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Introduction. The investigations which produced this paper were suggested

by the fact that the Hochschild cohomology H(F, M) of a free algebra E, with

coefficients in any module M, is zero in dimension ^ 2. Since free algebras are

projectives in the category of algebras, this suggested that H(—,M), considered

as a functor of the first variable, ought to resemble a derived functor. We have in

fact obtained one further resemblance: the existence, corresponding to any exact

sequence of algebras split over the ground ring, of a "connecting homomorphism"

in the first variable, and the exactness of the resulting infinite sequence. The

prerequisite for this is the remark that, given an algebra R, H(R,M) is not only

obtainable as a derived functor in the usual way [1, IX], but also, suitably re-

numbered, as the derived functor in the category of P-modules of Der(P,M),

the derivations from R to M.

The existence of the connecting homomorphism allows one to obtain a

functorial proof of the correspondence between second cohomology and ex-

tensions which is entirely analogous to the proof for modules found in [1, XIV, §1],

and to extend this correspondence to one of the Yoncda type for higher cohomo-

logy.

Similar arguments and results obtain for supplemented algebras, Lie algebras,

and groups, and we have presented these simultaneously.

We conclude the paper with a proof that, in degree = 2, the cohomology of the

free product of two groups is the direct sum of the cohomologies of each of them.

Some of our terminology is based implicitly on Eilenberg and Moore's notion

of projective and injectivc classes [2].

1. Cohomology as the derived functor of derivations. Let K be a commu-

tative ring with unit. In what follows, if will denote one of the following

categories :
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THE DERIVED FUNCTOR OF DERIVATIONS 417

Case A. Unitary /¿-algebras.

Case S. Supplemented unitary /¿-algebras; that is, unitary /¿-algebras with

a unitary /¿-algebra supplementation homomorphism to K. Morphisms in the

category are unitary /¿-algebra maps which commute with the supplementation.

Case L. Lie algebras with K as ground ring.

Case G. Groups (not necessarily commutative).

If Re(€, J4R will denote the following category.

Case A. Two sided ^-modules.

Case S. Left /^-modules. M is given the structure of a right R-module defined

by mr = e(r)m where s:R->K is the supplementation.

Case L. Left modules for the K-Lie algebra R. If MeJtR, we will give M the

structure of a right £-module defined by mr = — rm, for m e M, re R.

Case G. Left R-modules. If MeJtR, we will give M the trivial structure as a

right J?-module; i.e., mr = m, for m e M, re R.

The abelian group of morphisms between M and M' in JtR will be denoted

byHomR(M,M').

Let Ü denote the class of all monomorphisms in J/R in Case G, and all /¿-split

monomorphisms (monomorphisms which have a /¿-linear left inverse) in JtR

in Cases A, S and L. We say that QeJtR is S-injeciive in case, whenever/: M -» M'

is in 2., the map from HomR(M',Q) to HomR(M,Q) induced by / is surjective.

We say that a short sequence 0-+ M' -+f M -» M"->0 is â-exact in case it is

exact and f eâ. Other sequences are ü-exact if they are made up from short

J-exact sequences in the obvious way. In each of our cases, given Re%¡, there

is a ring Re with unit such that every R-module has a natural structure asa unitary

left R^-module and conversely. Hence it follows (see [1] and [3]) that there are

enough ü-injectives, in the sense that for every M e JiR there is an element

/ : M -> Q in J, where Q is a á-injective. One uses this to obtain J-exact i>-in-

jective resolutions and derived functors in the usual fashion.

Let cb : T -* R be a morphism in Í?, and let MeJtR. Define Der^T,M)

= {feHomK(T,M)\f(xy) = cb(x)f(y) + f(x)cb(y)}, where in case G, HomK

denotes set mappings. Consider Der^T, — ) as a functor from JtR to abelian

groups and let H^(T, — ) be its «th derived functor using the class â as described

above. In case cb:R-*R is the identity, we will write Der(£,M) for Der^LR.M)

and H(R,M) for H^(R,M).

Proposition 1.1. H%T, M) = Der^(T, M).

Proof. This follows at once from the easily established fact that Der^T, — )

is left exact.

Definition 1.1. For Me1„ let M x R be the direct product of M and R as

/¿-modules (sets in Case G). Then M x R may be considered as an object in if

by defining (m,r)(m',r') = (mr' + rm',rr'). Moreover, there is a natural morphism
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418 MICHAEL BARR AND G. S. RINEHART [April

$0:MxP->P and a natural 1-1 correspondence between Der^T.M) and

{a:T->M x R\eb0oi = eb}.

Let r€0 be the category of sets in Case G, of unitary /¿-modules in Cases A and

L, and of "supplemented" unitary X-modules (in the obvious sense) in Case S.

Then there is a natural inclusion functor of <& into ^0. Moreover, this functor

has a left adjoint; i.e. there is a functor E: <&0-+'é and an isomorphism of bi-

functors <^0(—, — ) = '^(F(-), — ), where r€(T,R) denotes morphisms from

T to R in '€. In Cases A and S, F(U) is the tensor algebra on U; in Case L the

free Lie algebra on U, defined as the appropriate homomorphic image of the non-

associative tensor algebra on U [1, p. 285, Example 4]; in Case G the free group

on 17. Note that the adjointness relationship implies that F(U) is a projective

for the class of all X-split surjections (or of all surjections in Case G).

Suppose epetf(F(U),R) and </»'e'»f0(C7,P) are corresponding morphisms.

By the above we have Der^(E(17), M) = {a e^(F(U),\M x R)\ep0x = eb}

= {a.'e^0(U,M x R)\<p0a' = eb'}. But M x P is just the product of M and R

in #0, and eb0 is the projection morphism to P. Hence Der^(E(C/),M) may be

identified with ^0(U, M). But f€0(U, — ) is exact on ü-exact sequences. Hence

we have

Proposition 1.2. H¡(F(U),M) = Ofor n = l.

For N e JiK, let Extj»(/Y, — ) be the derived functor, using ä, of the functor

Hom^N, — ). Then, in the notation of [3], ExtR(N,M) = Ext,R. K)(N, M), except

in Case G, where Extj» (N, M) = ExtÄ« (N, M).

Let B e JiR be R in Case A, K with the module structure defined via the aug-

mentation in Case S, K with trivial operation (R • K = {0}) in Case L, and the

integers with trivial operation (elements of R act as the identity homomorphism)

in Case G. Let H(R,M) = ExtR(B,M). Then H(R,M) is the usual cohomology

of the algebra (respectively Lie algebra, group) P with coefficients in M. (See [1]

and [3].)

There is a -2-exact sequence 0->/->Pe->B-+0, and the functors HomR(7, — )

and Der(R, -) are naturally equivalent [1, pp. 168, 183, 270]. Hence Ext.,(J,M)

= H(R,M); and, for n — 1, we have exact sequences

0 = Ext£(Pe, M) -> Ext£(/, M) -> ExtJ+ ' (B, M) -> Ext£+ ' (Pe, M) = 0.

Hence

Proposition 1.3. H"(R,M) s Ñn+1(R,M) ifn = l.

2. The connecting homomorphism in the first variable. Let eb:T-*R be a

surjection in ft with kernel S. In Cases A and L, define S2 to be the ideal generated

by {xy | x, y e S}. In Case S, let J be the kernel of the supplementation map from

T to K, and let S2 = SI. In Case G, let S2 be the commutator subgroup of S.

S¡S2 has the natural structure of an abelian group. T acts on S by multiplication
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(except in Case G where the action is s-^tst"1, seS, te T), and this action

sends S2 into itself. Thus S/S2 has a T-module structure, and the action of S on

this module is trivial. Thus we may regard SjS2 as an object in J(R.

If Me JtR, there is a natural exact sequence of abelian groups

(2.1) 0 - Det(R, M) - Der^T, M) -» Hom^S/S2, M)

in which the last map is induced by restriction from T to S.

Theorem 2.2. Let cb: T-*R be a surjection in if with kernel S, and let

MeJtR. In Cases A and S, assume that cb is K-split (has a K-linear right in-

verse); and in Case L assume that R is K-projective. Define ExtÄ as at the end

o/§l. Then, for all n = 0, there isa connecting homomorphism from E\tR(S/S2,M)

to Hn+l(R,M), such that the sequence

■■■->Hn(R,M)^H;(T,M)->Ext"R(SIS2,M)^H +l(R,M)^-

is exact, where the remaining maps are induced by those of (2.1).

Proof. Note first that since every derivation from T to an R-module vanishes

on S2, we may replace S and T by S/S2 and T/S2 respectively, and hence may

assume without loss of generality that S2 = 0. (In Case G "0" will be used to

denote the identity.)

We will define an object D^T) of JiR with the property that the functors

HomR(Dç{J), - ) and Der^T, - ) are isomorphic. We will also define a natural

morphism/ S->D^,(T) in JtR. If we write D(R) = D^(R) for c6 the identity map

on R, there will be an obvious epimorphism D^(T) -♦ D(R). Moreover, it can be

readily verified that this epimorphism induces an isomorphism between DJT)lJ(S)

and D(R), so that the sequence S -> D^T) -> D(R) -» 0 is exact. This sequence

corresponds, under the functor HomR( — ,M) to the sequence (2.1).

Finally, we will define a /¿-linear (Z-linear in Case G) map 6: D^(T) -* S such

that Oj is the identity on S. Hence the sequence

(2.1.1) 0^S->^(T)->D(«)^0

is J-exact. The above mentioned isomorphism of functors gives

ExtÄzyr),M)sH"(r,M),

so that the desired result follows from the existence and properties of the con-

necting homomorphism for Ext.

Case A. R0KT0KR is given the natural /^-module structure, and D0(T)

is the quotient by the submodule generated by

{c6(x)®y® 1 - l®xy® 1 + 1 ® x® cb(y)\x,y e T}.

The map from S to R ® T ® R which sends s to 1 ® s ® 1 induces /. Let a : R -* T
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be a X-splitting, so that eben = identity. Note that a(x)y — a(xeb(y)) e S for x e R

ye T. Then 9 is induced by the map from R ® T ® R to S which sends x® y® z

to (a(x)y — a(xeb(y))z.

Case S. DqCT) is the quotient of R®KT by the submodule generated by

{ep(x)® y — 1 ® xy + e(y)® x| x,y e T} where e: T-*K is the augmentation.

The map sending s to 1 ® s induces /. The class of x ® y e R ® T is sent

to a(x)y — a(xeb(y)) by 0.

Case G. Let Z[R x T] = Z[R] ® Z[T] be the group algebra on the product

group R x T, with the natural P-module structure. Let D^CT) be the quotient by

the subgroup generated by {eb(x)® y — I ® xy + I ® x\x,y e T}. The natural

injection induces j as usual, and 0 is induced by the map sending x®y to

a(x)y[a(xeb(y))] ~', where a: P -» T is any set-theoretic map such that eba. = iden-

tity.

Case L. Assume first that P is K-free and let R" be the Universal Enveloping

Algebra of P. Then, by the Birkhoff-Witt Theorem [1, XIII, §3] P is contained

in Re, and Re is X-free on a basis consisting of 1 and all elements of the form

x, ••• xn, where n — 1 and x, — ■■■ ^ x„ are elements of a linearly ordered K-basis

for P. D^T) is the quotient of Re ®K T by the submodule generated by

{eb(x) ® y — I ®xy — eb(y)®x\x,yeT}. The map which sends s to l®s

induces j. We have Re® T = Re ® S ® Re ® a(R). We will define a map

p: Re ® T -> S, and (9 will be induced by p. The P-module structure of S yields

an Pe-module structure, and we use this to define p on Re ® S such that

piu ® s) = us for u e Pe, s e S. Pe ® a(P) has a K-basis consisting of elements

l®a(y) and x1---x„®a(y) with y and x, 5Í ••■ ̂  x„ elements of the .K-basis

of P. Define p(l ® a(y)) = 0, and p(x, ■•• x„ ® a(y)) = 0 whenever x„ ^ y. Let

P^ be the K-submodule of Pe generated by products of z% « elements of P. We

may complete the definition of p, using induction on n, by requiring

p(x, ■•• x„ ® a(y)) = p(x, ■■• x„_, ® a(x>(y)) + p(x, ••• x„_,y ® a(x„))

whenever y < x„ ; because, choosing i such that x,_, ^ y < x¡, we have

x, •••x„_,y — x, •••x,_,yx¡...x„_1 e R^_,, so that both terms on the right may

be taken as already defined.

It is now sufficient to show that p vanishes on the requisite submodule, since

it is then immediate that 6 will have the desired property. We therefore must show

(2.2) pinep(z) ® s) = piu ® zs),      ueRe,      zeT,      seS,

pixy ••• x„y ® a(z)) = p(x, •■• x„ ® a(y)a(z)) + p(x, ••• x„z ® a(y)),

(2.3)
y,z and x, ^ ••• = x„ elements of the K-basis of P,

where in (2.3) we allow n = 0, with the obvious meaning.

Equation (2.2) follows at once from the definition of p. If we assume inductively
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that equation (2.3) has been shown for all values of n smaller than a given one

then, combining with (2.2), we obtain

(2.4) p(ucb(y) ® z) = p(u ® yz) + p(ucb(z) ® y),   ueRen_y,   y,zeT.

In what follows, we will denote Xy ■••x„_1 by x, and multiplication in R by the

customary Lie brackets. We wish to establish (2.3). If x„ — y or x„ — z, it holds

by definition. If not, choose i such that x¡-í = y< x¡. We have

xxny ® a(z) = xyx„ ® a(z) + x[x„, y] ® a(z)

and since xy — xx •••xi_1yx¡---x„_1 eRe„-y we may use (2.4) and the definition

of p to conclude from this that

p(xx„y ® a(z)) = p(xy ® a(x„)a(z)) + p(xyz ® a(x„))

(2.5)
+ p(x ® (a(x„)a(y))a(z)) + p(xz ® a(x„)a(y)).

Combining (2.5) with the equation obtained from it by the symmetry of y and z,

and using the Jacobi identity, we conclude

p(xx„y ® a(z)) - p(xxnz ® ct(y))

= p(x[y, z] ® a(x„)) + p(x ® (a(z)a(y))a(x„)).

But the right-hand side of this may be transformed, by applying (2.4) to its first

term, into p(xx„ ® a(y)a(z)), thus yielding (2.3), and completing the demonstration.

More generally, since R is /¿-projective there is a /¿-module R' such that

R® R' is /¿-free. Consider R' as an abelian Lie algebra. Then the mapping

cbxl:TxR'-*Rx Pv'of product algebras is a surjection with kernel S x {0} = S,

and the /¿-module RxR' = R©R'is free. Hence by the above the natural map from

S to D,,,* y(T x R') is /¿-split. The Lie algebra homomorphism from T to T xR'

which sends y to y x 0 induces an algebra homomorphism from Te to (TxR')e

and thus a ^-linear map from D^T) to D^x^T x R') such that the diagram

S->D¿T)

\   i

D^ytfxR')

commutes. Thus we also obtain a /¿-splitting for the map from S to D^(T).

3. Extensions. If Ret?, a singular extension of R is a surjection cb:T-*R with

kernel S such that S2 = 0, allowing us to consider Se^R. In Cases A and S we

require cb to be K-split, and in Case L we require R to be /¿-projective.IfRetf,

S e J(R, an extension of R by S is a singular extension cb:T-> R together with

a map \//:S-*T which is an £-linear isomorphism of S onto the kernel of cb.
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As usual, two such extensions (\¡i,T,eb) and (\¡i',T',ep) are said to be equivalent

in case there is a commutative diagram

*
»   T

<P
»  P

r  ^  <t>'->  T —-^   R
I1

We introduce the notion of Baer multiplication of equivalence classes and show

that they form a group, Jf(R,S), isomorphic in a natural way to HX(R,S). The

ideas parallel those of [1, XIV, §1].

Given two extensions (\¡i, T,eb) and ([//', T',eb) we define their Baer composition

ty, T, eb) * (ib', T, eb') as follows. Í7 = {(t, t')eT x T'\ eb(t) = eb'(t')} and

J = {(ip(s), \¡i'( — s)) I s e S}. Then it is easily seen that U is a subobject ofTxT'

and / is an invariant subobject of U. We define T*T' = 17//. Let n: t7-> T* T'

be the natural projection. Define \¡i*\ji'-. S->T*T' by \p *ip'(s) = n(ij/is),0)

= 7t(0, \¡/'is)) and eb x eb' : U -> P by eb x eb\t, t') = </>(0 = eb'it'). Since

eb x eb'iT) = 0, there is a map eb*eb':T*T'->R with eb*eb'on = eb x eb'. It is

readily checked that ii¡/*\¡/', T*T',eb*eb') is an extension of the desired type.

We define i}¡i,T,eb)*i^',T',eb') = i\¡/*^',T*T',ep*eb'). Let ii¡/0,T0,eb0) be the

extension in which T0 = S x R (Definition 1.1). It is a straightforward exercise

to show

Proposition 3.1. The composition * is defined on equivalence classes and

makes J¿iR,S) into an associative monoid whose identity element is the class

containing i\¡/0,T0,eb0).

Proposition 3.2. There is a natural monoid morphism

A:J?iR,S)^HliR,S).

Proof. Let E=E(P) be the free object over P as in Proposition 1.2 and consider

the exact sequence 0->M->iE-»ctP->0 in which a:E->P is the natural sur-

jection, M is its kernel and ß : M -» E is the inclusion. Given an extension i\¡/, T, eb)

we can use the adjointness relationship satisfied by E to find a map t : E -* T

whose restriction to M induces a map v:M-*S so that the following diagram

is commutative.

(3.3)

-> M

-» S

ß ->   F -*   R

-A
»   T

4> 1'
>  R

->   0

->    0.
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Moreover, v(M2)=0. Hence v induces a map v':M¡M2-> S which is easily seen

to be an £-homomorphism.

The canonical injection of R into F(R) yields a /¿-splitting for a, so that we have

a connecting homomorphism 0:HomR(M/M2,S)-> //'(£,S). Similarly, we

obtain 0 : HomR(S, S)^H1(R, S). Moreover, since Hl (F, S) = 0 (Proposition 1.2),

0 is a surjection. Hence we obtain a commutative and exact diagram

Der^(T,S)

(3.4)

-^    HomR(S, S)

Homs(v',S)

HomR(M¡M2,S)

0 -> Hl(R,S)

0
->   H^S) -> 0.

We let A(iA, T, cb) = 0(v') = 0(ls). The latter equality shows that this does not

depend on the choice of x. Moreover it is clear that A is really defined on equivalence

classes. That A is a monoid morphism now follows from

Lemma 3.5. Let (i¡/,T,cb), (i¡/',T',cb') be two extensions and let x, v, x', v' be

chosen as in (3.3). Then there is a map x*x':F~* T*T' so that the following

diagram is commutative.

0

0

-» M ->   £ ->  R ->   0

v + v' x*x

-» S -> T*T- -»/? ->   0.

Proof. Let n:U-+T*T' be as before and define x*x'(x) = n(x(x),x'(x)),

xeF.

Proposition 3.6. A is an epimorphism.

In fact, since 8 is an epimorphism, it suffices to show that if v:M -*S is such

that v(M2) = 0 and the induced map v':MjM2 -*S is £-linear, then we can find

an extension (\¡/, T, cb) making (3.3) commutative. Let V = S x F as a set in Case G

and a .K-module in the other cases, with multiplication defined by (s,x)(s',x')

= (a(x)s' + sa(x'),xx')x, x'e£, s,s'eS. Let J = {(v(m),ß( — m))\meM).

Then J is an invariant subobject. Let T = V\J and p : V -> T be the natural pro-

jection. Define \b:S^>T by i¡/(s) = p(s,0) and cb'-.V^-R by cb'(s,x) = ot(x),

xeF, seS. Then cb'(J) = 0 and so cb' induces a map cb:T-+R with cpp = cb'.

Map x:F->T by t(x) = p(0,x). Then (\j/,T,cp) is the desired extension.

Proposition 3.7. A_1(0) contains only the class of(i¡/0,T0,cb0).

Proof. Suppose A(i^, T, c6) = 0. Referring to (3.4), we conclude that there

exists d e Der^XT, S) such that d\j/ is the identity. As remarked in Definition 1.1,
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d corresponds to a morphism / : T -> T0 ; and / has the property that f\ji = \j/0

and eb0f = eb. Hence T and T0 are equivalent.

Lemma 3.8. Let N be a monoid, G a group and f: N -> G a monoid surjec-

tion with /-I(0) = 0. Then f is an isomorphism iand N is a group).

Proof. Trivial.

This completes the proof of

Theorem 3.9. A: J?(R,S)-> HX(R,S) is an isomorphism.

More generally, we may consider sequences

•A                                          7           <b
E        0->S—>Ey —>- —>En_y->T->R —»0      (n>l)

in which eb is a morphism in 'if (K-split in all but Case G) with kernel V, such that

V2 = 0; and such that the image of y is V, and, if V is given the induced P-

module structure,

0->S->Ey ->   •••->£„_, ->V->0

is an exact sequence of P-modules (K-split in all but Case G). In Case L we must

also assume that R is K-projective.

Two such sequences E and £' are related if there is a commutative diagram

E       0->S->Ey ->->£„_, ->T  ->R-»0

£'     0->S->E[->->E'n_y ->T' ->R->0

and we consider n-fold extensions of R by S to be equivalence classes of such

sequences under the equivalence relation generated by this relation.

Given sequences £ and £', their Baer composition is the sequence

E*E'      0->S-»£, *£,'-» E2 ®E2 -»•••->£„_, 0E;,_i-► T* T'->P->0,

where£,*£', = E, 0E,7{(i/-(s),,/,'( - s))|seS} and T*T'= {it,t')e Tx T'\epit)

= eb'it')} and the morphisms are the obvious ones. This clearly defines a product

on equivalence classes.

Given a sequence E we obtain an iterated connecting homomorphism

HomR(S, S) -> ExtJ"J (V, S) - H"(R, S)

and we associate with £ the image in H"(R, S) under this iteration of the identity

morphism ls. This defines a map A„ from «-fold extensions to H"(R,S).

Theorem 3.10. A„ is an isomorphism of groups.

Proof.   We define its inverse 4>. Let F=F(R), and let M = M¡M2, F=F¡M2,
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where Mis the kernel of the canonical surjection a: F-*R. We have an exact

sequence

(3.11) 0 = /i"-1(/,S)->Ext£"1(M,S)-> H"(R, S)^ H"(F,S) = 0

by Proposition 1.2 and Theorem 2.2. Given an element a eH"(R,S), we obtain

b£Ext£-1(M,S) by the isomorphism (3.11). This in turn [4] yields an extension

(3.12) 0->S->EL -^--- -=►£„_! ->M-»0

which is uniquely determined up to equivalence by the property that b is the

image of the identity under the corresponding iterated connecting homomorphism

from Hom^S.S) to Ext^_1(M,S). Let <t>(a) be the class of extension

0->S->Ey -> ••• ->£„_i ->F->R-> 0

obtained by combining (3.12) with 0-»M-*£-»/ï-»0. Clearly A„<P is the identity.

One can also show that <J>A„ is the identity, and that 3> is additive, which completes

the proof.

Theorem 3.10 suggests that H(R,N) can be obtained as the homology of the

complex

- <-HomR(A-B,JV) <-<-HomR(Xy,N) <-Der(£,JV) <-0

where 0->M->£->£-»0 is as in the proof of the theorem, and->X„-»

->Jï1->M-»0 is a renumbered projective resolution of M (in the sense dual

to the notion of J-injective resolution). Indeed, the connecting homomorphism

for the second variable is easily seen to exist and produce an exact sequence as

usual. Moreover, these functors vanish in positive degree for N J-injective, as is

seen by using (2.1.1). Since these properties characterize the functors H"(R, — ),

the result follows.

The idea for this definition of cohomology by means of a resolution of R is

essentially contained in [6] and will be exploited in [5].

4. Free products of groups. If Gt and G2 are groups, let Gy o G2 denote their

free product. If H is any group, GyO G2 is characterized by a natural isomorphism

(1) Hom^o G2,H) S Hom(G¡,H) x Hom(G2,H)

where "Horn" denotes group homomorphisms.

Theorem 4.1. // M is simultaneously a Gy-and a G2-module, and thus a

GyO G2-module, then the natural mapping from H"(GyO G2,M) to H"(Gy,M)

© H"(G2,M) is an isomorphism for every n.

Proof. If G is a group and Q is an injective Z-module, then Homz(Z[G~\,Q)

sMap(G,g) is an injective G-module, where "Map" denotes set mappings,
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and, for /eMap(G,ß), x,yeG, (x ■ f)(y)=f(yx). If G' c G and G = \J,xiG'
is a coset decomposition, then we have a G'-module isomorphism Map (G,Q)

^rj.-MapfoG^g), so that Map(G,Q) is simultaneously a G'-injective and a

G-injective module. Given a G-module M we choose a Z-injective Q with M''c 0;,

and define a G-linear injection from M into Map (G, g) by sending m to /m, where

fm(x) = xm.Thus every G-module can be imbedded in a module which is injective

as a module over every subgroup of G.

Applying this to the situation under consideration, we see that there is a simul-

taneous G,-, G2-, and G,o G2-injective resolution, Y, of M. From (1) and the

correspondence given in Definition 1.1 we obtain

Der (G, o G2, Y) at Der (G,, Y) © Der (G2, Y),

and passing to homology yields the desired result.
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