
subobject A0 of an object A, there is associated a subobject jA0 = jAA0, which is

(a) (natural): If f :B // A and A0 ⊆ A, then f−1(jAA0) = jB(f−1(A0)).

(b) (monotone): If A0 ⊆ A1 ⊆ A, then jAA0 ⊆ jAA1.

(c) (inflationary): A0 ⊆ jA0.

(d) (idempotent): jjA0 = jA0.

5.2. Sheaves for a topology. Let j be a topology on the category C . A subobject
C0 ⊆ C is called j-closed if jCC0 = C0 and j-dense if jCC0 = C. An object C will be
called j-separated or j-torsion free if the diagonal C // C ×C is j-closed. It is called
a j-sheaf or j-torsion free and divisible if it is j-separated and if it is injective with
respect to j-dense monos. It is normal to omit the j when there is no doubt of the topology
in question.

Note that we use the terminology of topologies on a category, although there is a
parallel terminology developed in the context of abelian categories.
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5.3. Lemma. Let C be a category with a topology j. Let A be an object of C and B be
a subobject of A. Then

(a) If

B A// //

B′

B
��

B′ A′// // A′

A

f

��

is a pullback, then so are both squares of

B jAB// //

B′

B
��

B′ jA′B′// // jA′B′

jAB
��

jAB A// //

jA′B′

jAB

jA′B′ A′// // A′

A
��

(b) If C ⊆ B, then jBC = B ∩ jAC.

(c) If

B A// //

B′

B
��

B′ A′// // A′

A
��

is a commutative square with the top arrow dense and the bottom arrow closed, then
there is a unique arrow A′ // B making both triangles commute.

(d) A ⊆ jAB is dense and jAB ⊆ A is closed; moreover these properties characterize
jAB uniquely.

(e) If f :A′ // A is any map in C and B is dense (respectively closed) in A, then
B′ = f−1(B) is dense (respectively closed) in B.

(f) If C ⊆ B ⊆ A and both inclusions are dense (respectively closed), then C is dense
(respectively closed) in A.

(g) If B and C are both dense (respectively closed) in A then B∩C is dense (respectively
closed) in A.
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Proof. (a) That the right hand square is a pullback follows from the fact that j is a
natural endomorphism of the subobject functor means that

Sub(A) Sub(A′)
Sub(f)

//

Sub(A)

Sub(A)

j

��

Sub(A) Sub(A′)
Sub(f) // Sub(A′)

Sub(A′)

j

��

commutes. For Sub(f)(B) = B′ by assumption and so Sub(f)(jAB) = SubA′B
′.

(b) This follows from (a) and the observation that

C A// //

C

C
��

C B// // B

A
��

is a pullback.

(c) It follows from (a) that we have a commutative diagram

B jAB// //

B′

B
��

B′ jA′B′// // jA′B′

jAB
��

jAB A// //

jA′B′

jAB

jA′B′ A′// // A′

A
��

which gives existence. The uniqueness follows from the fact that jAB // // A.

(d) jjBB = jAB ∩ jAB = jAB from (b) which gives the density. Since j is idempotent,
jA(jAB) = jAB, which gives the closedness. The uniqueness is assured by (c).

(e) This is immediate from (a) since a pullback of an equality is an equality.

(f) Suppose both inclusions are dense. From (b) we have that B = jBC = B ∩ jAC so
that B ⊆ jAC, whence A = jAB = jAjAC = jAC. Next suppose both are closed. Then
jAC ⊆ jAB = B. Thus C = jBC = B ∩ jAC = jAC.

(g) This is immediate from (e) and (f).

5.4. Let j be a topology on C . Then for C an object of C , we let RC denote the
j-closure of the diagonal of C in C × C.

5.5. Proposition. Let j be a topology on C . Then for any arrows f, g:A // C, the
equalizer of f and g is dense in A if and only if 〈f, g〉:A // C ×C factors through RC.
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Proof. The equalizer E of f and g is characterized by the fact that

C C × C//

E

C
��

E A// A

C × C

〈f,g〉

��

is a pullback. Applying j, we get

C RC//

E

C
��

E jAE// jAE

RC
��

RC C×C//

jAE

RC

jAE A// A

C×C
��

If E is dense, we see the required factorization immediately. If 〈f, g〉 factors through
RC, the fact that the right hand square is a pullback implies that jAE = A and then E
is dense.

5.6. Corollary. Two maps to a separated object that agree on a dense subobject are
equal.

5.7. Proposition. Suppose j is a topology on a category C . Then for any object C,
RC is an equivalence relation on C.

Proof. Since the intersection of dense subobjects is dense, one easily shows that the
relation on Hom(A,C) of agreeing on a dense subobject of C is an equivalence relation
and is the relation of factoring through RC.

5.8. We will call a topology j on C effective if for each object C of C , RC is an
effective equivalence relation on C.

5.9. Proposition. Let j be an effective topology on the regular category C and
SC = C/RC denote the quotient functor. Then for any object C, SC is separated and is
the separated reflection of C.

Proof. In the pullback diagram

SC RSC//

RC

SC
����

RC RC
= // RC

RSC
����

RSC SC × SC//

RC

RSC

RC C × C// C × C

SC × SC
����

the fact that RC // RSC is a regular epi implies that SC // RSC is as well and
hence, being a mono, is an isomorphism.
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This shows that SC is separated. If A is separated and f :C // A is an arrow, we
have

A A× A
closed

//

C

A
��

C RC
dense // RC

A× A

RC

C × C
��

C × C

A× A
��

whose diagonal fill-in shows that the arrow C // A coequalizes the kernel pair and
hence that there is an induced map SC // A. The uniqueness is evident.

5.10. Proposition. Under the same hypotheses, S preserves monos and finite
products.

Proof. It follows from Lemma 5.3(e) that RA×B and A×RB are dense in RA×RB
and hence by part (g) that their intersection A × B is dense in RA × RB. It similarly
follows that RA×RB is closed in A×A×B ×B and hence by (d) that the j-closure of
A×B is RA×RB, in other words that R(A×B) = RA×RB. In a regular category, a
product of coequalizers is a coequalizer so that

RA×RB //// A×B // SA× SB

is a coequalizer and hence S(A×B) ∼= SA× SB.
As for monos, if (and only if) A // B is monic,

B B ×B//

A

B
��

A A× A// A× A

B ×B
��

is a pullback and hence so is

RB B ×B//

RA

RB
��

RA A× A// A× A

B ×B
��

by Lemma 5.3(a). It is then a simple exercise, using the regular embedding of [Barr,
1971] or [Barr, 1986] to see that the induced SA // SB is monic.

5.11. Proposition. Suppose that C is regular, that pushouts of monos exist and are
mono and that j is an effective topology on C . Then an object F is a j-sheaf if and only
if F is separated and is not j-dense in any properly containing separated object.
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Proof. If F is a sheaf, then let f :F // // C be a j-dense monic. The injectivity of F
with respect to j-dense monics implies the existence of a map g:B // F such that g ◦ f
is the identity. Then f ◦ g and the identity of C agree when composed with the j-dense
monic f and so are equal. To go the other way, suppose F has no proper separable dense
extensions. Then supposing we have

F

A

F
��

A B// dense // B

we form the pushout:

F G// //

A

F
��

A B// // B

G
��

With F closed in G, Lemma 5.3(c) gives the required map.

5.12. Theorem. Suppose that C is regular with every mono regular and that j is an
effective topology on C . Suppose each object can be embedded in an injective. Then each
separated object is embedded in a sheaf.

Proof. Let C be separated and f :C // // Q an injective container. Then f induces
a mono Sf :SC // // SQ. Since C is separated, C = SC and we have Sf = g ◦ f :C

// SQ where g:Q // SQ is the canonical map. A subobject of a separated object is
separated (an easy consequence of Lemma 5.3(e)) so that if we factor Sf = r ◦m, where
m:C // // F is dense and r:F // // SQ is closed, then F is separated. Now we claim that
F is a sheaf. In fact, let h:A // // B be a dense mono and k:A // F an arrow. Define
A0 so that the upper left square in the diagram

C F//
m

//

A0

C

l

��

A0 A// n // A

F

k

��
F SQ//

r
//

A

F
��

A B// h // B

SQ

g ◦ s

���
�
�
�
�

Q SQg
//Q

��

f

��
SQ

��

r

��

SQ

SQ

=

��������������

is a pullback. Now the injectivity of Q implies the existence of a map s:B // Q such
that t ◦h ◦n = f ◦ l. Then

g ◦ s ◦h ◦n = g ◦ f ◦ l = r ◦m ◦ l = r ◦ k ◦n ◦
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But the target, SQ, of that map is separated and n is dense so that g ◦ s ◦h = r ◦ k and the
right hand square commutes. Finally, m is assumed dense and s is closed by the definition
of F and so 5.3(c) gives the desired conclusion.

5.13. Theorem. Under the same hypotheses, a subobject of a sheaf is separated and
its closure is a sheaf, in fact, the sheaf reflector of that object.

Proof. Any subobject of a sheaf (or of any separated object), is readily seen to be
separated. Let A be such an object and let A // F be dense with F a sheaf. Consider
a diagram

G

A

G
��

A F// // F

with G a sheaf. Since G is a sheaf and the arrow A // // F is dense, it follows there
is a map F // G making the triangle commute. It is unique because two maps to a
separated object that agree on a dense subobject are equal.

5.14. Theorem. Suppose that C is a category and j a topology on C that satisfy the
hypotheses of Theorem 5.12. Then the inclusion of the full category of j-sheaves has a left
adjoint that preserves monos and finite products.

Proof. Only the preservation properties need be verified. The preservation of monos is
easy since if A // // B, we have SA // // SB and if FB is the sheaf associated to SB, the
sheaf associated to A is the j-closure of SA under the inclusion SA // // SB // // FB.
As for products, the product (including empty product) of sheaves is a sheaf because the
inclusion is a right adjoint. Then S(A × B) ∼= SA × SB // // FA × FB is dense from
Lemma 5.3(e) and (g).

5.15. Corollary. If, in addition, C has effective unions, then the associated sheaf
functor is left exact.

5.16. Theorem. Suppose the hypotheses of the preceding corollary are satisfied. Then
the category Cj of j-sheaves is regular with all monos regular and effective unions. If
pushouts of monos are mono in C , they are in Cj; if C has effective equivalence relations,
so does Cj.

Proof. Being a reflective subcategory of a category with finite limits, Cj has them too.
If

A B// //

A′

A
��

A′ B′// B′

B
��
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is a pullback in the category of sheaves, it is in C since the inclusion is a right adjoint.
Then the arrow A′ // B′ is a regular epi in C , a fortiori in Cj.

A mono in Cj is regular in C and by applying the associated sheaf functor to the
corresponding equalizer diagram, we conclude that it is regular in Cj as well.

To see that unions are effective, we consider a pullback of monos in Cj.

C D// //

B ∩ C

C

��

��

B ∩ C B// // B

D

��

��

This is also an intersection in C . If D′ // // D is the pushout in C , then FD′ // // FD =
D is the pushout in Cj. The universal mapping property of the adjoint insures that any
subsheaf of D that includes both B and C also includes FD′, so it is also their union in
the subobject lattice.

Next, consider a pushout in C

A′ B′//

A

A′
��

A B// // B

B′
��

in which A, B and A′ are sheaves and the upper arrow is monic. Since left adjoints
preserve pushouts, the pushout in Cj is the sheaf associated to B′. Since the reflector
preserves monos, the arrow A′ // // FB is still monic.

Suppose that equivalence relations in C are effective. Let A be a sheaf and E ⊆ A×A
an equivalence relation which is also a sheaf. Then we have a kernel pair diagram in C

E // // A // B

Applying the associated sheaf functor F , we get that

E //// A // FB

is also a kernel pair since the associated sheaf functor preservers coequalizers. The con-
clusion now follows since we have shown that all monos in Cj are regular.
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