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Introduction

The main result of [Barr (1967)] is that the cohomology of an algebra with respect to
the free associate algebra cotriple can be described by the resolution given by U. Shukla
in [Shukla (1961)]. That looks like a composite resolution; first an algebra is resolved
by means of free modules (over the ground ring) and then this resolution is given the
structure of a DG-algebra and resolved by the categorical bar resolution. This suggests
that similar results might be obtained for all categories of objects with “two structures”.
Not surprisingly this turns out to involve a coherence condition between the structures
which, for ordinary algebras, turns out to reduce to the distributive law. It was suggested
in this connection by J. Beck and H. Appelgate.

If α and β are two morphisms in some category whose composite is defined we let α ·β
denote that composite. If S and T are two functors whose composite is defined we let ST
denote that composite; we let αβ = αT ′ · Sβ = S ′β · αT : ST // S ′T ′ denote the natural
transformation induced by α: S // S ′ and β: T // T ′. We let αX: SX // S ′X denote the
X component of α. We let the symbol used for an object, category or functor denote also
its identity morphism, functor or natural transformation, respectively. Throughout we let
M denote a fixed category and A a fixed abelian category. N will denote the category of
simplicial M objects (see 1.3. below) and B the category of cochain complexes over A.

1. Preliminaries

In this section we give some basic definitions that we will need. More details on cotriples
may be found in [Barr & Beck (1966)], [Beck (1967)] and [Huber (1961)]. More details on
simplicial complexes and their relevance to derived functors may found in [Huber (1961)]
and [MacLane (1963)].

Definition 1.1. A cotriple G = (G, ε, δ) on M consists of a functor G: M // M and
natural transformations ε: G // M and δ: G // G2 (= GG) satisfying the identities
εG · δ = Gε · δ = G and Gδ · δ = δG · δ. From our notational conventions εn: Gn // M

is given the obvious definition and we also define δn: G // Gn+1 as any composite of δ’s.
The “coassociative” law guarantees that they are all equal.
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Proposition 1.2. For any integers n,m ≥ 0,

(1) εn ·GiεmGn−i = εn+m, for 0 ≤ i ≤ n,

(2) GiδmGn−i · δn = δm+n, for 0 ≤ i ≤ n,

(3) Gn−i+1εmGi · δn+m = δn, for 0 ≤ i ≤ n + 1,

(4) εn+m ·GiδGn−i−1 = εn, for 0 ≤ i ≤ n− 1.

The proof is given in the Appendix (A.1).

Definition 1.3. A simplicial M object X = {Xn, d
i
nX, si

nX} consists of objects Xn,
n ≥ 0, of M together with morphisms di = di

nX: Xn
// Xn−1 for 0 ≤ i ≤ n called

face operators and morphisms si = si
nX: Xn

// Xn+1 for 0 ≤ i ≤ n called degeneracies
subject to the usual commutation identities (see, for example [Huber (1961)]). A mor-
phism α: X // Y of simplicial objects consists of a sequence αn: Xn

// Yn of morphisms
commuting in the obvious way with all faces and degeneracies. A homotopy h: α ∼ β
of such morphisms consists of morphisms hi = hi

n: Xn
// Yn+1 for 0 ≤ i ≤ n for each

n ≥ 0 satisfying d0h0
n = αn, dn+1hn

n = βn and five additional identities tabulated in [Huber
(1961)].

From now on we will imagine M embedded in N as the subcategory of constant
simplicial objects, those X = {Xn, di

n, si
n} for which Xn = C, di

n = si
n = C for all n and

all 0 ≤ i ≤ n.

Definition 1.4. Given a cotriple G = (G, ε, δ) on M we define a functor G∗: N // N

by letting X = {Xn, d
i
nX, si

nX} and G∗X = Y = {Yn, d
i
nY, si

nY }, where Yn = Gn+1Xn,
di

nY = GiεGn−i(di
nX) and si

nY = GiδGn−i(si
nX).a

Theorem 1.5. If h: α ∼ β where α, β: X // Y , then G∗h: G∗α ∼ G∗β where (G∗h)i
n =

GiδGn−ihi
n.

The proof is given in the Appendix (A.2).

Theorem 1.6. Suppose R is any subcategory of M containing all the terms and all the
faces and degeneracies of an object X of M. Suppose there is a natural transformation
ϑ: R // G|R such that ε · ϑ = R. Then there are maps α: G∗X // X and β: X // G∗X
such that α · β = X and G∗X ∼ β · α.

The proof is given in the Appendix (A.3).

aEditor’s footnote: This definition makes no sense. The definition of dn
i should be GiεGn−i.Gn+1di

nX
and similarly I should have had si

nY = GiδGn−i.Gn+1si
nX. I (the editor) no longer know what I (the

author) was thinking when I wrote this. Many thanks to Don Van Osdol, who was evidently doing a lot
more than proofreading, for noting this. This notation appears later in this paper too and I have decided
to keep it as in the original.
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2. The distributive law

The definitions 2.1 and Theorem 2.2 were first discovered by H. Appelgate and J. Beck
(unpublished).

Definition 2.1. Given cotriples G1 = (G1, ε1, δ1) and G2 = (G2, ε2, δ2) on M, a natural
transformation λ: G1G2

// G2G1 is called a distributive law of G1 over G2 provided the
following diagrams commute

G1G
2
2 G2

2G1

G1G2

G1G
2
2

G1δ2

²²

G1G2 G2G1G2G1

G2
2G1

δ2G1

²²

G1G2 G2G1λ //

G2
1G2

G1G2

OO

δ1G2

G2
1G2 G2G

2
1G2G
2
1

G2G1

OO

G2δ1

G2
1G2 G1G2G1

G1λ // G1G2G1 G2G
2
1

λG1 //

G1G
2
2 G2G1G2λG2

// G2G1G2 G2
2G1G2λ

//

G1 G2G1
oo

ε2G1

G1G2

G1

G1ε2

²²

G1G2 G2

ε1G2 // G2

G2G1

OO

G2ε1

G1G2

G2G1

λ
??

??
??

ÂÂ?
??

??
?

Theorem 2.2. Suppose λ: G1G2
// G2G1 is a distributive law of G1 over G2. Let

G = G1G2, ε = ε1ε2 and δ = G1λG2 · δ1δ2. Then G = (G, ε, δ) is a cotriple. We write
G = G1

◦
λ G2.

The proof is given in the Appendix (A.4).

Definition 2.3. For n ≥ 0 we define λn: Gn
1G2

// G2G
n
1 by λ0 = G2 and λn = λn−1G1 ·

Gn−1
1 λ. Also λn: Gn+1

1 Gn+1
2

// Gn+1 is defined by λ0 = G and λn = G1G2λn−1 ·G1λ
nGn

2 .
Let λ∗: G∗

1G
∗
2

// G∗ be the natural transformation whose n-th component is λn.

Proposition 2.4.

(1) Gn
2ε1 · λn = ε1G

n
2 , for n ≥ 0,

(2) Gn
2δ1 · λn = λnG1 ·G1λ

n · δGn
2 , for n ≥ 0,

(3) Gi
2ε2G

n−i
2 G1 · λn+1 = λn ·G1G

i
2ε2G

n−i
2 , for 0 ≤ i ≤ n,

(4) Gi
2δ2G

n−i
2 G1 · λn+1 = λn+2 ·G1G

i
2δ2G

n−i
2 , for 0 ≤ i ≤ n.

The proof is given in the Appendix (A.5).

3. Derived Functors

Definition 3.1. Given a functor E: M // A we define EC : N // B by letting ECX where
X = {Xn, di

n, si
n} be the complex with EXn in degree n and boundary

n∑
i=0

(−1)iEdi
n: EXn

// EXn−1
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The following proposition is well known and its proof is left to the reader.

Proposition 3.2. If α, β: X // Y are morphisms in N and h: α ∼ β and we let

ECh: ECXn
// ECYn+1 be

n∑
i=0

(−1)iEhi
n then ECh: ECα ∼ ECβ.

Definition 3.3. If E: M // A is given, the derived functors of E with respect to the
cotriple G, denoted by H(G;−, E), are the homology groups of the chain complex ECG∗X
(where X is thought of as a constant simplicial object).

Theorem 3.4. If G = G1
◦
λ G2 then for any E: M // A, ECλ∗: ECG∗

1G
∗
2

// ECG∗ is a
chain equivalence.

Proof. The proof uses the method of acyclic models described (in dual form) in [Barr &
Beck (1966)]. We let V and W be the chain complexes ECG∗

1G
∗
2 and ECG∗, respectively.

Then we show that ECλ∗ induces an isomorphism of 0-homology, that both Vn and Wn

are G-retracts (in the sense given below- we use this term in place of G-representable to
avoid conflict with the more common use of that term) and that each becomes naturally
contractible when composed with G. For W , being the G-chain complex, these properties
are automatic (see [Barr & Beck (1966)]).

Proposition 3.5. ECλ∗ induces an isomorphism of 0-homology.

Proof. Consider the commutative diagram with exact rows

EG2 EG
∂

// EG H0Wπ
// H0W 0//

EG2
1G

2
2 EG1G2

d //EG2
1G

2
2

EG2

Eλ1

²²

EG1G2 H0V
p //EG1G2

EG

EG

²²

H0V

H0W

ζ

²²Â
Â
Â
Â
Â

H0V 0//

where d = Eε1G1ε2G2 −EG1ε1G2ε2, ∂ = EεG−EGε, p = coker d, π = coker ∂ and ζ is
induced by EG: EG1G2

// EG since π · d = π · ∂ ·Eλ1 = 0. To show ζ is an isomorphism
we first show that p ·∂ = 0. In fact, p ·EεG = p ·Eε1ε2G1G2 = p ·Eε1G1G2 ·EG1ε2G1G2 =
p · Eε1G1ε2G2. EG1ε2G1δ2 = p · EG1ε1G2ε2 · EG1ε2G1δ2 = p · EG1ε1ε2G2. In a similar
way this is also equal to p · EGε and so p · ∂ = 0. But then there is a ξ: H0W

// H0V
such that ξ · π = p. But then ξ · ζ · p = ξ · π = p from which, since p is an epimorphism
we conclude ξ · ζ = H0V . Similarly ζ · ξ = H0W .

Now we return to the proof of 3.4. To say that Vn is a G-retract means that there are
maps ϑn: Vn

// VnG such that Vnε · ϑn = Vn. Let ϑn = ECGn
1 (G1λ

n+1G2 · δ1G
n
2δ2). Then

Vnε ·ϑn = ECGn+1
1 Gn+1

2 ε1ε2 ·ECGn
1 (G1λ

n+1G2 · δ1G
n
2δ2) = ECGn

1 (G1G
n+1
2 ε1ε2 ·G1λ

n+1G2 ·
δ1G

n
2δ2) = ECGn

1 (G1ε1G
n+1
2 · δ1G

n
2δ2) = EGn

1 (G1G
n+1
2 ) = Vn.

To see that the augmented complex V G // H0V G // 0 has a natural contracting ho-
motopy, observe that for any X the constant simplicial object GX satisfies Theorem 1.6
with respect to the cotriples G1 and G2, taking R to be the full subcategory generated
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by the image of G. In fact δ1G2X: GX // G1GX and λG2X · G1δ2X: GX // G2GX
are natural maps whose composite with ε1GX and ε2GX, respectively, is the identity.
This means, for i = 1, 2, that the natural map αiX: G∗

i GX // GX whose n-th com-
ponent is εn+1

i GX has a homotopy inverse βiX: GX // G∗
i GX with αi · βi = G. Let

hi: G
∗
i G ∼ βi · αi denote the natural homotopy. Then if α = α1 · G∗

1α2, β = G∗
1β2 · β1 we

have Ecα: ECG∗
1G

∗
2G // ECG and ECβ: ECG // ECG∗

1G
∗
2G. Moreover, noting that the

boundary operator in ECG simply alternates 0 and EG it is obvious that the identity
map of degree 1 denoted by h3 is a contracting homotopy. Then if

h = ECG∗
1h2 + EC(G∗

1β2 · h1 ·G∗
1α2) + EC(β · h3 · α),

d · h + h · d = d · ECG∗
1h2 + d · EC(G∗

1β2 · h1 ·G∗
1α2) + d · EC(β · h3 · α) + ECG∗

1h2 · d
+EC(G∗

1β2 · h1 ·G∗
1α2) · d + EC(β · h3 · α) · d

= EC(G∗
1G

∗
2G−G∗

1(β2 · α2)) + ECG∗
1β2 · EC(dh1 + h1d) · ECG∗

1α2

+ECβ · EC(dh3 + h3d) · ECα

= V G− ECG∗
1(β2 · α2) + ECG∗

1β2 · EC(G∗
1G− β1 · α1) · ECG∗

1α2

+EC(β · α)

= V G− ECG∗
1(β2 · α2) + ECG∗

1(β2 · α2)− EC(G∗
1β2 · β1 · α1 ·G∗

1α2)

+EC(β · α)

= V G.

This completes the proof.

4. Simplicial Algebras

In this section we generalize from the category of associative k-algebras to the category
of simplicial associative k-algebras the theorem of [Barr & Beck (1966)] which states that
the triple cohomology with respect to the underlying category of k-modules is equivalent
to a “suspension” of the Hochschild cohomology. The theorem we prove will be easily
seen to reduce to the usual one for a constant simplicial object.

Let Λ be an ordinary algebra. We let M be the category of k-algebras over Λ. More
precisely, an object of M is a Γ // Λ and a morphism of M is a commutative triangle
Λ oo Γ // Γ′ // Λ. In what follows we will normally drop any explicit reference to Λ.
As before we let N denote the category of simplicial M objects. Let Gt denote the tensor
algebra cotriple on M lifted to N in the obvious way: Gt{Xn, di, si} = {GtXn, Gtd

i, Gts
i}.

Let Gp denote the functor on N described by Gp{Xn, di
n, si

n} = {Xn+1, d
i+1
n+1, s

i+1
n+1}. This

means that the n-th term is Xn+1 and the i-th face and degeneracy are di+1 and si+1 respec-
tively. Let εp: GpX

// X be the map whose n-th component is d0
n+1 and δp: GpX

// G2
pX

be the map whose n-th component is s0
n+1.

Proposition 4.1.

(1) Gp = (Gp, εp, δp) is a cotriple; in particular εp and δp are simplicial maps.
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(2) If G is any cotriple “lifted” from a cotriple on M, then the equality GGp = GpG is
a distributive law.

(3) The natural transformations α and β where αX: GpX
// X0 whose n-th component

is d1 · d1 · · · · · d1 and βX: X0
// GpX whose n-th component is s0 · s0 · · · · · s0 are

maps between GpX and the constant object X0 such that α · β = X0. There is a
natural homotopy h: GpX ∼ β · α.

Proof. (1) The simplicial identity d0di+1 = did0, i > 0, says that d0 commutes with the
face maps. The identity d0si+1 = sid0, i > 0, does the same for the degeneracies and
so εp is simplicial. For δp we have s0di+1 = di+2s0 and s0si+1 = si+2s0 for i > 0, so it
is simplicial. Gpδp has n-th component s0

n+2 and δpGp has n-th component s1
n+2, and so

δpGp · δp = s1
n+2 · s0

n+1 = s0
n+2 · s0

n+1 = Gpδp · δp, which is the coassociative law. Finally,
εpGp · δp = d1

n+2 · s0
n+1 = Xn+1 = d0

n+2 · s0
n+1 = Gpεp · δp.

(2) This is completely trivial.
(3) This is proved in the Appendix (A.6).

We note that under the equivalence between simplicial sets and simplicial topological
spaces the “same” functor Gp is analogous to the topological path space.

From this we have the cotriple G = Gt
◦Gp where the distributive law is the identity

map. If we take as functor the contravariant functor E, whose value at X is Der(π0X,M)
where M is a Λ-bimodule, the G-derived functors are given by the homology of the cochain
complex 0 // Der(π0GX,M) // · · · // Der(π0G

n+1X,M) // · · · . π0X is most easily
described as the coequalizer of X1 ⇒ X0. Let d0 = d0

0: X0
// π0X be the coequalizer

map. But by the above, π0GX w GtX0 and GtX = εtd
0. Then π0G

n+1X = Gn+1
t Xn and

the i-th face is Gi
tεtG

n−i
t di. Thus H(G; X,E) is just the homology of KX, the cochain

complex whose n-th term is Der(Gn+1
t Xn,M). When X is the constant object Γ, this

reduces to the cotriple cohomology of Γ with respect to Gt.

If X is in N, the normalized chain complex NX given by NnX =
n⋂

i=1

ker di
n
b naturally

bears the structure of a DG-algebra. In fact, if NX ⊗ NX is the tensor product in
the category of DG modules over k given by (NX ⊗ NX)n =

∑
NiX ⊗ Nn−iX and

X⊗X is the tensor product in the category of simplicial k-modules given by (X⊗X)n =
Xn ⊗ Xn, then the Eilenberg-Zilber map g: NX ⊗ NX // N(X ⊗ X) is known to be
associative in the sense that g · (NX ⊗ g) = g · (g ⊗ NX). From this it follows easily
that if µ: X ⊗ X // X is the multiplication map in X, then Nµ · g makes NX into
a DG-algebra. Actually it can be shown that the Dold-Puppe equivalence ([Dold &
Puppe (1961)]) between the categories of simplicial k-modules and DG-modules (chain
complexes) induces an analogous equivalence between the categories of simplicial algebras

and DG-algebras. Given a DG-algebra V
α // Λ, we let B̃V be the chain complex given

by B̃nV =
∑

Λ ⊗ Vi1
⊗ · · · ⊗ Vim

⊗ Λ, the sum taken over all sets of indices for which

i1 + · · · + im + m = n. The boundary ∂ = ∂B̃ is given by ∂ = ∂′ + ∂′′ where ∂′ is the

bEditor’s footnote: N0X = X0; an empty intersection of subobjects of an object is the object itself
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Hochschild boundary and ∂′′ arises out of boundary in V . Let λ [v1, . . . , vm] λ′ denote the
chain λ ⊗ v1 ⊗ · · · ⊗ vm ⊗ λ′, deg [v1, . . . , vm] denote the total degree of [v1, . . . , vm], and
exp q denote (−1)q for an integer q. Then

∂′ [v1, . . . , vm] = α(v1) [v2, . . . , vm] +
∑

exp (deg [v1, . . . , vi])
[
v1, . . . , vivi+1, . . . , vm

]

+ exp
(
deg

[
v1, . . . , vn−1

]) [
v1, . . . , vn−1

]
α(vn)

∂′′ [v1, . . . , vm] =
∑

exp
(
deg

[
v1, . . . , vi−1

])
[v1, . . . , dvi, . . . , vm]

where d is the boundary in V . Then it may easily be seen that ∂′∂′′ + ∂′′∂′ = 0, and so
∂B̃ = ∂′ + ∂′′ is a boundary operator. It is clear that B̃ reduces to the usual Hochschild
complex when V is concentrated in degree zero.

BV is defined by letting BnV = B̃n+1V and ∂B = −∂B̃. This is where the degree
shift in the comparison theorems between triple cohomology and the classical theories
comes in. Then we define for a simplicial algebra over Λ and M a Λ-bimodule

LX = HomΛ−Λ(BNX,M)

Theorem 4.2. The cochain complexes K and L are homotopy equivalent.

Proof. We apply the theorem of acyclic models of [Barr & Beck (1966)] with respect to
G. As usual, the complex K, being the cotriple resolution, automatically satisfies both
hypotheses of that theorem. Let ϑn: LnG // Ln (where Ln is the n-th term of L) be the
map described as follows. We have for each n ≥ 0 a k-linear map ϕnX: Xn

// (GX)n

given by the composite Xn
s0

// Xn+1 = GpXn
// (GtGpX)n where the second is the

isomorphism of an algebra with the terms of degree 1 in its tensor algebra. Also it is clear
that εX · ϕnX = Xn. Thus we have k-linear maps ϕ̃n: Nn

// NnG with Nnε · ϕ̃n = Nn.
This comes about because N is defined on the level of the underlying modules and extends
to algebras. Then the Λ-bilinear map

Λ⊗ ϕ̃i1
⊗ · · · ⊗ ϕ̃im

⊗ Λ: Λ⊗Ni1
⊗ · · · ⊗Nim

⊗ Λ // Λ⊗Ni1
G⊗ · · · ⊗Nim

G⊗ Λ (∗)

is a map whose composite with the map induced by ε is the identity. Then forming
the direct sum of all those maps (*) for which i1 + i2 + · · · + im + m = n + 1 we have
the map of Bn

// BnG whose composite with Bnε is Bn. Let ϑn: HomΛ−Λ(BnG,M) //

HomΛ−Λ(Bn,M) be the map induced. Clearly ϑn · Lnε = Ln.
Now we wish to show that the augmented complex L+GX = LGX oo H0(LGX) oo 0

is naturally contractible. First note that by Proposition 4.1 (3) there are natural maps
α = αGtX: GX = GpGtX

// GtX0 and β = βGtX: GtX0
// GX with α ·β = GtX0, and

there is a natural homotopy h: GX ∼ β · α. Then we have L+α: L+GX // L+GtX0 and
L+β: L+GtX0

// L+GX such that L+α · L+β = L+GtX0 and L+h: L+GX ∼ L+β · L+α.
If we can find a contracting homotopy t in L+GtX0, then s = h+L+β · t ·L+α will satisfy
ds+sd = dh+hd+L+β · (dt+ td) ·L+α = L+GX−L+β ·L+α+L+β ·L+α = L+GX. But
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NGtX0 is just the normalized complex associated with a constant. For n > 0,
⋂
i>0

ker di
n =

0, since each di
n = GtX0. Thus NGtX0 is the DG-algebra consisting of GtX0 concentrated

in degree zero. But then LGtX0 is simply the Hochschild complex with degree lowered
by one. I.e. LGtX0 is the complex · · · // (GtX0)

(4) // (GtX0)
(3) // 0 with the usual

boundary operator. But this complex was shown to be naturally contractible in [Barr
(1966)]. In fact this was the proof that the Hochschild cohomology was essentially the
triple cohomology with respect to Gt. What remains in order to finish the proof of theorem
4.2 is to show:

Proposition 4.3. H0(K) ' H0(L) ' Der(π0X, M).

An auxiliary proposition will be needed. It is proved in the Appendix (A.7).

Proposition 4.4. If X is as above, then εtd
0: GtX0

// π0X is the coequalizer of εtGtd
0

and Gtεtd
1 from G2

t X1 to GtX0.

Proof of Proposition 4.3. From Proposition 4.4 it follows that for any Γ, M(π0X, Γ)
is the equalizer of M(GtX0, Γ) ⇒ M(G2

t X1, Γ). But by letting Γ be the split extension
Λ × M and using the well-known fact Der(Y,M) ' M(Y, Λ × M) for any Y of M, we
have that Der(π0X, M) is the equalizer of Der(GtX0, Γ) ⇒ Der(G2

t X1, Γ) or simply the
kernel of the difference of the two maps. I.e. Der(π0X, M) is the kernel of K0X // K1X
and thus is isomorphic to H0KX.

To compute H0L, it suffices to show that H0(BNX) = Diff π0X where, for an algebra
ϕ: Γ // Λ, Diff Γ represents Der(Γ,−) on the category of Λ-modules. Explicitly, Diff Γ is
the cokernel of Λ⊗ Γ⊗ Γ⊗ Λ // Λ⊗ Γ⊗ Λ where the map is the Hochschild boundary
operator ∂(λ ⊗ γ ⊗ γ′ ⊗ λ′) = λ · ϕγ ⊗ γ′ ⊗ λ′ − λ ⊗ γγ′ ⊗ λ′ + λ ⊗ γ ⊗ ϕγ′ · λ′. If for
convenience we denote the cokernel of an f : A // B by B/A, we have π0X = N0X/N1X,
and then

H0(BNX) =
Λ⊗N0X ⊗ Λ

Λ⊗N1X ⊗ Λ + Λ⊗N0X ⊗N0X ⊗ Λ
' Λ⊗ π0X ⊗ Λ

Λ⊗N0X ⊗N0X ⊗ Λ

' Λ⊗ π0X ⊗ Λ

Λ⊗ π0X ⊗ π0X ⊗ Λ
' Diff π0X

The next to last isomorphism comes from the fact that Λ⊗N0X⊗N0X⊗Λ //Λ⊗π0X⊗Λ
factors through the surjection Λ⊗N0X⊗N0X⊗Λ // Λ⊗π0X⊗π0X⊗Λ. This argument
is given by element chasing in [Barr (1967)], Proposition 3.1.

We now recover the main theorem 1.1. of [Barr (1967)] as follows.

Definition 4.5. Given a k-algebra Γ // Λ we define GkΓ // Λ by letting GkΓ be the
free k-module on the elements of Γ made into an algebra by letting the multiplication in
Γ define the multiplication on the basis. That is, if γ1, γ2 ∈ Γ and if [γi] denotes the basis
element of GkΓ corresponding to γi, i = 1, 2, then [γ1][γ2] = [γ1γ2].
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Theorem 4.6. There are natural transformations εk and δk such that Gk = (Gk, εk, δk)
is a cotriple. Also there is a natural λ: GtGk

// GkGt which is a distributive law.

Proof. εk: GkΓ // Γ takes [γ] to γ and δk takes [γ] to [[γ]] for γ ∈ Γ. Gk is made into a
functor by Gkf [γ] = [fγ] for f : Γ // Γ′ and γ ∈ Γ. Then

Gkδk · δk[γ] = Gkδk[[γ]] = [δk[γ]] = [[[γ]]] = δkGk[[γ]] = δkGk · δk[γ]

Also
Gkεk · δk[γ] = Gkεk[[γ]] = [εk[γ]] = [γ] = εkGk[[γ]] = εkGk · δk[γ]

To define λ we note that GtGkΓ is the free algebra on the set underlying Γ. In fact, any
algebra homomorphism GtGkΓ // Γ′ is, by adjointness of the tensor product with the
underlying k-module functor, determined by its value on the k-module underlying GkΓ.
As a k-module this is simply free on the set underlying Γ. Thus an algebra homomorphism
GtGkΓ // GkGtΓ is prescribed by a set map of Γ // GkGtΓ. Let 〈γ〉 denote the element
of GtΛ corresponding to γ ∈ Γ. Then λ〈[γ]〉 = [〈γ〉] is the required map. In this form the
laws that must be verified become

completely transparent. For example,

λGt ·Gtλ · δtGk〈[γ]〉 = λGt ·Gtλ〈〈[γ]〉〉 = λGt · 〈λ〈[γ]〉〉 = λGt〈[〈γ〉]〉
= [〈〈γ〉〉] = [δt〈γ〉]Gkδt[〈γ〉]= Gkδt · λ〈[γ]〉

The remaining identities are just as easy. It is, however, instructive to discuss somewhat
more explicitly what λ does to a more general element of GtGkΓ.

A general element of GtGkΓ is a formal (tensor) product of elements which are formal
k-linear combinations of elements of Γ. We are required to produce from this an element of
GkGtΓ which is a formal k-linear combination of formal products of elements of Γ. Clearly
the ordinary distributive law is exactly that: a prescription for turning a product of sums
into a sum of products. For example λ (〈[γ]〉 ⊗ (〈α1[γ1] + · · ·+ αn[γn]〉)) = α1[〈γ〉⊗〈γ1〉]+
· · ·+αn[〈γ〉⊗〈γn〉]. The general form is practically impossible to write down but the idea
should be clear. It is from this example that the term “distributive law” comes.

Now G∗
kΓ is, for any Γ // Λ, an object of N. Its cohomology with respect to

G = GpGt is with coefficients in the Λ-module M , as we have seen, the cohomology

of 0 // Der(GtGkΓ,M) // · · · // Der(Gn+1
t Gn+1

k Γ,M) // · · · which by theorem 3.4 is
chain equivalent to 0 // Der(GtGkΓ,M) // · · ·Der((GtGk)

n+1Γ,M) // · · · , in other
words the cohomology of Γ with respect to the free algebra cotriple GtGk. On the other
hand, NGkΓ is a DG-algebra, acyclic and k-projective in each degree. Thus BNGkΓ is,
except for the dimension shift, exactly Shukla’s complex. Thus if Shukn(Γ, M) denotes
the Shukla cohomology groups as given in [Shukla (1961)], the above, together with
Proposition 4.3 shows:

Theorem 4.7. There are natural isomorphisms

Hn(Gt
◦
λ
Gk; Γ,M) '

{
Der(Γ, M), n = 0
Shukn+1(Γ,M), n > 0
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5. Other applications

In this section we apply the theory to get two theorems about derived functors, each
previously known in cohomology on other grounds.

Theorem 5.1. Let Gf and Gbf denote the cotriples on the category of groups for which
GfX is the free group on the elements of X and GbfX is the free group on the elements
of X different from 1.c Then the Gf and Gbf derived functors are equivalent.

Theorem 5.2. Let M be the category of k-algebras whose underlying k-modules are k-
projective. Then if Gt, Gk and λ are as above (Section 4), the Gt and Gt

◦
λ Gk derived

functors are equivalent.

Before beginning the proofs we need the following:

Definition 5.3. If G is a cotriple on M, then an object X of M is said to be G-projective

if there is a sequence X α // GY
β // X with β ·α = X. We let P (G) denote the class of

all G-projectives.

The following theorem is shown in [Barr & Beck (1969)].

Theorem 5.4. If G1 and G2 are cotriples on M with P (G1) = P (G2), then the G1 and
G2 derived functors are naturally equivalent.

Proposition 5.5. Suppose G1 and G2 are cotriples on M, λ: G1G2
// G2G1 is a dis-

tributive law, and G = G1
◦
λ G2. Then P (G) = P (G1) ∩ P (G2).

Proof. If X is G-projective, it is clearly G1-projective. If X α // G1G2Y
β // X is a

sequence with β · α = X, then

X α // G1G2Y
G1δ2 // G1G

2
2Y

λG2Y // G2G1G2Y
ε2β // X

is a sequence whose composite is X. If X is both G1- and G2-projective, find

X
αi // GiYi

βi // X

for i = 1, 2, with βi · αi = X; then

X
α1 // G1Y1

δ1Y1 // G2
1Y1

G1β1 // G1X
G1α2 // G1G2Y2

ε1G2Y2 // G2Y2

β2 // X

cEditor’s footnote: On first glance, it is not obvious why Gbf is even a functor, let alone a cotriple.
We leave it an exercise for the reader to show that Gbf can be factored by an adjunction as follows. Let
PF denote the category of sets and partial functions. Let Ubf :Groups //PF that takes a group to the
elements different from the identity, while Fbf :PF // Groups takes a set to the free group generated
by it and when f : X // Y is a partial function, Fbff takes every element not in dom f to the identity.
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is a sequence for which

β2 · ε1G2Y ·G1α2 ·G1β1 · δ1Y1 · α1 = ε1X ·G1β2 ·G1α2 ·G1β1 · δ1Y1 · α1

= ε1X ·G1β1 · δ1Y1 · α1 = β1 · ε1G1Y1 · δ1Y1 · α1 = β1 · α1 = X

and thus exhibits X as a retract of GY2.

Theorem 5.6. Suppose G1, G2, λ, G are as above. If P (G1) ⊂ P (G2), then the G1-
derived functors and the G-derived functors are equivalent; if P (G2) ⊂ P (G1), then the
G2-derived functors and the G-derived functors are equivalent.

Proof. The first condition implies that P (G) = P (G1), while the second that P (G) =
P (G2).

Proof of theorem 5.1. Let Gz denote the cotriple on the category of groups for
which GzX = Z + X where Z is the group of integers and + is the coproduct (free
product). The augmentation and comultiplication are induced by the trivial map Z // 1
and the “diagonal” map Z // Z + Z respectively. By the “diagonal” map Z // Z + Z
is meant the map taking the generator of Z to the product of the two generators of
Z + Z. Map Z // GbfZ by the map which takes the generator of Z to the generator
of GbfZ corresponding to it. For any X, map GbfZ // Gbf (Z + X) by applying Gbf

to the coproduct inclusion. Also map GbfX // Gbf (Z + X) by applying Gbf to the
other coproduct inclusion. Putting these together we have a map which is natural in X,
λX: Z+GbfX

// Gbf (Z+X), which can easily be seen to satisfy the data of a distributive
law GzGbf

// GbfGz. Also it is clear that Z + GbfX ' GfX, since the latter is free on
exactly one more generator than GbfX. Thus the theorem follows as soon as we observe
that P (Gz) ⊃ P (Gbf ). In fact, the coordinate injection α: X // Z + X is a map with
εZ · α = X, and thus P (Gz) is the class of all objects.

Proof of theorem 5.2. It suffices to show that on M, P (Gt) ⊂ P (Gt
◦
λ Gk). To do

this, we factor Gt = FtUt where Ut: M // N, the category of k-projective k-modules, and
Ft is its coadjoint (the tensor algebra). For any Y , the map UtεkY : UtGkY // UtY is
easily seen to be onto, and since UtY is k-projective, it splits, that is, there is a map

γ: UtY
// UtGkY such that UtεkY · γ = UtY . Then GtY

Ftγ // GtGkY
GtεkY // GtY

presents any GtY as a retract of GtGkY . Clearly any retract of GtY enjoys the same
property.

The applicability of these results to other situations analogous to those of theorems
5.1 and 5.2 should be clear to the reader.

Appendix

In this appendix we give some of the more computational -and generally unenlightening-
proofs so as to avoid interrupting the exposition in the body of the paper.
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A.1. Proof of Proposition 1.2. (1) When n = i = 0 there is nothing to prove. If
i = 0 and n > 0, we have by induction on n,

εn · εmGn = ε · εn−1G · εmGn = ε · (εn−1 · εmGn−1)G = ε · εn+m−1G = εn+m

If i = n > 0, then we have by induction

εn ·Gnεm = ε ·Gεn−1 ·Gnεm = ε ·G(εn−1 ·Gn−1εm) = ε ·Gεn+m−1 = εn+m

Finally, we have for 0 < i < n, again by induction,

εn ·GiεmGn−i = εi ·Giεn−i ·GiεmGn−i = εi ·Giεn+m−i = εn+m

(2) This proof follows the same pattern as in (1) and is left to the reader.
(3) When n = 0 and m = 1 these are the unitary laws. Then for n = 0, we have, by

induction on m,

Gεm · δm = G(ε · εm−1G) · δm = Gε ·Gεm−1G · δm−1G · δ
= Gε · (Gεm−1 · δm−1)G · δ = Gε · δ = G = δ0

and similarly εmG · δm = δ0. Then for n > 0, we have, for i < n + 1,

Gn−i+1εmGi · δn+m = Gn−i+1εmGi ·Gn−iδmGi · δn = Gn−i(Gεm · δm)Gi · δn = δn

Finally, for i = n + 1,

εmGn+1 · δn+m = εmGn+1 · δmGn · δn = (εmG · δm)G · δn = δn

(4) The proof follows the same pattern as in (3) and is left to the reader.

A.2. Proof of theorem 1.5.
We must verify the seven identities which are to be satisfied by a simplicial homotopy.

In what follows we drop most lower indices.

(1) εGn+1d0 · δGnh0 = Gn+1(d0 · h0) = Gn+1αn

(2) Gn+1εdn+1 ·Gnδhn = Gn+1(dn+1 · hn) = Gn+1βn

(3) For i < j,

GiεGn+1−idi ·GjδGn−jhj = Gi(εGn+1−idi ·Gj−iδGn−jhj)

= Gi(Gj−i−1δGn−jhj−1 · εGn−idi) = Gj−1δGn−jhj−1 ·GiεGn−idi

(4) For 0 < i = j < n + 1,

GiεGn+1−idi ·GiδGn−ihi = Gn+1(di · hi) = Gn+1(di · hi−1)

= GiεGn+1−idi ·Gi−1δGn−i+1hi−1
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(5) For i > j + 1,

GiεGn+1−idi ·GjδGn−jhj = Gj(Gi−jεGn+1−idi · δGn−jhj)

= Gj(δGn−j−1hj ·Gi−j−1εGn+1−idi−1) = GjδGn−j−1hj ·Gi−1εGn+1−idi−1

(6) For i ≤ j,

GiδGn+1−isi ·GjδGn−jhj = Gi(δGn+1−isi ·Gj−iδGn−jhj)

= Gi(Gj−i+1δGn−jhj+1 · δGn−isi) = Gj+1δGn−jhj+1 ·GiδGn−isi

(7) For i > j,

GiδGn+1−isi ·GjδGn−jhj = Gj(Gi−jδGn+1−isi · δGn−jhj)

= Gj(δGn+1−jhj ·Gi−1−jδGn+1−isi−1) = GjδGn+1−jhj ·Gi−1δGn+1−isi−1

A.3. Proof of theorem 1.6.
We define αn = εn+1Xn: Gn+1Xn

// Xn and βn = δnXn · ϑXn: Xn
// Gn+1Xn. First

we show that these are simplicial. We have

di · αn = di · εn+1Xn = εn+1Xn−1 · di == εnXn ·GiεGn−iXn−1 ·Gn+1di = αn ·GiεGn−idi

Similarly,

si · αn = si · εn+1Xn = εn+1Xn+1 · si = εn+2Xn+1 ·GiδGn−iXn+1 · si = αn+1 ·GiδGn−isi

GiεGn−idi · βn = GiεGn−idi · δnXn · ϑXn

= Gndi · δn−iXn · ϑXn = δn−1Xn−1 · ϑXn−1 · di = βn−1 · di

Similarly,

GiδGn−isi · βn = GiδGn−isi · δnXn · ϑXn = δn+1si · ϑXn

= δn+1Xn+1 ·Gsi · ϑXn = δn+1Xn+1 · ϑXn+1 · si = βn+1 · si

Moreover, αn · βn = εn+1Xn · δnXn · ϑXn = εXn · ϑXn = Xn.
Let hi

n = Gi+1(δn−isi
n·ϑXn·εn−iXn): Gn+1Xn

// Gn+2Xn+1 for 0 ≤ i ≤ n. Then we will
verify the identities which imply that h: β ·α ∼ G∗X. At most places in the computation
below we will omit lower indices and the name of the objects under consideration.

(1)

εGn+1d0 · h0
n = εGn+1d0 ·G(δns0 · ϑ · εn) = δn(d0 · s0) · ϑ · εn · εGn = δn · ϑ · εn+1 = βn · αn
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(2)
Gn+1εdn+1 · hn

n = Gn+1εdn+1 ·Gn+1(Gsn · ϑ) = Gn+1(εdn+1 ·Gsn · ϑ)

= Gn+1(ε · ϑ) = Gn+1Xn

(3) For i < j,

GiεGn+1−idi · hj
n = GiεGn+1−idi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gi(εGn+1−idi ·Gj−i+1(δn−jsj · ϑ · εn−j))

= Gi(Gj−i(δn−j · sj−1 · ϑ · εn−j) · εGn−idi)

= Gj(δn−jsj−1 · ϑ · εn−j) ·GiεGn−idi = hj−1
n−1 ·GiεGn−idi

(4) For 0 < i = j < n + 1,

GiεGn+1−idi · hi
n = GiεGn+1−idi ·Gi+1(δn−isi · ϑ · εn−i)

= Gi(εGn+1−idi ·G(δn−isi · ϑ · εn−i))

= Gi(δn−i(di · si) · ϑ · εn−i · εGn−i)

= Gi(δn−i · ϑ · εn+1−i) = Gi(δn−i(di · si−1) · ϑ · εn−i+1)

= Gi(εGn+1−idi · δn−i+1si−1 · ϑ · εn−i+1)

= GiεGn+1−idi ·Gi(δn−i+1si−1 · ϑ · εn−i+1) = GiεGn+1−idi · hi−1
n

(5) For i > j + 1,

GiεGn+1−idi · hj
n = GiεGn+1−idi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gj+1(Gi−j−1εGn+1−idi · δn−jsj · ϑ · εn−j)

= Gj+1(δn−j−1(di · sj) · ϑ · εn−j)

= Gj+1(δn−j−1(sj · di−1) · ϑ · εn−j)

= Gj+1(δn−j−1sj · ϑ · εn−j−1 ·Gi−1εGn−i+1di−1)

= hj
n−1 ·Gi−1εGn−i+1di−1
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(6) For i ≤ j,

GiδGn+1−isi · hj
n = GiδGn+1−isi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gi(δGn+1−isi ·Gj−i+1(δn−jsj · ϑ · εn−j))

= Gi(Gj−i+2(δn−jsj+1 · ϑ · εn−j) · δGn−isi)

= Gj+2(δn−jsj+1 · ϑ · εn−j) ·GiδGn−isi = hj+1
n+1 · si

(7) For i > j,

GiδGn+1−isi · hj
n = GiδGn+1−isi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gj(Gi−jδGn+1−isi ·Gδn−jsj ·Gϑ ·Gεn−j)

= Gj(Gδn−j+1(si · sj) ·Gϑ ·Gεn−j)

= Gj(Gδn−j+1(sj · si−1) ·Gϑ ·Gεn−j)

= Gj(Gδn−j+1sj ·Gϑ ·Gεn−j ·Gi−j−1(Gε · δ)Gn+1−isi−1)

= Gj(Gδn−j+1sj ·Gϑ ·Gεn−j ·Gi−jεGn+1−i ·Gi−j−1δGn+1−isi−1)

= Gj(Gδn−j+1sj ·Gϑ ·Gεn−j+1 ·Gi−j−1δGn+1−isi−1)

= Gj+1(δn−j+1sj · ϑ · εn−j+1) ·Gi−1δGn+1−isi−1 = hj
n+1 ·Gi−1δGn+1−isi−1

This proof is adapted from the proof of Theorem 4.5 of [Appelgate (1965)].

A.4. Proof of theorem 2.2.
We must verify the three identities satisfied by a cotriple.

(1)
Gε · δ = G1G2ε1ε2 ·G1λG2 · δ1δ2 = G1ε1G2ε2 · δ1δ2

= (G1ε1 · δ1)(G2ε2 · δ2) = G1G2 = G

(2)
εG · δ = ε1ε2G1G2 ·G1λG2 · δ1δ2 = ε1G1ε2G2 · δ2δ2

= (ε1G1 · δ1)(ε1G2 · δ2) = G1G2 = G

(3)
Gδ · δ = G1G2G1λG2 ·G1G2δ1δ2 ·G1λG2 · δ1δ2

= G1G2G1λG2 ·G1λG1G
2
2 ·G2

1λG2
2 ·G1δ1G2δ2 · δ1δ2 = λ2 · δ2

1δ
2
2

and by symmetry this latter is equal to δG · δ.
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A.5. Proof of Proposition 2.4.

(1) For n = 0 this is vacuous and for n = 1 it is an axiom. For n > 1, we have by
induction

Gn
2ε1 · λn = Gn

2ε1 ·G2λ
n−1 · λGn−1

2 = G2(G
n−1
2 ε1 · λn−1) · λGn−1

2

= G2(ε1G
n−1
2 ) · λGn−1

2 = (G2ε1 · λ)Gn−1
2 = (ε1G2)G

n−1
2 = ε1G

n
2

(2) For n = 0 this is vacuous and for n = 1 it is an axiom. For n > 1, we have by
induction

Gn
2δ1 · λn = Gn

2δ1 ·G2λ
n−1 · λGn−1

2 = G2(G
n−1
2 δ1 ·G2λ

n−1) · λGn−1
2

= G2(λ
n−1G1 ·G1λ

n−1 · δ1G
n−1
2 ) · λGn−1

2

= G2λ
n−1G1 ·G2G1λ

n−1 · (G2δ1 · λ)Gn−1
2

= G2λ
n−1G1 ·G2G1λ

n−1 · (λG1 ·G1λ · δ1G2)G
n−1
2

= G2λ
n−1G1 ·G2G1λ

n−1 · λG1G
n−1
2 ·G1λGn−1

2 · δ1G
n
2

= G2λ
n−1G1 · λGn−1

2 G1 ·G1G2λ
n−1 ·G1λGn−1

2 · δ1G
n
2 = λnG1 ·G1λ

n · δ1G
n
2

(3) For n = 0 this is an axiom. For n > 0, first assume that i = 0. Then we have by
induction,

ε2G
n
2G1 · λn+1 = ε2G

n
2G1 ·Gn

2λ · λnG2 = Gn−1
2 λ · ε2G

n−1
2 G1G2 · λnG2

= Gn−1
2 λ · (ε2G

n−1
2 G1 · λn)G2 = Gn−1

2 λ · (λn−1 ·G1ε2G
n−1
2 )G2

= Gn−1
2 λ · λn−1G2 ·G1ε2G

n
2 = λn ·G1ε2G

n
2

For i > 0 we have, again by induction,

Gi
2ε2G

n−i
2 G1 · λn+1 = Gi

2ε2G
n−i
2 G1 ·G2λ

n · λGn
2 = G2(G

i−1
2 ε2G

n−i
2 G1 · λn) · λGn

2

= G2(λ
n−1 ·G1G

i−1
2 ε2G

n−i
2 ) · λGn

2 = G2λ
n−1 ·G2G1G

i−1
2 ε2G

n−i
2 · λGn

2

= G2λ
n−1 · λGn−1

2 ·G1G
i
2ε2G

n−i
2 = λn ·G1G

i
2ε2G

n−i
2

(4) For n = 0 this is an axiom. For i = 0, we have by induction

δ2G
n
2G1 · λn+1 = δ2G

n
2G1 ·Gn

2λ · λnG2 = Gn+1
2 λ · δ2G

n−1
2 G1G2 · λnG2

= Gn+1
2 λ · (δ2G

n−1
2 G1 · λn)G2 = Gn+1

2 λ · (λn+1 ·G1δ2G
n−1
2 )G2

= Gn+1
2 λ · λn+1G2 ·G1δ2G

n
2 = λn+2 ·G1δ2G

n
2
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For i > 0 we have, again by induction,

Gi
2δ2G

n−i
2 G1 · λn+1 = Gi

2δ2G
n−i
2 G1 ·G2λ

n · λGn
2 = G2(G

i−1
2 δ2G

n−i
2 G1 · λn) · λGn

2

= G2(λ
n+1 ·G1G

i−1
2 δ2G

n−i
2 ) · λGn

2 = G2λ
n+1 ·G2G1G

i−1
2 δ2G

n−i
2 · λGn

2

= G2λ
n+1 · λGn+1

2 ·G1G
i
2δ2G

n−i
2 = λn+2 ·G1G

i
2δ2G

n−i
2

A.6. Proof of Proposition 4.1 (3).
In the following we let di and si stand for diX and siX respectively. If Y = GpX,

then Yn = Xn+1, diY = di+1 and siY = si+1. αn = (d1)n+1: Yn
// X0 and βn =

(s0)n+1: X0
// Yn. Then αn ·βn = (d1)n+1 ·(s0)n+1 = Yn. Let hi

n = (s0)i+1(d1)i: Yn
// Yn+1

for 0 ≤ i ≤ n.

(1) d0Y · h0 = d1 · s0 = Yn.

(2) dn+1Y · hn = dn+2 · (s0)n+1 · (d1)n = (s0)n+1 · d1 · (d1)n = βn · αn.

(3) For i < j,
diY · hj = di+1 · (s0)j+1 · (d1)j = (s0)j · di · (d1)j

= (s0)j · (d1)j−1 · di+1 = hj−1 · diY

(4)
diY · hi = di+1 · (s0)i+1 · (d1)i = (s0)i · (d1)i

= (s0)i · d1 · (d1)i−1 = di+1 · (s0)i · (d1)i−1 = diY · hi−1

(5) For i > j + 1,

diY · hj = di+1 · (s0)j+1 · (d1)j = (s0)j+1 · di−j · (d1)j

= (s0)j+1 · (d1)j · di = hj · di−1Y

(6) For i ≤ j,
siY · hj = si+1 · (s0)j+1 · (d1)j = (s0)j+2 · (d1)j

= (s0)j+2 · (d1)j+1 · si+1 = hj+1 · siY

(7) For i > j,
siY · hj = si+1 · (s0)j+1 · (d1)j = (s0)j+1 · si−j · (d1)j

= (s0)j+1 · (d1)j · si = hj · si−1Y

A.7. Proof of Proposition 4.4.
Form the double simplicial object E = {Eij = Gi+1

t Xj} with the maps gotten by
applying G to the faces and degeneracies of X in one direction and the cotriple faces and
degeneracies in the other. Let D = {Di = Gi+1

t Xi} be the diagonal complex. We are
trying to show that π0D ' π0X. But the Dold-Puppe theorem asserts that π0D ' H0ND
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and the Eilenberg-Zilber theorem asserts that H0ND is H0 of the total complex associated
with E. But we may compute the zero homology of

GtX1 GtX0
//

G2
t X1

GtX1

²²

G2
t X1 G2

t X0
// G2

t X0

GtX0

²²
GtX1 GtX0//

G2
t X1

GtX1

²²

G2
t X1 G2

t X0// G2
t X0

GtX0

²²

G2
t X0 0//

GtX0 0//GtX1

0
²²

GtX0

0
²²

by first computing the 0 homology vertically, which gives, by another application of the
Dold-Puppe theorem,

π0(G
∗
t X1)

//// π0(G
∗
t X0) // 0

But G∗
t is readily shown to be right exact (i.e. it preserves coequalizers) and so this is

X1
//// X0

// 0. Another application of the Dold-Puppe theorem gives that H0 of this
is π0X.
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