COMPOSITE COTRIPLES AND DERIVED FUNCTORS

MICHAEL BARR

Introduction

The main result of [Barr (1967)] is that the cohomology of an algebra with respect to
the free associate algebra cotriple can be described by the resolution given by U. Shukla
in [Shukla (1961)]. That looks like a composite resolution; first an algebra is resolved
by means of free modules (over the ground ring) and then this resolution is given the
structure of a D(G-algebra and resolved by the categorical bar resolution. This suggests
that similar results might be obtained for all categories of objects with “two structures”.
Not surprisingly this turns out to involve a coherence condition between the structures
which, for ordinary algebras, turns out to reduce to the distributive law. It was suggested
in this connection by J. Beck and H. Appelgate.

If « and 3 are two morphisms in some category whose composite is defined we let a- 3
denote that composite. If S and 7" are two functors whose composite is defined we let ST
denote that composite; we let af = o1’ - S3 = S'8-aT: ST — S"T" denote the natural
transformation induced by a: S — S" and : T — T". We let aX:SX — S’X denote the
X component of a. We let the symbol used for an object, category or functor denote also
its identity morphism, functor or natural transformation, respectively. Throughout we let
M denote a fixed category and 2 a fixed abelian category. 91 will denote the category of
simplicial 9t objects (see 1.3. below) and 9B the category of cochain complexes over 2.

1. Preliminaries

In this section we give some basic definitions that we will need. More details on cotriples
may be found in [Barr & Beck (1966)], [Beck (1967)] and [Huber (1961)]. More details on
simplicial complexes and their relevance to derived functors may found in [Huber (1961)]
and [Mac Lane (1963)].

DEFINITION 1.1. A cotriple G = (G,e,6) on M consists of a functor G:IM — M and
natural transformations e:G — M and 6:G — G* (= GG) satisfying the identities
eG-0=Ge-0=G and G6 -6 = 6G - 9. From our notational conventions €": G" — IM
is given the obvious definition and we also define 6™: G — G™ as any composite of §’s.
The “coassociative” law guarantees that they are all equal.
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PROPOSITION 1.2. For any integers n,m > 0,

(1) e -GlemGri=¢e"m  for(0<i<n,
(2)  GigmGTi.5n = . for 0 < i <,
(3) GritlemGi.gmtm =46 for0<i<n-+1,
(4) evtm. GG =g for0<i<n-—1.

The proof is given in the Appendix (A.1).
DEFINITION 1.3. A simplicial M object X = {X,,d' X,st X} consists of objects X,,,

n > 0, of M together with morphisms d' = d'X: X, — X, ; for 0 < i < n called
face operators and morphisms s' = st X: X, — X, ., for 0 < i < n called degeneracies
subject to the usual commutation identities (see, for example [Huber (1961)]). A mor-
phism a: X — Y of simplicial objects consists of a sequence o,,: X,, — Y, of morphisms
commuting in the obvious way with all faces and degenemcz’es A homotopy h:a ~ f3
of such morphisms consists of morphisms h' = hi: X, =Y, ., for 0 < i < n for each
n > 0 satisfying d°h® = «,,, d"T'h" = 3, and five additional identities tabulated in [Huber

(1961)].

From now on we will imagine 91 embedded in 91 as the subcategory of constant
simplicial objects, those X = {X,,,d’, %} for which X, = C, d!, = s, = C for all n and
all 0 <7 < n.

DEFINITION 1.4. Given a cotriple G = (G,¢,6) on M we define a functor G*:N — N
by letting X = {X,,,d' X,s': X} and G*X =Y = {Y,,d'Y,s! Y}, where Y, = G X,
dlY = G'eG"(d! X) and s'Y = G'6G" (st X).2

THEOREM 1.5. If h:av ~ 3 where o, 3: X — Y, then G*h: G*a ~ G*3 where (G*h)!, =
G'0G™"h,.

The proof is given in the Appendix (A.2).

THEOREM 1.6. Suppose R is any subcategory of M containing all the terms and all the
faces and degeneracies of an object X of IMM. Suppose there is a natural transformation
R — G|R such that ¢ -9 = R. Then there are maps a: G*X — X and : X — G*X
such that a- 3 =X and G*X ~ - a.

The proof is given in the Appendix (A.3).

2Editor’s footnote: This definition makes no sense. The definition of d7 should be GieG"~*.G"1d X
and similarly I should have had sY = G!{6G"~¢.G"*1s! X. T (the editor) no longer know what I (the
author) was thinking when I wrote this. Many thanks to Don Van Osdol, who was evidently doing a lot
more than proofreading, for noting this. This notation appears later in this paper too and I have decided
to keep it as in the original.
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2. The distributive law

The definitions 2.1 and Theorem 2.2 were first discovered by H. Appelgate and J. Beck
(unpublished).

DEFINITION 2.1. Given cotriples G, = (G,,¢,,9,) and Gy = (Gy,€4,05) on M, a natural
transformation \: G,G, — GG, is called a distributive law of Gy over G, provided the
following diagrams commute

GiA AG,

G1G, GGG, Gy Gt
5,Gy Gyd, G,G, SN G,
G1G2 A G2G1 G152 A\ G2£1
G152 52G1 G]. 'T G2G1
GlG% /\G2 G2G1G2 Gg)\ G%Gl

THEOREM 2.2. Suppose \:G,Gy — G,G, is a distributive law of G, over G,. Let
G =G,G,y, € =169 and § = G{A\G, - 0,0y. Then G = (G,e,0) is a cotriple. We write
G=G, G,

The proof is given in the Appendix (A.4).

DEFINITION 2.3. For n > 0 we define \": GGy, — G,G7 by \° = G, and \" = \"1G, -
GUIA\ Also N, GGy — G s defined by Ny = G and )\, = G,G,)\,_, - G A"GY.

Let \*: G1G5 — G™ be the natural transformation whose n-th component is A,,.

PROPOSITION 2.4.

(1) Ghey -\ =¢e,GY, forn >0,
(2) G50 - A" = A\"Gy - G1A" - 6GY, ' forn >0,
(8) GheyGy~'Gy - X" = A" G Ghe, Gy ™', for 0 < <o,
(1) Gis,GIoiG, - A+ = A2 G LGS, GR for 0 < i <.

The proof is given in the Appendix (A.5).

3. Derived Functors

DEFINITION 3.1. Given a functor E: 9 — A we define E: 9 — B by letting E~X where
X ={X,,d, s} be the complex with EX,, in degree n and boundary

> (-1)'Ed,: EX, — EX,_,

1=0
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The following proposition is well known and its proof is left to the reader.

ProrosiTION 3.2. If a,(3: X — Y are morphisms in N and h:a ~ [ and we let
Ech:EcX, — E.Y, .| be Y (—1)'Eh!, then E h: Eqca ~ Ef3.

i=0
DEFINITION 3.3. If E: 9N — A is given, the derived functors of E with respect to the
cotriple G, denoted by H(G; —, E), are the homology groups of the chain complex E~G*X
(where X is thought of as a constant simplicial object).

THEOREM 3.4. If G = G, °, G, then for any E:IM — A, E N\ E.G;G5 — E~-G* is a
chain equivalence.

PROOF. The proof uses the method of acyclic models described (in dual form) in [Barr &
Beck (1966)]. We let V' and W be the chain complexes E,G;G% and E-G*, respectively.
Then we show that E,\* induces an isomorphism of 0-homology, that both V,, and W,
are G-retracts (in the sense given below- we use this term in place of G-representable to
avoid conflict with the more common use of that term) and that each becomes naturally
contractible when composed with G. For W, being the G-chain complex, these properties
are automatic (see [Barr & Beck (1966)]).

PROPOSITION 3.5. E-\* induces an isomorphism of 0-homology.

PRrROOF. Consider the commutative diagram with exact rows

EG*G: —~EG,G,—2 = H)V ——=0

[
EX\ EG 1¢

i [
y
EG? 5 EG - HOW —0

where d = Ee,G,6,Gy — EG e,Gye,, 0 = EeG — EGe, p = coker d, m = coker 0 and ( is
induced by EG: EG,Gy — EG since m-d =7-0- EX; = 0. To show ( is an isomorphism
we first show that p-0 = 0. In fact, p- EeG = p- Fe,e,G,Gy = p- Ee,G,Gy- EGe,GGy =
p- Ee,Gie,Gy. EGe,G 0y =D EGe,Gyey - EGLe,G 0y = p - EGLe,6,G,. In a similar
way this is also equal to p - EGe and so p- 0 = 0. But then there is a &t HW — H,V
such that £ -7 = p. But then £-(-p =& -7 = p from which, since p is an epimorphism
we conclude ¢ - ¢ = HyV. Similarly ¢ - £ = H,2W. ]

Now we return to the proof of 3.4. To say that V,, is a G-retract means that there are
maps 0,:V, — V, G such that Ve -9, = V,. Let ¥, = E,G(G\"'G, - 6,G50,). Then
Ve-d, = E,Gi Gt e e, E,GHG NG, - 6,G36,) = E,GHG G e ey - GG, -
0,G50,) = ECG?(GlglGSH $0,G0,) = EG?(GngH) = Vo

To see that the augmented complex VG — H,VG — 0 has a natural contracting ho-
motopy, observe that for any X the constant simplicial object GX satisfies Theorem 1.6

with respect to the cotriples G, and G,, taking R to be the full subcategory generated
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by the image of G. In fact ,G,X:GX — G,GX and A\G,X - G10,X:GX — G,GX
are natural maps whose composite with ¢,GX and ¢,GX, respectively, is the identity.
This means, for ¢ = 1,2, that the natural map o, X:G;GX — GX whose n-th com-
ponent is e'"'GX has a homotopy inverse 3,X:GX — G:GX with o, - ; = G. Let
h;: GIG ~ B, - a; denote the natural homotopy. Then if a = oy - Gy, 5 = G0, - 5, we
have E.a: E,G1G5G — E.G and E.(3: E,G — E,G1G5G. Moreover, noting that the
boundary operator in E-G simply alternates 0 and E'G it is obvious that the identity
map of degree 1 denoted by h; is a contracting homotopy. Then if

h = E-Gihy+ Eo(GiBy-hy - Giay) + Eo(B - hy - ),
d-h+h-d = d-E.Gihy+d-Eo(GifBy-hy-Glay)+d-Eq(B-hy-a)+ E.Gihy-d

+E(G1By - hy - Glay) ~d+ Eq(B-hs-a) - d

= Eo(GIG3G — Gi(By - ap)) + EcGi By - Ec(dhy + hyd) - EcGioy
+E-0 - Eq(dhy + hyd) - Eqa

= VG = EcGi(By - ) + EcGiB, - Eo(GiG = By - o) - EcGlay
+Eo(8- @)

= VG - EcGi(By - ap) + EcGi(By - g) — Ec(G1By - By - oy - Glay)
+Ec(8 - a)

= VG.

This completes the proof. [

4. Simplicial Algebras

In this section we generalize from the category of associative k-algebras to the category
of simplicial associative k-algebras the theorem of [Barr & Beck (1966)] which states that
the triple cohomology with respect to the underlying category of k-modules is equivalent
to a “suspension” of the Hochschild cohomology. The theorem we prove will be easily
seen to reduce to the usual one for a constant simplicial object.

Let A be an ordinary algebra. We let 9t be the category of k-algebras over A. More
precisely, an object of 9 is a I' — A and a morphism of 9 is a commutative triangle
A< T —T1"— A. In what follows we will normally drop any explicit reference to A.
As before we let 91 denote the category of simplicial 9% objects. Let G, denote the tensor
algebra cotriple on 9 lifted to 9N in the obvious way: G {X,,d", s'} = {G,X,,,G,d*, G,s'}.
Let G, denote the functor on 9 described by G {X,,, d;,, s} = {X,, 1, 4,7, 5,5, . This
means that the n-th term is X, ; and the i-th face and degeneracy are d'™' and s"*! respec-
tively. Let £,: G, X — X be the map whose n-th component is dy ., and 0, G, X — GIQJX
be the map whose n-th component is s 41

PROPOSITION 4.1.

(1) G, = (G,,¢,,9,) is a cotriple; in particular €, and 6, are simplicial maps.
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(2) If G is any cotriple “lifted” from a cotriple on MM, then the equality GG, = GG is
a distributive law.

(8) The natural transformations o and 3 where aX: G, X — X, whose n-th component
isd -d' - oo -db and BX: X, — G,X whose n-th component is s0.s0. o 50 are
maps between G,X and the constant object X, such that a- 3 = X,. There is a
natural homotopy h: G, X ~ 3 - .

PROOF. (1) The simplicial identity d°d"™! = d'd°, i > 0, says that d° commutes with the
face maps. The identity d’s**! = s'd°, ¢ > 0, does the same for the degeneracies and
so €, is simplicial. For §, we have s°d"™" = d""2s% and s%s""' = s'2s° for i > 0, so it
is simplicial. G0, has n-th component s} ,, and §,G, has n-th component s, ,,, and so
0,G, 0, = 5h oS0, =S9-S0 =G0, 0, which is the coassociative law. Finally,
e,Gp 0, =d} o0 =X, =d) 80 =G, 0,

(2) This is completely trivial.

(3) This is proved in the Appendix (A.6). "

We note that under the equivalence between simplicial sets and simplicial topological
spaces the “same” functor G, is analogous to the topological path space.

From this we have the cotriple G = G, G, where the distributive law is the identity
map. If we take as functor the contravariant functor F, whose value at X is Der(m, X, M)
where M is a A-bimodule, the G-derived functors are given by the homology of the cochain
complex 0 — Der(1,GX, M) — -+ — Der(n,G""' X, M) — ---. m,X is most easily
described as the coequalizer of X; = X,. Let d° = dJ: X, — m,X be the coequalizer
map. But by the above, 7,GX = G, X, and G, X = ,d°. Then 7,G""'X = G} X, and
the i-th face is Gie,G} 'd’. Thus H(G; X, E) is just the homology of K X, the cochain
complex whose n-th term is Der(GfHXn, M). When X is the constant object I', this
reduces to the cotriple cohomology of I' with respect to G,.

If X is in 91, the normalized chain complex NX given by N, X = ) ker d!" naturally

bears the structure of a DG-algebra. In fact, if NX ® NX is thle 1tensor product in
the category of DG modules over k given by (NX ® NX), = > N, X ® N,,_,X and
X ® X is the tensor product in the category of simplicial k-modules given by (X ® X)), =
X, ® X,,, then the Eilenberg-Zilber map ¢g: NX ® NX — N(X ® X) is known to be
associative in the sense that g - (NX ® g) = g- (¢ ® NX). From this it follows easily
that if u: X ® X — X is the multiplication map in X, then Ny - ¢ makes NX into
a DG-algebra. Actually it can be shown that the Dold-Puppe equivalence ([Dold &
Puppe (1961)]) between the categories of simplicial k-modules and DG-modules (chain
complexes) induces an analogous equivalence between the categories of simplicial algebras

and DG-algebras. Given a DG-algebra V —"= A, we let BV be the chain complex given
by BV = AV, ® - ® V. ® A, the sum taken over all sets of indices for which

iy, + -+ +1, +m = n. The boundary 0 = OB is given by 9 = 0 + 3" where 0’ is the

bEditor’s footnote: NoX = Xg; an empty intersection of subobjects of an object is the object itself
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,,,] A" denote the
denote the total degree of [vq,...,v, |, and

rYm

Hochschild boundary and 9" arises out of boundary in V. Let A[vy,. ..
chain A@ v, ® --- ®@uv,, @ X, deglvy,...,v,,]
exp ¢ denote (—1)? for an integer q. Then

My, .0, =alv) [ve,...,0, ] —i—Zexp (deg [vy, ..., v;]) [U1s -, 001, - -5 0]

+ exp (deg [vy, ..., v, 4]) [v1,. .-, 0, 4] a(v,)

" vy, ..., Zexp deg Vg ey U 1])[v1,...,dvi,...,vm]

where d is the boundary in V. Then it may easily be seen that 9’0" + 0"9" = 0, and so
0B = 0 + 0" is a boundary operator. It is clear that B reduces to the usual Hochschild
complex when V' is concentrated in degree zero.

BV is defined by letting B,V = B,V and 0B = —OB. This is where the degree
shift in the comparison theorems between triple cohomology and the classical theories
comes in. Then we define for a simplicial algebra over A and M a A-bimodule

LX = Hom,_,(BNX, M)

THEOREM 4.2. The cochain complexes K and L are homotopy equivalent.

PROOF. We apply the theorem of acyclic models of [Barr & Beck (1966)] with respect to
G. As usual, the complex K, being the cotriple resolution, automatically satisfies both
hypotheses of that theorem. Let ¥": L"G — L™ (where L" is the n-th term of L) be the
map described as follows. We have for each n > 0 a k-linear map ¢, X: X, — (GX),

given by the composite X, N X, = G, X, — (G,G,X), where the second is the
isomorphism of an algebra with the terms of degree 1 in its tensor algebra. Also it is clear
that eX - ¢, X = X,,. Thus we have k-linear maps ¢,: N,, — N, G with N,e- ¢, = N,,.
This comes about because N is defined on the level of the underlying modules and extends
to algebras. Then the A-bilinear map

A®P;, ® 0% OMASN, ® 0N, 8A >AQN,G®--®N, GOA ()

is a map whose composite with the map induced by ¢ is the identity. Then forming
the direct sum of all those maps (*) for which ¢, + i, + -+, +m = n + 1 we have
the map of B, — B, G whose composite with B, ¢ is B,,. Let 9": Hom, ,(B,G, M) —
Hom, ,(B,,, M) be the map induced. Clearly 9" - L"e = L".

Now we wish to show that the augmented complex LTGX = LGX < H°(LGX) = 0
is naturally contractible. First note that by Proposition 4.1 (3) there are natural maps
a=aGX:GX =G,GX — G X;and =G X: G X, — GX with a-3 =G, X, and
there is a natural homotopy h: GX ~ - «a. Then we have LTa: LTGX — L*G, X, and
Lt3: L*G, X, - LTGX such that L*a- LT3 = LYG, X, and LTh: LYGX ~ L*3 - L*a.
If we can find a contracting homotopy ¢ in L*G, X, then s = h+ L[t Lt will satisfy
ds+sd =dh+hd+ LT3 (dt+td) - LTa = LTGX - LT3 -LTa+ LT3 -LTa = LTGX. But
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NG, X, is just the normalized complex associated with a constant. For n > 0, (] ker d!, =

>0
0, since each d!, = G,X,. Thus NG, X, is the DG-algebra consisting of G, X, concentrated
in degree zero. But then LG, X, is simply the Hochschild complex with degree lowered
by one. le. LG,X, is the complex -+ — (G, X,)® — (G, X,)® — 0 with the usual
boundary operator. But this complex was shown to be naturally contractible in [Barr
(1966)]. In fact this was the proof that the Hochschild cohomology was essentially the
triple cohomology with respect to G,. What remains in order to finish the proof of theorem
4.2 is to show:

PROPOSITION 4.3. H*(K) ~ H°(L) ~ Der(m, X, M).
An auxiliary proposition will be needed. It is proved in the Appendix (A.7).

PROPOSITION 4.4. If X is as above, then €,d’: G, X, — m,X is the coequalizer of ,G,d°
and G, d" from G?X, to G, X,.

PROOF OF PROPOSITION 4.3. From Proposition 4.4 it follows that for any I', 9t(7, X, T")
is the equalizer of M(G,X,,T) = M(G?X,,T). But by letting T be the split extension
A x M and using the well-known fact Der(Y, M) ~ M(Y,A x M) for any Y of I, we
have that Der(m, X, M) is the equalizer of Der(G,X,,T') = Der(G?X,,T’) or simply the
kernel of the difference of the two maps. Le. Der(m,X, M) is the kernel of K°X — K'X
and thus is isomorphic to H'K X.

To compute HL, it suffices to show that H,(BNX) = Diff 7, X where, for an algebra
©: ' — A, Diff T represents Der(I", —) on the category of A-modules. Explicitly, Diff T" is
the cokernel of AQI' @ T'® A — A ® ' ® A where the map is the Hochschild boundary
operator (AR Y7 @XN) =X - o7 @7 QN = ARy N + ARy ® ¢y - N. If for
convenience we denote the cokernel of an f: A — B by B/A, we have 1,X = NyX/N, X,
and then

H (BNX) — A® N X ®A ARmX ®A
0 CAINXOAFARIN XN XA~ AR N, X ®@ N, X @A
AT X ®A

~ ~ Diff 7, X

AR X @mX @A 0
The next to last isomorphism comes from the fact that AQ Ny X @ Ny X @ A—=A@m ) X ®A
factors through the surjection AQ Ny X @ Ny X ® A — A7, X @7, X ®A. This argument
is given by element chasing in [Barr (1967)], Proposition 3.1. "

We now recover the main theorem 1.1. of [Barr (1967)] as follows.

DEFINITION 4.5. Given a k-algebra I' — A we define G,I' — A by letting G,.I' be the
free k-module on the elements of I' made into an algebra by letting the multiplication in
[ define the multiplication on the basis. That is, if v,,7v, € I and if ;] denotes the basis
element of G,I' corresponding to v;, i = 1,2, then [v,]|[Vs) = [1172)-
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THEOREM 4.6. There are natural transformations €, and 0, such that G, = (G, &y, 0;,)
is a cotriple. Also there is a natural \: G,G,, — GG, which is a distributive law.

PROOF. ¢,: G,I" — T takes [y] to v and §, takes [y] to [[7]] for v € . G, is made into a
functor by G, f[y] = [f] for f:T' — I and v € I'. Then

G0y - 0x[v] = G0 [[V]] = [0, [7]] = [[[V]]] = 0, GillV]] = 6, Gy - O[]
Also
Gy 0l = Gl = [e] = [v] = ex G| = €G- 6]
To define A\ we note that G,G,I' is the free algebra on the set underlying I'. In fact, any
algebra homomorphism G,G,I' — I" is, by adjointness of the tensor product with the
underlying k-module functor, determined by its value on the k-module underlying G, I
As a k-module this is simply free on the set underlying I'. Thus an algebra homomorphism
G,G,I' = G, G,I' is prescribed by a set map of I' — G,G,I'. Let () denote the element
of G,A corresponding to v € I'. Then A([y]) = [(7)] is the required map. In this form the
laws that must be verified become
completely transparent. For example,

MGy - G- 6,G () = AG, - GA({([]) = AG, - (MDD) = AG[(N)])
=[] = [0:MNGo,[(7)]= Gidy - M)

The remaining identities are just as easy. It is, however, instructive to discuss somewhat
more explicitly what A does to a more general element of G,G,I'. ]

A general element of G,G I is a formal (tensor) product of elements which are formal
k-linear combinations of elements of I'. We are required to produce from this an element of
G,G,I' which is a formal k-linear combination of formal products of elements of I'. Clearly
the ordinary distributive law is exactly that: a prescription for turning a product of sums
into a sum of products. For example A (([7]) ® ({(o;[n] + - + a,[7,.]))) = o [(7) @ ()] +
ot a, [(7) @ (7,)]. The general form is practically impossible to write down but the idea
should be clear. It is from this example that the term “distributive law” comes.

Now G;I' is, for any I' — A, an object of 9. Its cohomology with respect to
G = G, G, is with coefficients in the A-module M, as we have seen, the cohomology
of 0 — Der(G,G,I', M) — -+ — Der(GyT'G}*'T, M) — --- which by theorem 3.4 is
chain equivalent to 0 — Der(G,G,I', M) — ---Der((G,G,)""'T', M) — --- in other
words the cohomology of I' with respect to the free algebra cotriple G,G.. On the other
hand, NG,I' is a DG-algebra, acyclic and k-projective in each degree. Thus BNG I is,
except for the dimension shift, exactly Shukla’s complex. Thus if Shuk™(I', M) denotes
the Shukla cohomology groups as given in [Shukla (1961)], the above, together with
Proposition 4.3 shows:

THEOREM 4.7. There are natural isomorphisms

Der(I', M), n=>0

H™(G, 5 G T, M) =~ { Shuk™'(T', M), n >0
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5. Other applications

In this section we apply the theory to get two theorems about derived functors, each
previously known in cohomology on other grounds.

THEOREM 5.1. Let G; and Gy, denote the cotriples on the category of groups for which
G ;X s the free group on the elements of X and G,;X is the free group on the elements
of X different from 1.° Then the G, and G, derived functors are equivalent.

THEOREM 5.2. Let M be the category of k-algebras whose underlying k-modules are k-
projective. Then if G,, G, and X are as above (Section 4), the G, and G,°, G, derived
functors are equivalent.

Before beginning the proofs we need the following:

DEFINITION 5.3. If G is a cotriple on M, then an object X of M is said to be G-projective

if there is a sequence Xy Lo X with B-a=X. Welet P(G) denote the class of
all G-projectives.

The following theorem is shown in [Barr & Beck (1969)].

THEOREM b5.4. If G, and G, are cotriples on M with P(G,) = P(G,), then the G, and
G, derived functors are naturally equivalent.

PROPOSITION 5.5. Suppose G, and G, are cotriples on M, \:G,Gy — GG, is a dis-
tributive law, and G = G,y G,. Then P(G) = P(G;) N P(G,).

PROOF. If X is G-projective, it is clearly G,-projective. If X —= G,G,Y P Xisa
sequence with #-a = X, then

G416, AG,Y €20

G,G,GY —2 = X

X 2~ G,GY G,G2Y

is a sequence whose composite is X. If X is both G;- and G,-projective, find

X-Yqy - lox
for « = 1,2, with 3, - o, = X then

6V G151 Gray €1GyYs

_a%h gy, Plx

X —=GY, GYY, G X G,G,Y,

¢Editor’s footnote: On first glance, it is not obvious why Gy is even a functor, let alone a cotriple.
We leave it an exercise for the reader to show that Gy can be factored by an adjunction as follows. Let
PF denote the category of sets and partial functions. Let Uys: Groups—PF that takes a group to the
elements different from the identity, while F};: PF — Groups takes a set to the free group generated
by it and when f: X —Y is a partial function, Fy; f takes every element not in dom f to the identity.
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is a sequence for which
Oy e1GYY - Gray - Gy - 0,Yy -y =, X -Gy fy - Groy - Gy - 0, - oy
=X -GS -0 o =0,-6GY - 0)Y, =00, =X
and thus exhibits X as a retract of GY,. L]

THEOREM 5.6. Suppose G, Gy, A\, G are as above. If P(G,) C P(G,), then the G-
derived functors and the G-derived functors are equivalent; if P(G,) C P(G,), then the
G,-derived functors and the G-derived functors are equivalent.

PROOF. The first condition implies that P(G) = P(G,), while the second that P(G) =
P(G,). "

PROOF OF THEOREM 5.1. Let G, denote the cotriple on the category of groups for
which G,X = Z + X where Z is the group of integers and + is the coproduct (free
product). The augmentation and comultiplication are induced by the trivial map Z — 1
and the “diagonal” map Z — Z + Z respectively. By the “diagonal” map Z — Z 4+ Z
is meant the map taking the generator of Z to the product of the two generators of
Z + 7. Map Z — G,;Z by the map which takes the generator of Z to the generator
of Gy;Z corresponding to it. For any X, map G,;Z — G,;(Z + X) by applying G,;
to the coproduct inclusion. Also map G, X — G,(Z + X) by applying G;; to the
other coproduct inclusion. Putting these together we have a map which is natural in X,
AX:Z 4Gy X — Gyp(Z+X), which can easily be seen to satisfy the data of a distributive
law G,G,; — G,;G,. Also it is clear that Z + G, X ~ G ;X since the latter is free on
exactly one more generator than G, X. Thus the theorem follows as soon as we observe
that P(G,) D P(G;). In fact, the coordinate injection a: X — Z + X is a map with
e, -a = X, and thus P(G,) is the class of all objects. "

PROOF OF THEOREM 5.2. It suffices to show that on M, P(G,) C P(G,-, G,). To do
this, we factor G, = F,U, where U,: 9t — N, the category of k-projective k-modules, and
F, is its coadjoint (the tensor algebra). For any Y, the map U, Y:U,G.Y — U)Y is
easily seen to be onto, and since U,Y is k-projective, it splits, that is, there is a map
v UY — U,G,Y such that Uz, - v = U,Y. Then G,Y —"~G,G,Y . Gy
presents any G,Y as a retract of G,G,Y. Clearly any retract of G,Y enjoys the same
property. |

z

The applicability of these results to other situations analogous to those of theorems
5.1 and 5.2 should be clear to the reader.

Appendix

In this appendix we give some of the more computational -and generally unenlightening-
proofs so as to avoid interrupting the exposition in the body of the paper.
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A.1. PROOF OF PROPOSITION 1.2. (1) When n = i = 0 there is nothing to prove. If
1 =0 and n > 0, we have by induction on n,

MG = - "G "G = (" MGG = £ MG = e
If  =n > 0, then we have by induction
"G = -G G = G- G =g GeMT Tl = gt
Finally, we have for 0 < ¢ < n, again by induction,
ML ieMGnT — gL (i QigmGn—i — g (igntm—i _ cndm

(2) This proof follows the same pattern as in (1) and is left to the reader.
(3) When n = 0 and m = 1 these are the unitary laws. Then for n = 0, we have, by
induction on m,

Ge™ - 0" =G(e-e™"G) - 0" =Ge - Ge™TIG - 5MTIG S
=Ge- (Ge™ 10" NG - 6=Ge-§ =G =¢"
and similarly e™G - 6™ = 6°. Then for n > 0, we have, for i < n + 1,
GritemGh. gt = Gt Gl GRG0 = G (GE™ - 6™ G- 6 = 0"
Finally, for i = n + 1,
MGt oMt = G MG § = (MG - IG5 = 5"
(4) The proof follows the same pattern as in (3) and is left to the reader.

A.2. PROOF OF THEOREM 1.5.
We must verify the seven identities which are to be satisfied by a simplicial homotopy.
In what follows we drop most lower indices.

(1) eGmH1d" - 6Gnh0 = G (d" - B°) = G a,
(2) Grtledt! - Gnohm = GrHH(dmTt - hn) = G,
(3) Fori < j,
G'eGM - GISGMTI R = GHeGMT - GITIOG R
= G(GTTIGIRT G = GITOG T T GleGR

(4) For0<i=j<n+1,

G'eGHTd - GG = GMHH(d - ) = G- R

= GG GG
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(5) Fori>j+1,
G'eG"M - GISGMTI = G (GG - 0GR
_ Gj((SGn—j—lhj . Gi—j—leGn-l—l—idi—l) = V5GrIT g L it igit

(6) For i < j,
G26Gn+1 7 2 Gj(;Gn ]h_] Gl((anJrlfiSi . iji(Sanjhj)
= GGG §GM s = GITLGTTI R GG
(7) For i > j,
G'SGMTst GISGMTIN = GY(GI6G" T st 6GM IR
— Gj (6Gn+17jhj . Giflfj(SGnJrlfiSifl) _ doGnJrl*jhj . GifldGnJrlfiSifl
A.3. PROOF OF THEOREM 1.6.

We define a,, = e" X, :G"M X, — X, and 8, = "X, - 9X,: X, — G""'X,. First

we show that these are simplicial. We have
d-oa,=d X, =X | -d=="X, GeGVX, -G = a, - GeGMTd
Similarly,

stha, =8 "X, =X st ="PX L -GG X 8 =y GROGTTS

G'eG"'d" - B, = G'eG"'d" - "X, - VX,
=G"d "X, - 9X, = 6" X, - 9X

n—1

' dl = Bn—l ’ dl
Similarly,
G'6G"'s' - B, = G'OG" s 0" X, - 9X, = 6"Ts 09X,

6n+1X

nt1 -Gs' - VX, = 5n+1Xn+1 VX s = Bryr s'

Moreover, o, - 3, = "X, - "X, -9X, =¢X,-9X, = X,,.

Let hl, = G (6" "l -0X,,-e" ' X, ): G"T1X, — G"2X, , for 0 < i < n. Then we will
verify the identities which imply that h: 3-a ~ G*X. At most places in the computation
below we will omit lower indices and the name of the objects under consideration.

(1)
eGMH0 10 = eGP0 G609 €M) = 5M(d° - s0) e eGM = 5" =B, -a,
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(2)
Gn+1€dn+1 . hg — Gn+1€dn+1 . Gn-i—l(GSn . 19) — Gn+1 (5dn+1 Ners 19)

=G e 9) =G"X,
(3) For i < j,
G'eGMH i b)) = GleGMT - GIYN (6T - e )
= G'(eG™d - GITH (6 ST ) - e )
=G(GT(0"T ST e G )
=G0 ") GG = b)) - GG

(4) ForO<i=j<n+1,
G'eG"id b = GleGM T G (6T s -9 - e
= G'(eG"T -G0S 9T
=GHO"THd" - 8Y) 9" eGMTY)
G o™ - e = GUE TN (d - ) ) - e
= G'(eG"TId - g g g

= GleGrrITidl . GO S L L en i) = Gl . i

(5) Fori > j+1,
G'eG"T7d - b = GleGMH i GITH (6T ) - ™)
= QUGG g ) e

= Git!
— G]+1 5717]7153 - 877,7]71 . szlanledzfl)

(

_ Gj+1(5n—j—1(di . Sj) - gn—j)
("I (sT d) 9 )
(

— h}jz—l . szlan71+1dzfl

14
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(6) For i < j,
G'6G™MH st bl = GG Tt QI (6T ) - e
= GGt QI (§M I g ™)
= GHGITHR(§ I 9 e L 5GTSY)
= GIT2(gnightl . gn) . GiSGnTist = pITL L 6

nt1 S
(7) For i > j,
G'6G™ st bl = GG s GITN (6T 9 e )
= GGG G - GY - GeY)
= GI(G" (st &) - GO - Ge" )
= GI(GO (s - 571 - GO - G
= GI(GE IS GY - Ge™ T -GN Ge - 0) G s
= GHGS I . QY - Ge™ - GiTieGrI L GG
= GI(Go" I  . QY - Gen It G art g
= QI g eI L GG e = b GG
This proof is adapted from the proof of Theorem 4.5 of [Appelgate (1965)].

A.4. PROOF OF THEOREM 2.2.
We must verify the three identities satisfied by a cotriple.

(1)

= (Gig) - 0;))(Gaey - 0,) = GGy =G

eG -0 =¢€,6,G,Gy - GG, - 6,05 = €,G1£,G, - 050,
= (6,G, - 6,)(6,Gy - 0y) = GGy =G

(3)
G665 = G,GoGyAGy - G1Gy0,6, - GyAGy - 6,6,

= GGG AGy - GG, G3 - GINGS - G10,Gy0y - 8,05 = Ny - 0263
and by symmetry this latter is equal to dG - 9.
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A.5. PROOF OF PROPOSITION 2.4.

(1) For n = 0 this is vacuous and for n = 1 it is an axiom. For n > 1, we have by
induction

Gie, - \" = Ghey - G2)\"71 . )\G’g*l = 02(03*151 . )\”*1) . )\G’gfl
= G2(51Gg_1) : )‘Gg_l = (Gye; - )‘>G721_1 = (51G2)Gg_1 =&,Gy

(2) For n = 0 this is vacuous and for n = 1 it is an axiom. For n > 1, we have by
induction

Ghoy - AN = Ghoy - GoA L AGE T = Go(GH 7, - GoA ) - MG
= G,(\"'G, -G 6,6 G
= GG GG (Gydy - NG
= GG GG (MG -GN - 6,GY)GE T
= G\"IG GGG, GY T GOANGE T 5,GY
= GG AGETIG - GG - GOAGE T 5,G = NG - GO - 6,GY
(3) For n = 0 this is an axiom. For n > 0, first assume that ¢ = 0. Then we have by
induction,
£,GOG, - N = 6,GIG - GON - N'"Gy = GE N - 6,GY 1 GLGy - NGy
=GN (6,GYIGL - NGy = GEIN - (A GLe,GY NG,
=Gy A ATIG, - Gle, Gy = N - Gle, Gl
For ¢ > 0 we have, again by induction,
Ghe, GETIGL - AT = Ghe, GG - G\ - MGy = Go(GE e, GET'GL - A™) - AGY
= Gy(\"H GG e, G NG = G GLGLGE e, G NG
=GN AGET G Ghe, Gy = N GLGhe, G

(4) For n = 0 this is an axiom. For ¢ = 0, we have by induction
8,GGy - AT = 5,GRG, - GIX - N'"Gy = GyTIN - 0,GE 71 GGy - N'G,
= GyTIN - (0,Gy 7 IGy - AMGy = Gy - (AT GL6,G NG,
= Gy NG, - GL6,Gy = NP GL,GY



Composite cotriples and derived functors 17
For ¢ > 0 we have, again by induction,
GL0,GH7TIG, - AT = GL6,Gh TG - G\ - MG = Go(GE16,GE G - \™) - AGY
= G,( A" GLGE0,GETY) - ANGE = G A" GGG 6,GE T \GY
= G, A" NG GLGLS,GE T = A" GLGL,GE T
A.6. PROOF OF PROPOSITION 4.1 (3).

In the following we let d* and s® stand for d°’X and s'X respectively. If Y = GpX ,
then ¥, = X,.,, dY = d"*!" and s'Y = st q, = (d")"*hY, - X, and £,

(s9)": X, — Y,. Then o, - 3, = (d*)"+1-(s°)"*1 =Y, . Let hi, = (s°)"*'(d")": Y, — YnJrl
for 0 <i<n.

(1) &Y K =d! s =Y.

(2) A1 - = A () (@) = () () = 6, e,

(3) Fori <, I | | o
&Y b = dt (Y (dY = (%) - d - (dYY

— (SO)j X (dl)j—l 3 di—i—l _ hj—l X sz

sz . hz — di+1 ( )z+1 (dl) ( O)i . (dl)z

— (SO)i . dl . (dl)i—l — di+1 . (SO)i . (dl)i—l — dZY . hi—l

(5) Fori > j+1,
sz . h] — di-‘rl i (so)j+1 . (d1>] — (SO)j-i-l . di—j . (dl)]
= (30)j+1 . (dl)j AP =R 4y

(6) For i < j, , S _ A . ,

'Y - R = Sz—f—l X (SO)j—H X (dl)] — (80)]+2 X (dl)g

_ (SO)j+2 . (dl)j-i-l . Si-i—l — hj-i—l . SiY

(7) For i > j, ‘ ‘ . ' o '
Y - R = S'L+1 . (S )]+1 (dl)j _ ( 0)]+1 L g (dl)]
= (s )]H (dl) N
A.7. PROOF OF PROPOSITION 4.4. '
Form the double simplicial object £ = {E;; = G{"'X,} with the maps gotten by
applying G to the faces and degeneracies of X in one direction and the cotriple faces and

degeneracies in the other. Let D = {D; = G{™X,} be the diagonal complex. We are
trying to show that m,D ~ m,X. But the Dold-Puppe theorem asserts that m,D ~ H N D
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and the Eilenberg-Zilber theorem asserts that H,N D is H,, of the total complex associated
with E. But we may compute the zero homology of

G X, —=G,X, 0

0 0
by first computing the 0 homology vertically, which gives, by another application of the
Dold-Puppe theorem,
To(GrX,) —= (G X)) —0
But G} is readily shown to be right exact (i.e. it preserves coequalizers) and so this is
X, —= X,—0. Another application of the Dold-Puppe theorem gives that H, of this
is myX.
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