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Coequalizers and Free Triples 

MICHAEL BARR 

Introduction 

This paper is concerned with two problems which, although not apparently 
closely related, are solved in part by the same methods. The first problem is: 
given a bicomplete (=comple te  and cocomplete) category X and a triple T 
on X, is X T also bicomplete? The second is: given a category X and a functor 
R: X---~X, does R generate a free triple? 

This paper began as an attempt to show that the category of contramodules 
over a coring is cocomplete (see (4.4)). Many people, too numerous to mention, 
have contributed materially to the results and their applications. 

All notation and terminology not explicitly defined below may be found 
in the introduction to [-2]. 

The first section of this paper gives the main definitions used and in section 
two we give the fundamental lemma on which the proofs are based. The next 
two sections prove and give applications of the cocompleteness theorem. 
Section five gives the construction of free triples and in section six we apply 
this to show that if 3--~ is a small theory, then under certain conditions the 
category of ~-~ algebras in X is tripleable over X. In the next section we apply 
these results to the category of sets and we show that for a certain large full 
subcategory of endofunctors on sets there is a "free triple triple". The last 
section gives another cocompteteness theorem, not related to that of section 
three. This latter is a generalization of the result that every category of algebras 
over sets is cocomptete. 

1. Notation and Definitions 

(1.1) Throughout  this paper 2~" denotes, without further mention, a bicomplete 
c a t e g o r y -  one in which any functor E: g-~ X with 8 small has a limit (=  pro- 
jective limit), denoted lim R, and a colimit (=  inductive limit)~ denoted colim R. 
We also suppose that X is locally sma l l - the re  is only a set of morphisms be- 
tween any two objects. 

(1.2) If n is a limit ordinal number, we also use n to denote the ordered 
category of ordinals < n. A functor n--~ X is called an n-sequence in X. If we 
say that n is a cardinal number, this means that it is an ordinal which is the 
smallest of that cardinality. 

(1.3) Let .~{ be a class ofmonomorphisms and n a limit ordinal. An n-sequence 
D: n --~ X is called an (Jr n)-sequence of subobjects of X E X  if there is a natural 
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transformation ~ from D to the constant functor X such that for each ieM, 
~i: D i ~ X is a morphism in Jr 

(1.4) If T: X ~  X is a functor, we say that T is (Jg, n)-small if whenever 
D: M-~,X is an (~g, n)-sequence, the natural map colim TD-~ Tcolim D 
is an isomorphism. It will be called n-small if this holds for d/t = class o f  all 
monomorphisms. 

(1.5) We say that X has small d l  factorizations if for every X E X  there is a 
set F X  of objects of X such that any X ~ Y in X factors as X -~ Z --, Y with 
Z e F X  and Z ~ Y in J/L If ~ =  class of all monomorphisms, we say that X 
has small factorizations. 

(1.6) We say that X is (.M, n)-small if it has small .~  factorizations and if 
given D: M ~ X an (J/t, n)-sequence of subobjects of X, the induced map 
cotim D -~ X is also in JC{. 

(1.7) We say that T: Y ' ~  has rank _<_m for a cardinal m if whenever M 
is an m complete cardinal Tis n-small. 

(1.8) If T: X + X  is a functor, we define a category (T:X) whose objects 
are pairs (X,x) where XeY" and x: TX--+X. A morphism in this category 
between (X, x) and (Y, y) is an f :  X ~ Y such that f .  x = y .  Tf. 

2. The Main Lemma 

(2.1) Lemma. Suppose the category X has small ~ factorizations and the 
funetor T: X---~X is (d~,n)-small. Then for each object X ~ X  there is a set 
A X  of objects of X such that any diagram 

TY 

i, 
X ~ Y  

can be embedded in a commutative diagram 

7"2 Tb > T ~  

X a , z - b  , g 

with Z t A X .  Moreover if w: TW--+ W and g: W-+ X are such that f g is a morphism 
in (T:X), then a.g is also. 

Proof. We first define AX. It is defined by means of an inductively defined 
sequence {Am X},~<,, as follows. Ao X = F X  (see 1.5). If Am X is defined; 

Am+ 1 X =  U { F ( Z  �9 TZ)IZeAm X}, 

where �9 denotes coproduct. If m is a limit ordinal and Ap X is defined for all 

p<m, let A ~ X = U F  ( ~ Zp), 
p<m 
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where the union is taken over all coproducts of families {Zp[p < m, Zp~Ap X} .  
Finally we define A X  to consist of all objects of the form colim Z~, where 
{Zm} is an (JC{, n)-sequence such that ZmeAm X.  Let Zo be chosen in F X  = Ao X 

so that there is a factorization of f as X ao ~Z ~ bo ~ y with b0eJCA Now 
factor the map 

(Y, y). (bo * Tbo): Zo * TZo -* Y 

as 
Zo * TZo a, ~ ZI  b~ , y 

with bl E . ~  and Z~ s F  (Zo * TZo)= A~ X .  Let a 1 have components eo 1:Z0 --* Z1 
and Co: T Z o - . Z  1. Then clearly b l . e o l = b o  and b l . e o = y .  Tbo. We will now 
define for all m < n, Zm, bm: Zm ~ Y, c,,: TZm --* Z~ + ~ ; and for p < m < n, ep~ : 
Zp -+ Z m such that Zm cAm X,  b m epm = bp, bm+ 1" cm = y" Tbm and if r < p < m < n, 
bpm b,v=b~m. This is done by induction, as follows. Given Zp, bp, Cp for all 
p < m satisfying the above, first suppose m has a predecessor. Then factor 

( Y , y ) . ( b m _ l .  Tbm_l): Z , , _ I * T Z m _ ~ Y  

as 
Z ~ _ I , T Z m _ I  a ~ ) z  m b ~ )  y 

with 
bm~J/g a n d  Zm~F(Zm_I ,  T Z m _ I ) ~ A m X .  

If a,, has components  e,,_l, m and cm_ 1, it is clear that b me,,_ 1, m = bin_ 1 and 
b m % _ l = y .  Tbm_l. I f p < m - 1 ,  define epm=e,~_l, mep, m 1. Then bm'ep~= 
bm.em_l,m.ep, m_ l=b , , _ l . ep , , , _a=bp ,  and for r < p < m - 1 ,  e ,~p.erp=%_l , , , .  
ep, m - l ' e r p = % _ l , , , e  . . . .  ~=er, m. On the other hand, if m is a limit ordinal, 
factor the map  [_[ Z v Y whose pt~ coordinate is bp as [ I  Zp am ~ Zm bm ~ y 

p<m p<m 
If the pth coordinate of am is ep~, then by definition bm. ep~=bp.  Also for 
r < p < m ,  b m . e p m . e r p = b p e r v = b ~ = b m . e , ~ ,  from which we can cancel the 
monomorph i sm b,, and conclude that epm .e~p = e~m. When this is done for all 
re<n,  the {Zm} and {epm } constitute an n-sequence and the {bin} show that 
it is an (J~, n) sequence of subobjects of X (1.3)~ Also Z m a A  m X.  Thus if we 
tet Z = c o l i m  Zm, Z a A X .  Let dm: Zm---~Z be the natural maps to the colimit 
and b: Z -+ Y be the unique map  such that b- d~-- bin. By hypothesis, we also 
have that T Z = c o l i m  TZ, ,  and so we can define z: TZ--* Z by requiring 
that z . Td~= dm + 1 . c m. This is a compatible family, for if p < m, b~ + 1 �9 ep, m + 1 �9 

c p = b p + l " C p = y ' T b p = y ' T b m ' T e p , , = b m + l ' c , , . T e p , , ,  and we may cancel 
b,~+i and get ep, m+i .cp=c , , .Tepm.  Then y .  T b . T d m = y .  T b ~ = b , , + l . c m =  
b . d m + l . c , , = b . z . T d ~ ,  and thus by uniqueness of a map from a colimit, 
y .  Tb = b.  z. I fa  = do. ao, b.  a = b- d o �9 ao = bo" ao =f,  which completes the proof  
of the first assertion. 

For  the second, first observe that bl" Co" T(ao.  g ) = b l .  Co. Tao. Tg= 
y .  Tbo.  Tao. T g = y .  Tf. T g = y .  T( f .  g )=f .  g .  w = b o .  ao" g" w = b l .  eol"ao "g" w, 
and bl is a monomorphism,  so Co "T(ao ' g ) = e 0 1 . a o  . g .w .  Then z . T ( a g ) =  
z. Tdo . T(ao �9 g ) = d l ,  co �9 T(ao �9 g)=dl"  eo~" ao �9 g . w = d o  . ao �9 g . w = a  . g . w, 
which completes the proof. 
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3. Coequalizers in Categories of Algebras 

(3.1) Before giving our main results we require a preliminary result. Although 
it is stated for coequalizers, it would remain true if that were replaced by any 
colimit. The result seems to be well known in folklore and was no doubt first 
observed by Freyd, but I have been unable to find a reference. 

(3.2) Proposition. Suppose ~ is a complete category and 

J~%ro Y~-~ 
is a diagram in ~ .  Then it has a colimit i f  and only if  there is a solution set for the 
colimit, i.e. a set o,f maps {di: Yo --~ Yi} i~I such that d i d o =di d 1 and any d: Yo--~ Y 
such that d d o-- d d 1,factors as Yo -~ Yi--~ Y,for some i~I .  

Proof. The proof is an easy application of Freyd's adjoint functor theorem 
([3], problem 3-J). Form the category Y whose objects are maps d: I7o-~ Y 
with d.  d ~  d .  d ~ and maps are commutative triangles 

ro 

y f ~ y '  

Y' is easily seen to be complete when Y/is. Then the set {di: I10-* Y~} is a pre- 
initial set in that category (meaning every object of ~e admits a map from at 
least one di). The map d,  : Yo ---' l-[ Yi = Y,, whose i th coordinate is di, is a pre- 
initial object (meaning it has at least one map to every object of ~) ,  and finally, 
the equalizer of all the endomorphisms of d,  : I1o -* Y, is an initial object of ~ ,  
which is easily seen to be the coequalizer of d o and d 1. 

(3.3) Theorem. Suppose f is a category and T =  (T, t/, #) is a triple on ~ .  I f  
there is a class M// o f  monomorphisms and a cardinal n such that ~ has small ~/~ 
factorizations and T is (JCd, n)-small, then the category yg, T o f  algebras has coequal- 
izers. 

Proof. Suppose (V, v) ~ (W,, w) are two maps in y,T. Let X be the coequalizer 
eo 

in ~ of V I W. If h: (W,, w ) ~  (Y, y) is a morphism in f T  with h. e~  h -e  1, 
el 

it factors in f as W g > X f ~ Y. If we apply (2.1) to this, we get a commutatiye 
diagram 

T W  T ( f ' g )  > T Z  Tb > T Y  

W g >X f ~Z b ~ y  

with Z ~ A X .  Since g already coequalizers e ~ and e I, so does f .  g. Thus every 
map coequalizing e ~ and e 1 factors through an object (Z ,z )  with Z ~ A X .  
Thus the set of such objects forms a solution set for the coequatizer, and since 
y-T is complete, the coequalizer exists. 
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N o t e  added in proo f  Professor H. Schubert has pointed out that there is a gap in the proof of 
(3.3). Namely, it is not shown that (Z, z) is a T-algebra. That it does indeed satisfy the conditions of 
an algebra may be readily worked our from the commutativity of the following diagrams together 
with the fact that the b's are monomorphisms. 

T 2 Z m  T . . . . .  ~ .~Z~lTZm+l  " ~+,  ' Z ~ + 2  

T2 Y ~r ~ T2 Y y ~ Y 
T y  

e ~ , m + t  

Z~ . z~  ~ T Z ~  r ~ Z~+~ 
i 

~ b m + l  

y ~r r 
T Y  , Y  

Corollary. Under the same hypothesis, ~yT has all small colimits, i.e. is (3.4) 
cocomplete. 

Proof This follows directly from a theorem of Linton ([8], corollary 2, p. 81). 

(3.5) Remark. It has recently come to may attention that H. Schubert has 
obtained results very similar to the above. The main differences are: no con- 
dition like the existence of J~ or the FX is assumed; the functor T must com- 
mute with all n-sequences, not just of monomorphisms. 

4. Applications of (3.2) 

(4.1) Let C be an additive group equipped with homomorphisms ~: C ~ Z  
and 6: C - + C |  such that 6 | 1 7 4  and ~ | 1 7 4  
This is called an associative coring with counit. The functor T: d d ~  d d  
( r id  is the category of abelian groups) given by TA = Horn(C, A) can be given 
the structure of triple in an obvious way, using e and 3. An algebra for that 
triple is called a contramodule. It is an abelian group A together with a map 
Hom(C,  A)---~A satisfying appropriate identities. It was previously unknown 
for any ordinal except co nor for any directed colimit except simply ordered. 

(4.2) Proposition. The category sod has small factorizations ( .~ = class of all 
monomorphisms). 

Proof Trivial. 

(4.3) Proposition. I f  ~ is the cardinal of C and n is any infinite ordinal which 
is ~ complete, then Horn(C, - )  is n-small. 

Proof If A ~ d d  and {Am}m<=n is an n-sequence of subobjects of A, then their 
colimit is their set union B. Any map of C -~ B takes each c ~ C to some Am(c) ~ B. 
Since the indices are at most ~ in an e-complete lattice, there is some m < n such 
that the map factors throughAm. This shows that colim (C, A,,) ~ (C, colim Am)  

is onto and it is clearly 1-1. 

(4.4) Corollary. For any coring C the category of C-contramodules is cocomplete. 
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Proof. It is only necessary to find an e-complete limit ordinal. Just take the 
first ordinal whose cardinal is > ~. Clearly the sup of c~ or fewer ordinals, each 
< ~, is < ~ also. 

(4.5) More generally, if Y" is any category which is tripleable over sets, ~ has 
small factorizations, and if T = (T, r/, #) is any triple on Sf with T being n-small, 
then ~fr is cocomplete. 

(4.6) The same argument remains true if the category 5 ~ of sets is replaced 
by a category 5OA where A is a set. If sJ is a small category with underlying 
set of objects A, then 5 f = ( d ,  so) is tripleable over 5OA; and if T=(T,  t/, /2) 
is any triple on X with T n-small for some n, then X T is cocomplete. 

(4.7) A topological space X is called a K-space if Y c  X is closed whenever 
its intersection with every compact subset of X is closed. The inclusion of 
K-spaces into all topological spaces has a left adjoint which retopologizes 
a space by adding all such sets to the list of closed sets. We call this the K- 
ification of X. Now let ~5 denote the category of Hausdorff pointed K-spaces. 
Let Z: g((--* g f  and s Y ~  J(( denote the usual suspension and loop space 
functors, K-ified~ Then X is left adjoint to s so the composite functor T=g2N 
has the natural structure of a triple T. If Xe~F,  a monomorphism Y ~ X  
is called a K-subspace of X if it is an ordinary subspace K-ified. 

(4.8) Lemma (Dold-Thom). I f  X ~ X  and {X,} ,~  is a countable ascending 
chain of K-subspaces of X, then any compact subset of colim X,  is ah'eady 
contained in some X, .  

Proof See [1], 2.14. 

(4.9) Proposition. If  {X,},~o is a countable ascending chain of K-subspaces 
of X, then the natural map colim ~?Xn-+ f2 colim X n is a homeomorphism. 

ProoJl It is clear that the natural map is 1-1 Let C denote the circle. Then 
f 2 = H o m ( C , - I .  A map of C to co l imX,  lands in some compact subset 
of colim X,  which by ~4.8l is contained in some X,.  This shows that the natural 
map is onto. To show that il is a homeomorphism, we must show that if 
Accolim(C, Xn) is closed, then its image in (C, col imX,)  is also. Bu! for 
this it is only necessary to show that its intersection with every compact 
subset B c (C, colim X,) is compact (recall everything is Hausdorffl. But such a 
subset is represented by a function Ithe"name of" the inclusion)B x C-~ colim X, 
which, as above, actually lands in some X,.  Thus every compact subset of 
(C. colim X,) is a compact subset of some (C,X,). Then if Acco l im(C,X , )  
is closed. Ac~(C,X,) is also closed and Ac~B~(C ,X , )  is compact. Since B 
is an arbitrary compact subset of (C, colim X,), it follows that A is closed. 

(4.10t Corollary. ~-T ~s cocomplete. 

Proof. Take u = co and .~ to be the class of K-subspace inclusions. It is 
clear that every map factors as a map which is onto and a K-subspace inclusion. 

It is interesting to observe that the Dold-Thom argument does not work 
for any ordinal except co nor for any directed colimit except simply ordered. 

This example was worked out in collaboration with J. Beck. 
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5. Free Triples 
(5.1) Let R: X ~  X be a functor. By the flee triple generated by R we mean a 
triple T=(T,r/ ,#) and a natural transformation p: R ~ T  such that if T =  
(T~, r/i,/~i) is another triple and Pl : R -* T~ is a natural transformation, then 
PI ='c �9 p, where z: T--,TI is a map of triples. 

We shall derive a necessary and sufficient condition for the existence of a 
free triple which together with (2.1) will yield a useful sufficient condition. 

(5.2) Proposition. I f  R is an endofunctor and T a triple on X, then there is a 
natural 1-1 correspondence between natural transformations R--+ Tand functors 
XT--+ (R: X) which commute with the underlying functors to X. (Such functors 
are said to be over X.) 

Proof Suppose )~: R--+ T is a natural transformation. Define a functor S (2): 
X T-+ (R: X) by S (2) (X, x) = (X, x. 2X). This evidently becomes a functor over X. 
To go the other way, if S: Xr-+(R:X)  is a functor over X, let S(TX,  ~X)= 
(TX, OX)~(R:X). Then let 2(S): R - + T  by 2 ( S ) X = O X . R ~ I X .  To show 
naturality, suppose f:  X-+  Y. Then Tf: (TX, #X)---, (TY, #Y) is a morphism 
in X T, so STf: (TX, OX)---~(TY, OY)is a morphism in (R:X). This means 
OY. R T f = T f .  OX. But also t/ is natural, so Tf. 2 ( S ) X = T f .  O X . R t l X =  
OY. RTf. Rtl X=OY.  Rtl Y. R f  = 2(S) Y. R f  Now S(2)(TX, ~X)=(TX,#X.  )o TX), 
so 2(S (2))= kt" 2 T. R II =#"  T~/-2 = 2. On the other hand, if S:XT--+ (R:X)is  a 
functor over X, suppose S ( X , x ) = ( X , x * ) .  Now x: ( T X , # X ) - * ( X , x )  is a 
morphism in X T and hence x: (TX, O X ) ~ ( X ,  x*) is also a morphism, which 
means x*.  R x = x .  OX. But then x ~ = x* .  R x .  R tl X = x .  OX. R tl X, and so 
S(X, x)= (X, x . OX . R~ X)= (X, x . ~(S) X)=S(;~(S))(X, x). 

(5.3) Proposition. Suppose T=(T,r/ ,#) and T'=(T' ,~ ' ,# ' )  are triples on X. 
Then there is a 1-1 correspondence between triple maps T-~T '  and functors 
XT'--+ X T over X. 

This may be easily proved by making minor modifications in the above 
proof. In any case, it has long been well-known, going all the way back to 
Lawvere's thesis [7]. 

(5.4) Theorem. Suppose R: Y'--~X is a functor, T(T,t/,#) is a triple on X, 
and there is an isomorphism XT ~ (R:X) over X. Then T is the free triple gener- 
ated by R. 

Proof Just put together (5.2) and (5.3). 

We will show later that this condition is also necessary. 

(5.5) Theorem. Suppose X is a category and R an endofunctor. I f  there is a 
class J/[ of monomorphisms and limit ordinal n such that X has small/r 
tions and R is (rig, n) small, then the underlying functor ( R : X ) ~  X is tripleabIe. 
Thus R generates a fi'ee triple. 

Proof The underlying functor U: (R:X)-+ X is easily seen to creat limits 
and coequalizers of U-contractible coequalizer pairs. Hence, by the PTT, 
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it is only necessary to show that U has an adjoint. Since Y" is complete and U 
creates limits, (R: f )  is also complete, so it is only necessary to find a solution 
set. By (2.1) the set of all algebras whose underlying object is in A X  is a solution 
set at X. 

(5.6) Proposition. Suppose that ~ is a complete category, ~1 is a full sub- 
category closed under limits, and ~ has a cogenerator (i. e. cogenerating sei), 
Suppose U: ~--~  ~ is a limit preservving functor with the property that for every 
Z~2L~ there is a Z l ~ l  and an f :  Z1---~ Z such that U f  is a split epimorphism. 
Then U has a left adjoint. 

Proof By assumption, ~1-* ~e is full and thus preserves limits and then 
so does the composite ~1--* ~ -* ~. Since ~e 1 has a cogenerator this composite 
has an adjoint F (see [3], problem 3 -  M). Now if g: X - - .  UZ is a morphism, 
choose f:  Z1--~Z a morphism in Y/whose domain is in ~1 such that Ufis a 
split epimorphism. Then g factors through U f, and then by adjointness there 
is a map FX--~ Z~ such that the composite morphism 

X ~ U F X - +  UZ 1 -~ UZ 

is f But then {FX} is a solution set at X and the adjoint exists by the functor 
theorem. 

(5.7) Definition. Let U: ~ W  be a functor. A full subcategory ~1 c ~ is 
called a Birkhoff subcategory of ~ with respect to U if ~1 is closed under 
products, subobjects, and U-split quotients. The last means that if f :  Z 1--,Z 
with Z l e ~  and U f  a split epimorphism, then Z e a l  also. If U is clearly under- 
stood we will simply call ~e a Birkhoff subcategory of 5 e. 

Notice that a subcategory closed under products and subobjects is closed 
under products and equalizers and hence under all limits. 

(5.8) Proposition. Suppose U: ~ ~ Y( creates limits and U-contractible coequal- 
izers. I f  A is any set of objects of ~ ,  there is a Birkhoff subcategory ~ c Y /  such 
that the composite ~r c ~1--~ ~ is tripleable and such that A ~ ~ .  

Proof Let ~o be the full subcategory whose objects are all products of 
objects of A, and ~1, be the full subcategory whose objects are all subobjects 
of objects of ~e o. Since both a product of monomorphisms and a composite 
ofmonomorphisms are monomorphisms, ~1 is closed under products and sub- 
objects and has a cogenerator, namely A. Finally, let ~ be the full subcategory 
whose objects are the codomains of U split epimorphisms with domain in ~1. 
We claim that ~ is closed under products and subobjects also. If for each iEI, 
Z~, i-+Z~ is a U-split epimorphism, so is 1-[ Z1, i ~ [ I  Zi. If Z 1 --~Z is a U-split 
epimorphism and Z '=  Z, let 

Z~ , Z' 

t ! 
Z 1 ~ Z 
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be a pullback. Since ~e 1 is closed under subobjects, Z~ E~I.  Since U preserves 
limits, UZ'I , UZ' 

1 l 
UZ 1 ~ UZ 

is also a pullback, and it is easily shown that a pullback of a split epimorphism is 
a split epimorphism. Thus ~e is a Birkhoff subcategory of if, and by (5.6), 
s  has an adjoint and is then clearly tripleable. 

This proposition was suggested by an ad hoc argument ofJ. Isbell in the case 
of complete boolean algebras. 

(5.9) Theorem. Suppose U: ~ X  creates limits and U contractible coequal- 
izers, and suppose T is a triple on X and V: ~T____~@[ a functor over X which is 
universal in the sense given below. Then V is an equivalence. 

The sense of universal is the following. If T' is another triple on X and 
V': xT'--~ ~J is another functor over X, then there is a unique (up to natural 
equivalence) functor xT'--+ X r such that 

X T' > ~T 

commutes (up to a natural equivalence). This functor is necessarily over X, 
and by (5.3) is induced by a unique triple morphism T --+ T'. 

Proof of(5.9). Let YE~. By (5.8), there is a tripleable Birkhoff subcategory 
~ ~J which contains Y. The inclusion must factor through V, which implies 

that Y is in the image of V and then that V is onto objects. Now we show that 
if F X  is the free T-algebra on the object X, then {VFX}  is a solution set at X. 
In fact, if f :  X---, UY i s  a map and Y= VA, thenffactors  as 

X - *  T X  VVg, U V A =  UY 

for some g: F X ~ A .  Then h =  Vg: VFX--~ Yis such that Uh factorsf  Thus U 
has an adjoint and the other properties imply that U is tripleable itself. But then 
the usual uniqueness properties of universal objects imply that V must be an 
equivalence. 

(5.10) Corollary. I f  R generates a free triple T, then (R:X)--~ X is tripleable. 

Proof Just put together (5.5), (5.6) and (5.9). 

(5.11) Proposition. I f  X ~ X is such that F X  ~ (R: X)  together with tl X: X--* U F X  
are a partial adjoint at X and x: R U F X - .  U F X  is the structure of UFX, then 
01X, x): X'* RUFX--+ U F X  is an isomorphism. 

Proof Writing T X  for U F X  we know that it is characterized by the following 
universal mapping property given f :  X ~  Y and y: R Y ~  Y, there is a unique 
g: T X - + X  such that g.  q X = f  and y.  R g = g .  x. This may be reworded as 



316 M. Barr: 

follows. Given (f, y): X ,  R Y-+ Y there is a unique g: TX--~X such that 
g. (~/X, x)=(f ,  y). (X * Rg). But this is precisely the solution to the problem of 
finding an initial object in the category ( X ,  R :~  r) where X , R  denotes the 
functor whose value at an object Y is X , R Y  (with the obvious extension to 
morphisms). Consequently, the following proposition, suggested by Lambek, 
completes the proof. 

(5.12) Proposition. I f  R: ~ - *  Ys is a functor and if(Z, z) is initial in (R: ~'), then 
z: RZ--~ Z is an isomorphism. 

Proof Since Rz: R Z Z - + R Z  gives also an (R:5~) object, there is a unique 
g : Z ~ R Z  such that g . z = R z .  Rg. Then z . g . z = z .  R z - R g - z . R ( z . g ) ,  
which is the assertion that z. g: (Z, z) -+ (Z, z) is a morphism, which since (Z; z) 
is initial, is necessarily the identity. Thus z .  g=Z,  and then g. z = R z ~  R g =  
R (z. g) = RZ, so that g = z-  1. 

(5.13) The question of the existence of free triples was initiated by J. Beck in 
unpublished work. 

6. Triples on Sets 

(6.1) In this section we study special properties of triples on the category Y 
of sets. Like so many other things, these same results wilt hold in any "set-like" 
category such as pointed sets or modules over a semi-simple ring in which 
(almost) all monomorphisms and all epimorphisms split and hence these 
properties (of being mono or epi) are preserved by functors. In [8]; example 
on p. 89, Linton shows that for T=(T, r/, #), any triple on 50, T preserves all 
monos (even those with empty domain). 

(6.2) Proposition. Let g be a small category. Then there is a cardial m depending 
only on o ~ such thal the functor lim: (g, 5P)--+ 5 P has rank <m. 

Proof Suppose {Ep: g---,SPlp<m} is an ascending chain of functors. Let E 
be the union (= colimit) of the Ep. A point x el im E is represented by a sequence 
(xr e~g  where xe~Ee. Since Ee=UEpe ,  for each eeg,  3pe<m such that 
xe~Epo e. Then {Pe} is a set of n ordinals each <m, and since m is n-complete, 
p=suppr  also. Then xeeEpe for all e~g and so x~ U limEp. This shows 
that the natural map. 

colim lim Ep ~ lim colim Ep 

is onto and since it is clearly 1-1, the result follows. 

(6.3) Definitions. Let End *5 P denote the full category of these endofunctors 
of 5 p which have rank =< m for some m. Also let Trip *Y denote the full category 
of triples whose underlying functor lies in End * J  and 

U*" Trip *50 ~ End "5 e 

denote the underlying functor functor. 

(6.4) Theorem. End *5 P is complete and cocomplete. Moreover the inclusion 
End *Y -+ End 5 P preserves limits and colimits. 
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Proof. To see that it is cocomplete, let E: E ~  E n d * J  be a functor with g 
small. Choose m sufficiently large that every value of E has rank < m. Now 
letting e denote some object of ~, we have for any m-complete cardinal n and 

any D: n -* X, co.lim (E e. D) ~- E e (co.lim D). 
t e n  t e n  

Thus~ letting e range over g, 

colim (colim (E e. D))-- colim (g e (colim D*) 
e ~ o  ~ i E n  e ~ o  ~ i o n  

-~ (colim E e) (co.lim D), 
e ~  ~ t E t l  

the latter being an isomorphism because colimits in functor categories are 
computed "pointwise'.  Now since colimits commute with colimits, 

co!ifn (co!irn (Ee.  D))~- co!!m (co!im (E e. D)) 

--cglim ((c~ i m , E .  E e). D), 

where again the latter isomorphism is an instance of a pointwise computation. 
Putting these together, we get 

(colim E e) (colim D) -~ colim ((colim E e). D) 
e e g  i ~ n  i ~ n  e e E  

which, since D is arbitrary, implies that col imEe has rank<re.  The same 
e ~ g  

argument works for lim E e provided m is also taken sufficiently large that 
e ~ o  ~ 

limits over ~ have rank<re.  

(6.5) Proposition. U* has a left adjoint F* and is tripIeable. 

Proof. A functor R: ~ - ,  ~ which has rank m is n-small for some n (e. g. the 
first n>m) and by (5.5) generates a free triple T=(T, r/, #). If D: n--,S p is an 
n-sequence of subobjects of X, then TD: n - - ~  is an n-sequence of subobjects 
of T X  (this innocent-seeming point that T preserves monos is essential and is 
the only reason for restricting attention to ~ or "set-like" categories). Thus 

colim R TD--~ R colim TD 

is an isomorphism. Now, for i~n let (TXi, xi: RTXi---~TXi) denote the free 
algebra generated by D~ and let 

x" R colim T X  i--* colim TX~ 

be the inverse of the above isomorphism composed with colimx~. Then 
(colim TXi,  x) is easily seen to be the colimit of the diagram {(TX~, xi) } in 
(R: f ) .  Applying the underlying functor, we have colim T X  i ~- Tcolim X~. Thus 
the free triple on a functor in End * J  is in Trip *~. The remainder of the proof 
that U* is tripleable is quite easy and is left to the reader. 

(6.6) Theorem. Trip *5 D is bicomplete. 

Proof. That it is complete follows immediately from the fact that it is 
tripleable over a complete category. To show that it is cocomplete, there are 
two approaches. One is to use (3.2) with d d =  all monomorphisms and n = c~ 
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(which requires showing that End .~r is locally small). The other is a direct 
argument as follows. Given a functor E: E -~Tr ip  .~r, let R=co l im  U* E in 
End *Y'. Then if T is the free triple generated by R, (R: • )=Y "T. Now for 
esg,  Ee is a triple, and there is induced a natural transformation U* Ee R 
which gives a natural transformation 2: U* E e--, U* T. Write E e = (T~, t/r , ~e). 
Then the full subcategory of 5 :x consisting of all (X, x) such that (X, x .  2X) is 
an E e algebra is easily seen to be a Birkhoff subcategory of X T. The algebras 
which have this property for all e~g  are still a Birkhoff subcategory, hence 
tripteable (by [9], 3.6), and by (5.2), (5.3), and (5.4), the resultant triple is the 
colimit of E. 

(6.7) Next we give some examples and results to show that some such restric- 
tion as rank is necessary to guarantee the existence of free triples. 

If one supposes the existence of a proper class of strongly measurable 
cardinals, it is possible to show that the functor which assigns to a set the set 
of co measures on it lacks rank but the free triple exists (e. g. by (5.5) with n = co). 
However no assumption about the existence of such measurable cardinals is 
known to be consistent. For  example Kiesler has pointed out to me that even 
if there is one measurable cardinal it is consistent to suppose that it is the only 
one. 

(6.8) Example. If R: 5:--*5: is the covariant power set functor, it does not 
generate a free triple. 

Proof In fact, by (5.12) (R:5:) does not even have an initial object ffree 
object on the empty set). Then by (5.10) the free triple does not exist. 

(6.9) Let Ta =(T~, r/1 , #2) be the triple on 5: in which T 1 is the covariant power 
set functor, t h X: X ~  T1X takes peX to {p}, and #1 X: T1T~X~ T1X is union. 
i.e. #lX({Ai l ieI})=[J  {AilieI} for subsets A i c X .  This is easily seen to be a 
triple. The algebras are the category whose objects are complete sup lattices 
and complete sup preserving maps. (Warning: of course a complete sup lattice 
has infs, but maps needn't preserve them.) Let T2 = (T2, r/2, #2) be the triple 
such that T2 X = N  x X where N is the monoid of natural numbers and r/2 and 
#2 come from the monoid structure of N. Then l/he T2.-algebras consist of N-sets. 
i.e. sets-with-endofunction and morphisms which preserve the endofunction. 

(6.10) Proposition. In Trip 5~, T1 and T2 do not have a coproduct. 

Proof Suppose that T were the coproduct. Then T would have the universal 
property that given two maps T 1 -+ S, T 2 -~ S for some triple, there would be 
induced T-~S .  In view of (5.3), this is equivalent to asserting that ,S T is the 
product of 5 :~r~ and 5 :x~ in the category of tripleable categories over J .  If we 
define a category ~' whose objects are 3-tuples (X, x~, x2) such that (X. x~)e5 :T~ 
and (X, x2)~5 ~ and whose morphisms preserve both structures, it is easily 
seen that ~ is the product of 5 :~r~ and 5 :v2 in the category of categories over 5(. 
Moreover the underlying set functor (X, xt, x2),~X is easily seen to satisfy the 
hypotheses of (5.8). Thus the naturally induced functor 5:T~a3 ' would be an 
equivalence and o~ would be tripleable. 
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Now over ~ a Birkhoff subcategory of tripleable category is tripleable 
(see [9], 3.6). Moreover, it is known that the category of complete boolean 
algebras is not tripleable over 5 p (see [4]). Thus the proof is reduced to the 
following observation of Lawvere (unpublished). 

(6.11) Proposition. I f  ~ is as above, then the category of complete boolean 
algebras is a Birkhoff subcategory of ~.  

Proof. An object of ~J may be viewed as a pair (L, ') where L is a complete 
sup-lattice and ': L--+ L is a set function. If we ask that these satisfy the following 

equations x" = x; x v x' = 1 ; 1' v x = x; 

((x v y)' v z')' = (x' v z')' v (y' v z')'; 
(x' v y')' v z = ((~ v z)' v (y v z)')' 

for all x, y, zeL,  the result is a boolean algebra, necessarily complete. Moreover, 
morphisms which preserve v and '  preserve the boolean operations. Since the 
category of all such algebras is equationally defined, it is a Birkhoff subcategory. 

7. Algebras in Categories 

(7.1) In this section we consider a condition on a category X that allows us to 
conclude that such things as groups in W or rings in W are tripleable over X. 

(7.2) A varietal theory is a category Y-~4 with a functor ~b: 5 P ~ Y ~  which 
preserves coproducts and is an isomorphism on objects. (This is dual to what 
is usually called a theory.) It is said to have rank n if the objects {(b (m)[m < n}, 
together with all maps 45(f), form a right adequate subcategory. This means 
that for any p, ~b(p) is the colimit of ~b(m) for maps (b(f): ~b(m)~@(p) with 
m < n. The category of r algebras in W, denoted Y '~ ,  consists of all functors 
X: y ~ o v ~ w  such that X(~b(n))=X(~b(1))". Equivalently, if X also denotes 
X(~b(1)), an algebra consists of an object X together with a map Xv---,X for 
each ~(1)---, @(p) in 3--~ such that corresponding to any commutative diagram 

~(p l )  

�9 (1) ~(p)  

e(p2) 

in Y~ the diagram 

22 Math. Z.,Bd. 116 

X p~ 

X p X 

Xp2 
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commutes. Here it should be added that the map 4)(pi)--,q)(p ) is determined 
by a pi-fold of maps 1--*~(p), i=1,2.  The corresponding pi-fotd of maps 
X v ~ X  then induces a map XP--*X p' and these are the maps used in the above 
diagram. All this depends on the fact that 4~(p) is the p-fold coproduct of 
�9 (1). If J d  has rank n, then all this data need only be given for p<n, By a 
pre-algebra we will mean an object X together with xm---~X for each 4~(1)~ 
4~(m) in Y,~ but not necessarily satisfying the commutativity condition, tf we 
define R: 5f--~ ~ by Rx=U LI x., 

p<n ~ ( 1 ) ~ ( p )  

then the following is clear. 

(7.3) Theorem. The category of Y g  prealgebras is the same as the category 
(R:x). 

Of course, we have omitted saying what maps are but this should be clear 
from the theorem. 

(7.4) Theorem. Suppose 9f has small ~ factorizations and R is (Jd, n) small. 
Then 3 S  -~ ~ 3~ is tripleable. 

Proof. It is only necessary to show that the obvious inclusion Wf~--~ (R:W) 
has an adjoint, for by (5.5) the underlying functor ( R : W ) ~ X  does. Now the 
inclusion obviously preserves limits, so the only thing needed is a solution set, 
given an object (X, x)~(R:Sf), construct A X  as in (2.1) and consider all objects 
(Z, z)EX s~ such that Z ~ A X .  Now any map (X, x)--~ (Y, y) factors through an 
object (Z, z)~(R:W) with Z e A X ,  so it is sufficient to show that (Z, z)~W e-~. 
Now Z is given as a colimit of subobjects Zm of Y for m < n. For any @ (1)--, �9 (p) 
the corresponding map ZP--.Z is given as a colimit of maps Z~-~Z,,+I. 
Corresponding to any commutative diagram 

45(pl) 

~(1) 4~(p) 

~(p2) 
in j d  we will have a diagram 

Z~'+ 1 

Z~ Zm+2 "-.. y 
P2 Zm+l 

which, since Zm+2 is a subobject of Yand (Y, y)eX ~-~, will commute. By taking 
colimits the result follows. 

(7.5) Proposition. A necessary and sufficient condition that the jhnctor R above 
be (J/~, n)-small is that each power function X - *  X m be (Jd, n)-small for m<n. 
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Proof. Trivial, since coproducts commute with colimits. 

(7.6) In categories y T  it is easy to see that if T has rank p, then the underlying 
functor creates colimits of n sequences when n is p-complete. Then if n is 
max(m, p)-complete, mth power will be n-small and (7.4) applies. This gives 
another proof that the tensor product of two triples with rank exists, for the 
T 1 algebras (=algebras for the theory of T1) in 5 ̀,72 are precisely the T 1 |  2 
algebras. 

8. Another Coeompleteness Theorem 

(8.1) Notice that (3.4) does not imply the well known result of Linton that 
every category tripleable over ~ is complete ([8], example on p. 89). In this 
section we present a different cocompleteness theorem which does imply that 
result. 

(8.2) By a factorization system on 32 we mean a pair ( J ,  .~) of subcategories 
of 32 satisfying the following conditions. 

1. Every isomorphism is in J m ~.  In particular ~r and N each contain all 
the objects of 32. 

2. 32 = J ~ ;  that is, every map factors as a map in ~ followed by a map in J .  

3. If f :  X o - - - ~ X I ~  i~ and g: Yo-+ Y1eJ, then H o m ( f  g)=Hom(X1, Yo)- 
That is, for every commutative square 

x ~  

there is a unique c: X1 -* Yo making both triangles commute. 

These factorization systems (invented by Isbell under the name "bicategory 
structure", see [5]) have been studied by Kennison [6] and Kelly (unpublished). 
If the class J consists of monomorphisms, then (~r ~)  will be called a right 
factorization system. This is known to be equivalent (in the presence of kernel 
pairs) to each of the following statements. 

a) f g ~  ~ f ~ .  
b) Every split epimorphism is in N. 

We say that 32 is ~-co-well powered if for any X~32 there is, up to isomorphism, 
only a set o f f e ~  whose domain is X. This can turn out to be a serious restriction 
if N is large. 

(8.3) Theorem. Suppose (~r ~)  is a right factorization system on 32 and 32 is 
~-eo-well powered. I f  T is a triple on 3f with T(~)  c ~ ,  then 327 is cocompIete. 

Proof. Exactly as in (3.3), it is sufficient to find a solution set for coequalizers. 
If 

d o 
(vV,, w)=~, ( x , x )  ~ ,(Y,y) 

22* 
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is any diagram in X ~r with d.  d o = d.  d 1, factor the map  d in 3r as X _A2~ Z - ~ > Y 
w i t h f e ~ ,  g e J .  In the d iagram 

T X  x ~ X ~ Z  

rs I I g 
TZ  Tg ~ T Y  Y ~ Z 

we have T f ~ g  a and g e J ,  so by (8.2.3) there is a unique z: T Z - * Z  such that  
g .  z = y -  Tg and z .  T f = f .  x. Thus (Z, z) is a prealgebra at least, a n d f a n d  g are 
maps  of  prealgebras. We must  now show that  (Z, z) is an algebra. But since 
( J ,  ~ )  is a right factorization system, g is a monomorph i sm,  so that  we can 
cancel it f rom 

g.  z .  T z = y .  T g .  T z = y .  T y .  T Z g = y . #  Y.  T 2 g = y - T g . / ~ Z = g ,  z .  # Z  

and conclude z .  T z  = z .  # Z.  Similarly, g-  z- ~/Z = y-  Tg .  ~/Z = y-  ~/Y. g = g, so 
that  z .  t /Z  = Z. Also g . f ,  d o = g . f .  d 1, so that f ,  d o = f .  d 1. Since 5f is ~-co-well-  
powered, a solution set for the coequalizer of  d o and d ~ can be constructed to 
consist of all algebras (Z, z) whose underlying Z is in a representative set of  
P -morph i sms  with domain  5f. 

(8.4) Remark.  We m a y  observe in passing that  the above proof  contains two 
other statements which are of independent  interest. 

a) Under  the condit ions of  the theorem, ( J ,  ~ )  lifts to a factorization system 
in ~ra" consisting of  maps  in •x whose underlying 5f-morphism are in J and 
respectively. 

b) If  ( J ,  N) is a right factorizat ion system in a complete category Yr which 
is ~-co-wel l  powered, then ~ has coequalizers. 
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