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Abstract. This paper studies a category X with an endofunctor T : X // X . A
T -algebra is given by a morphism TX //X in X . We examine the related questions of
when T freely generates a triple (or monad) on X ; when an object X ∈ X freely generates
a T -algebra; and when the category of T -algebras has coequalizers and other colimits.
The paper defines a category of “T -horns” which effectively contains X as well as all
T -algebras. It is assumed that X is cocomplete and has a factorization system (E ,M )
satisfying reasonable properties. An ordinal-indexed sequence of T -horns is then defined
which provides successive approximations to a free T -algebra generated by an object
X ∈ X , as well as approximations to coequalizers and other colimits for the category of
T -algebras. Using the notions of an M -cone and a separated T -horn it is shown that if
X is M -well-powered, then the ordinal sequence stabilizes at the desired free algebra or
coequalizer or other colimit whenever they exist. This paper is a successor to a paper
written by the first author in 1970 that showed that T generates a free triple when every
X ∈ X generates a free T -algebra. We also consider colimits in triple algebras and give
some examples of functors T for which no X ∈ X generates a free T -algebra.

1. Introduction

Nearly fifty years ago, the first author published “Coequalizers and Free Triples” [Barr
(1970)]. That paper examines endofunctors T : X // X on a category X , and defines
the category of T -algebras, and the underlying functor U : T -Alg // X , see 2.2 below.
It shows that, given reasonable conditions on X , if every object X ∈ X generates a free
T -algebra, then T generates a free triple. Similar conditions were given for the category of

T -algebras as well as for the category XTT of algebras for a triple T to have coequalizers.
This paper, as its title suggests, is a sequel to [Barr (1970)].

In 1979, the first author wrote, but did not publish, a follow-up paper, [Barr (1979)],
We recently came across a copy of this paper (see below) and discovered serious difficulties
in the exposition. The present paper is the result of cleaning it up. It turns out that the
methods and results of the original paper, while clumsy, were fundamentally correct.

An important tool we use here is something we call a T -horn, 3.1. This enables us to
confine the difficulties to one place and systematize the main construction. A transfinite
process can be applied to any T -horn and, when it converges, it shows the existence of
coequalizers and other colimits in the category T -Alg. Since X has a natural embedding
into T -Horns, the transfinite process can be applied to each object of X . When the process
converges for each X ∈ X , then each object of X generates a free T -Alg which implies
that T generates a free triple. Some important tools in this paper are the notions of an
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M -cone, 2.5, and of a separated T -horn, 3.5. This process was implicit in [Barr (1979)]
but not formulated in terms of T -horns.

The basic construction is of the type of metaconstruction of [Koubek & Reiterman
(1979)]. The particular form chosen, however, leads to an increasing ordinal chain that
either provides the desired object or usually demonstrates its failure to exist by increasing
indefinitely. See 4.15, but also 4.18. We note that our construction is definitely different
from that of [Adámek & Trnková (2011)] since our Theorem 4.15 would otherwise be
contradicted by their Example 3.1 (a).

Several interesting papers have appeared which get partial answers to our questions.
See [Adámek (1977), Adámek & Koubek (1980), Adámek & Trnková (2011), Kelly (1980),
Koubek & Reiterman (1979), Schubert (1972)]. We note that [Koubek & Reiterman
(1979)] not only introduced the type of transfinite method we have used but also defined
a “partial algebra” which in our notation is equivalent to a T -horn, (X, Y, v, w) for which
the map v is either in M , or is a mono—see section 3. This same paper also defines
a “generalized partial algebra” which is the same as a T -horn, but the maps between
generalized partial algebras are not the same as T -horn morphisms.

The paper [Kelly (1980)] was written at about the same time as the original paper,
[Barr (1979)]. Kelly even has a reference to that manuscript. Kelly also writes about the
important notion of an M -cone, under the name of “cone in M ” and Kelly’s Proposition
1.1(i) anticipates our Proposition 2.8. This proposition and related results are not only
useful, they convey an intuitive sense of what an M -cone is.

Section 5 of [Kelly (1980)] discusses “well-pointed endofunctors”, which are more suit-
able for triples. Moreover, if X has finite coproducts, then every endofunctor generates
a free well-pointed functor in a straightforward way, so the question of whether an endo-
functor T : X // X generates a free triple reduces to the case of a well-pointed functor.
Section 14 of [Kelly (1980)] introduces a comma category which plays the same role in
that paper as the category of T -Horns does in this paper.

The original paper might have gone undiscovered except that recently Camell Kachour,
a student of Michael Batanin and Ross Street’s, (see [Kachour (2013)]) asked if it was
possible to get a copy of the original draft since none seemed available elsewhere. We
eventually unearthed it, sent him a copy, and decided to write a substantially revised
version.

We would like to thank the referees for helping to significantly improve the presentation
of this paper.

2. Preliminaries

2.1. Notation. We will be using the following notational conventions throughout this
paper. A double subscript such as unm will be written without commas in the subscript if
the indices are single letters, while such as un+1,m, un,m+1, or un+1,m+1 will use commas as
separators. Second, we will usually denote composition of arrows by simple juxtaposition
without punctuation so long as a single character denotes each arrow. As soon as an arrow
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is denoted by two or more characters the composition will be denoted using periods. Thus
wmvmn but um+1,k.wm+1.Tumn.

2.2. Definition. Throughout this paper, we will be dealing with a category X equipped
with an endofunctor T . By a T -algebra (X, x), we mean an object X together with a map
x : TX //X. A morphism f : (X, x) // (Y, y) of T -algebras is a map f : X // Y such
that fx = y.Tf . We denote this category by T -Alg. The two questions we will be looking
at are the existence of a free triple on X generated by T and the question of whether the
category T -Alg of T -algebras has coequalizers. We define the functor U : T -Alg // X so
that U(Z, z) = Z and U(f) = f .

2.3. Definition. A pair (E ,M ) of subcategories of X is a factorization system if

FS-1. E ∩M is the class of isomorphisms of X .

FS-2. Every f ∈ X can be factored as f = me with m ∈M and e ∈ E .

FS-3. Every commutative square

C D//
m

//

A

C
��

A Be // // B

D
��

with e ∈ E and m ∈ M can be “filled in” by a map B // C making both triangles
commute.

Note that we will generally be using a double-headed arrow to denote a morphism in
E and a tailed arrow to denote a morphism of M . We will say that e is left orthogonal
to m and m is right orthogonal to e provided FS-3 is satisfied for any square of that
type. We may write e⊥m if that holds.

2.4. Proposition. Suppose (E ,M ) is a factorization system. Then

1. f ∈ E iff f is left orthogonal to every m ∈M ; dually f ∈M iff f is right orthogonal
to every e ∈ E .

2. E is closed under pushout; M is closed under pullback.

3. If every e ∈ E is epic and every m ∈M is monic, then gf ∈ E implies g ∈ E and
gf ∈M implies f ∈M .

4. Under the same assumption, every regular epic is in E and every regular monic is
in M .

The proofs are standard.
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2.5. Definition. By a cone, we mean a class of morphisms with the same source.
Warning: it might be a proper class. The source will be called the vertex of the cone,
the class of targets will be called the base of the cone, and the arrows will be called the
elements of the cone.

A cone {X //Xi} is called an M -cone if it is orthogonal to E in the following sense:
if e : Y // //Y ′ ∈ E , if for each cone {Y ′ //Xi} with the same base, and if for every index
i, the diagram

X Xi
//

Y

X
��

Y Y ′// // Y ′

Xi

��

commutes, then there is a unique arrow t : Y ′ // X such that for each i, both triangles
in the diagram

X Xi
//

Y

X
��

Y Y ′// // Y ′

Xi

��

Y ′

X
����
��
��
��
��
��
�

commute.

2.6. Blanket assumptions. Henceforth we will suppose

(BA-1) X is cocomplete.

(BA-2) (E ,M ) is a factorization system.

(BA-3) Every map in E is epic.

(BA-4) Every map in M is monic.

(BA-5) Every cone {fi : X //Xi} factors {X e // //X ′
mi //Xi} with e ∈ E and {X ′ //Xi}

an M -cone.

2.7. Notation. We say that the cone {fi : X // Xi} factors through e : X // Y
with e ∈ E if for all i there exists gi such that fi = gie.

The following result can be found in Proposition 1.1(i) of [Kelly (1980)].

2.8. Proposition. A cone is an M -cone iff whenever it factors through e for e ∈ E ,
then e is invertible.
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Proof. First assume that the cone {X // Xi} satisfies the condition that whenever it
factors through a map e ∈ E then e is invertible. Then let

X Xi
//

Y

X
��

Y Y ′// // Y ′

Xi

��

be as in the definition of an M -cone. Let

X Z//

Y

X
��

Y Y ′// // Y ′

Z
��

be a pushout diagram. It follows that the map e′ : X // Z is in E and the cone factors
through e′ so e′ is invertible. From this the existence of the map t : Y ′ // X readily
follows so the cone is an M -cone.

Conversely, assume that {X // Xi} is an M -cone which factors through the map
e : X // // Y with e ∈ E . Consider the diagram

X Xi
//

X

X
��

X Y// // Y

Xi

��

where X //X is the identity and X // // Y is e. Since {X //Xi} is an M -cone, there
exists t : Y //X which is a left inverse to e which implies that e is invertible.

2.9. Corollary. Let {fi : X // Xi} be a cone. Factor each fi = giei with gi ∈ M
and ei ∈ E . Let ei : X // // Yi. Then the cone {fi : X //Xi} is an M -cone iff the cone
{ei : X // // Yi} is an M -cone.

Proof. {fi : X //Xi} factors through e ∈ E iff {ei : X // // Yi} factors through e.

2.10. Corollary. If X is E-cowell-powered, then for every M -cone {fi : X // Xi |
i ∈ I} there exists a set I0 ⊆ I such that {fi : X //Xi | i ∈ I0} is an M -cone.

Proof. Factor each fi = giei with gi ∈ M and ei ∈ E . Then, by the above results,
there is no non-invertible e ∈ E through which {ei : X // // Yi | i ∈ I} factors. Since X
is cowell-powered, we can find I0 ⊆ I such that there is no non-invertible e ∈ E through
which {ei : X // // Yi | i ∈ I0} factors. And this implies that {fi : X //Xi | i ∈ I0} is an
M -cone.
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2.11. Notation.

1. A small diagram is one which is indexed by a set, while a large diagram is one
which is indexed by a proper class.

2. Small colimits are colimits of small diagrams and large colimits are colimits of
large diagrams. The terms small limits and large limits are defined analogously.

3. A category is Isbell cocomplete with respect to a class E of epis if it is
cocomplete (has all small colimits) and has colimits of any diagram, large or small,
which consists of an object X together with a cone of maps {ei : X // // Yi} with
ei ∈ E for all i.

2.12. Proposition. Suppose that (BA-1)–(BA-4) hold and X is Isbell cocomplete with
respect to E . Then (BA-5) also holds.

Proof. Let {X //Xi} be a cone. We will say that X // //Y ∈ E is an E -factorization of
the cone if the cone factors through X // // Y . Since X is Isbell cocomplete, we can let X ′

be a colimit of all the E -factorizations of the cone and e : X //X ′ any of the composites
X // // Y //X ′, since they are all the same. We claim that e ∈ E . In fact, if we have a
square

Z Z ′//
m

//

X

Z
��

X X ′
e // X ′

Z ′
��

with m ∈M , then for each X // //Y //Xi as above, we have the indicated diagonal fill-in
in the diagram

X Y X ′

Z Z ′

// // //

�� ���
�
�
�
�
�
�

��
// //

whence, since X ′ is a colimit of all such X // // Y , we get a diagonal fill-in X ′ // Z and

thus conclude that e ∈ E . If there were a further X ′ t // // Y such that the composite

X e //X ′ t // Y is an E -factorization of the cone, there is a map v : Y //X ′ such that
vte = e and since e is epic we conclude that vt = id and since t is also epic, that t is
an isomorphism. The result is that the cone {X ′ //Xi} cannot be E -factorized further,
which shows it is an M -cone in view of Proposition 2.8

2.13. Proposition. Let {fi : X //Xi} with every fi ∈ E . Suppose that {gi : Xi
//X ′}

is a colimit of the cone. Then every gi ∈ E .
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Proof. We observe that all composites gifi are the same and we denote it by f . It suffices
to show that f ∈ E . For each i, we can embed the diagram

Y Y ′//
m

//

X

Y

h

��

X X ′
f // X ′

Y ′

k

��

into the diagram

Y Y ′//
m

//

X

Y

h

��

X Xi
fi // // Xi

Y ′

kgi

��

Xi X ′
gi // X ′

Y ′

k

����
��
��
��
��
��
�

Then there is a map `i : Xi
// Y such that h = `ifi and m`i = kgi. Since all `ifi = h

are the same, it follows from the colimit property that there is a map ` : X ′ // Y such
that `gi = `i for all i. Then `f = `gifi = `ifi = h. For m`, we compose with gi to get
m`gi = m`i = kgi. Since f = gifi is epic, so is gi and we conclude that m` = k. This
shows that f⊥m, as required.

3. The Basic Construction

We will define a transfinite process which can be viewed as a series of closer and closer
approximations to the free T -algebra generated by an object of X , or, in some cases,
approximations to a desired coequalizer or other colimit. These approximations take
place in the category of T -horns, which we will now define.

3.1. The category of T -horns. A cone of the form

X

Y

X

w

��

Y TX
v // TX
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will be called a T -horn, which we will denote (X, Y, v, w). A map (f, g) : (X, Y, v, w) to
(X ′, Y ′, v′, w′) consists of a pair f : X //X ′, g : Y // Y ′ such that

Y TX

Y ′ TX ′

X

X ′

v //

w

��

g

��?
??

?? Tf

��?
??

??

v′ //

f ��?
??

??
w′

��

commutes. We often abbreviate T -horn to horn. We let THorn denote the category of
T -horns.

3.2. The functors J and K. The categories X and T -Alg are both fully and
faithfully embedded in THorn by the functors J and K respectively. If X ∈ X then
JX = (X, 0, v, w) where 0 denotes the initial object of X and v and w are the unique
maps. If (Z, z) ∈ T -Alg then K(Z, z) = (Z, TZ, id, z).

3.3. T -algebra horns. We say that the horn H is a T -algebra horn if it is isomorphic
to a horn of the form K(Z, z). Clearly v is invertible if (X, Y, v, w) is a isomorphic to
some K(Z, z). The converse readily follows from:

Y TX

X TX TX

X

v //

w

��

v

��?
??

??
??

??
??

??

id

��?
??

??
??

??
??

??

id

��?
??

??
??

??
??

??
id //

id

��?
??

??
??

??
??

??

wv−1

��

3.4. Admissible Maps. A horn morphism (f, g) : (X, Y, v, w) //K(Z, z) is given by
a commutative diagram

X TZ

Y

X

w

��

Y TXv // TX

TZ

Z

TZ

Z

z

��

TZ TZ
id // TZX

Z

f

��?
??

??
??

??
??

??

Y

TZ

g

��?
??

??
??

??
??

??
TX

TZ

Tf

��?
??

??
??

??
??

??
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which implies that g = Tf.v. Accordingly, we will say that when (X, Y, v, w) is a horn,
then f : X // U(Z, z) is admissible for (X, Y, v, w) if fw = z.Tf.v. This characterizes
maps of a horn to a T -algebra horn.

3.5. Separated Horns. We say that a horn (X, Y, v, w) is M -separated if the cone
{fi : X // U(Zi, zi)} of all admissible maps from X is an M -cone. Since M will not
change, we usually call such horns separated. We let Sep ⊆ THorn denote the full
subcategory of all separated horns.

3.6. Lemma.

1. A horn which has an admissible map in M is separated. In particular, every T -
algebra horn is separated.

2. If X has small products then so does the category T -Alg

3. If X is E-cowell-powered and has products of set-indexed families of objects, then a
horn is separated iff it has an admissible map in M .

Proof.

1. If (X, Y, v, w) is a horn and f : X // U(Z, z) is admissible and f ∈ M then the
cone consisting of the single map {f : X // Z} is an M -cone.

2. Let {(Zi, zi)} be a set-indexed family of T -algebras. Let P together with projection
maps pi : P // Zi be a product of the objects Zi. Let z : TP // P be determined
by piz = ziT (pi) for all i. The remaining details are straightforward.

3. Let (X, Y, v, w) be a separated horn. Then there exists an M -cone {fi : X // Zi}
of admissible maps. By Corollary 2.10, we may as well assume that I is a set. Let
(P, z) be the product of the T -algebras (Zi, zI), as above. Let f : X // P be such
that pif = fi for all i. Factor f = ge with g ∈ M and e ∈ E . Since the M -cone
clearly factors through e, we see that e is invertible so f ∈M .

3.7. Proposition. Let {fi : X // Xi | i ∈ I} be a cone for which the product P of
{Xi | i ∈ I} exists. Let {pi : P //Xi} be the projections and let f : X // P the map for
which pif = fi for all i ∈ I. Then {fi : X //Xi | i ∈ I} is an M -cone iff f ∈M .

Proof. {fi : X //Xi | i ∈ I} is an M -cone iff whenever it factors through e ∈ E then
e is invertible iff whenever f factors through e ∈ E then e is invertible iff f ∈M .

3.8. The Reflection L. In general, for any horn (X, Y, v, w), we can factor the cone
{fi : X // U(Zi, zi)} of all admissible maps as {fi : X //X ′ // U(Zi, zi)} so that each
fi = f ′i .e where e : X // //X ′ is in E and {f ′i : X ′ // U(Zi, zi)} is an M -cone. We then
define L(X, Y, v, w) = (X ′, Y, Te.v, ew). It is readily shown that L : THorn // Sep is a
reflection functor of horns into separated horns and (e, idY ) is the reflection map.



10

3.9. Definition. We define the pre-successor of the horn (X, Y, v, w), as (P, TX, Tr, s),
where P is determined so that the square in the diagram below is a pushout:

X Pr
//

Y

X

w

��

Y TX
v // TX

P

s

��
P

TX

P
��

TX TP
Tr // TP

Note that (r, v) is a map from (X, Y, v, w) to its pre-successor.
We further define Succ(X, Y, v, w), the successor of (X, Y, v, w), as L(P, TX, Tr, s),

the reflection of the pre-succesor into the subcategory of separated horns.
Finally, we define the successor map from a horn to its successor as γ = η(r, v),

where η is the reflection map from the pre-successor to its separated reflection.

3.10. Lemma. The successor map γ : H //Succ(H) is a isomorphism iff H is a T -algebra
horn.

Proof. If H is a T -algebra horn, then it is isomorphic to K(Z, z) for some T -algebra
(Z, z). It suffices to calculate the successor of K(Z, z), using the fact that the pushout of
an identity map is an identity

Z Z
id

//

TZ

Z

z

��

TZ TZid // TZ

Z

z

��
Z

TZ

Z
��

TZ TZid // TZ

so K(Z, z) is its own pre-successor. Since the above pre-successor is separated (by 3.6) it
follows that K(Z, z) is its own successor and γ = (id, id) is the identity horn map.

Conversely, suppose that γ : (X, Y, v, w) //Succ(X, Y, v, w) is an isomorphism. Let the
pre-successor of (X, Y, v, w) be (P, TX, Tr, s) in the diagram below. Then the successor
of (X, Y, v, w) is the separated reflection of (P, TX, Tr, s) which is (P ′, TX, Te.Tr, es) in
this diagram:

Y TX TP TP ′

X P

P ′

v // Tr // Te //

w

��

s

��
r //

er

��?
??

??
??

??
??

??

e

��
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If this sets up an isomorphism between (X, Y, v, w) and its successor, then, clearly, er
must be an isomorphism. But then Te.Tr is also an isomorphism which implies that
Succ(X, Y, v, w) = (P ′, TX, Te.Tr, es) is a T -algebra horn, by 3.6. And since we are
assuming that γ is an isomorphism, it follows that (X, Y, v, w) is a T -algebra horn.

3.11. Definition. A horn morphism θ : H1
//H2 has the unique extension prop-

erty with respect to T -algebra horns if every horn map f : H1
// K(Z, z) has a

unique extension to a horn map f ′ : H2
//K(Z, z) for which f ′θ = f .

3.12. Proposition. Let H be a T -horn and let H ′ be its pre-successor. Then (r, v) :
H //H ′ is a map of horns and has the unique extension property with respect to T -algebra
horns.

Proof. Suppose (f, Tf.v) : (X, Y, v, w) // U(Z, z) is a horn morphism. Then in the
diagram

Y TX TP

X P TZ TZ

Z

v // Tr //

w

��

s

��
r //

Tf

��?
??

??
??

??
??

??

Tf ′

��?
?

?
?

?
?

?

f

''OO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

f ′

��?
?

?
?

?
?

?

z

��

id //

the fact that z.Tf.v = fw and the fact that the upper left square is a pushout implies
that there is a unique f ′ : P // Z such that f ′s = z.Tf and f ′r = f . The remaining
commutativities readily follow so that (f ′, T f ′.T r) is a horn morphism.

If (g, Tg.Tr) is another horn morphism extending (f, Tf.v), then gr = f which implies
that Tg.Tr = Tf and then gs = z.Tf = f ′ which, together with gr = f and the
uniqueness of maps from a pushout, implies that g = f ′.

3.13. Corollary. If H is separated, the successor map γ : H // H ′ // Succ(H) has
the unique extension property with respect to T -algebra horns.

3.14. Proposition. The categories of horns and of separated horns are cocomplete.

Proof. Let D : I // THorn be a diagram. Suppose Di = (Xi, Yi, vi, wi). Let X =
colimXi and Y = colimYi with transition maps ri : Yi //Y and si : Xi

//X. We define
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w : Y //X and v : Y // TX as the unique maps for which the diagram

Xi

Yi

Xi

wi

��

Yi TXi
vi // TXi

X

Y

X

w

��

Y TXv // TX

Yi

Y

ri

��?
??

??
??

??
??

??

Xi

X

si

��?
??

??
??

??
??

??

TXi

TX

si

��?
??

??
??

??
??

??

commutes.

For a colimit in separated horns, apply the reflection L to the colimit in horns.

3.15. The Basic Ordinal Sequence.

Recall that a partially ordered set, or class, can be regarded as a category with a single
morphism from x // y iff x ≤ y and no other morphisms.

If n is an ordinal number, then an n-sequence is a functor from n to a given category
while an ordinal sequence is a functor from the class of all ordinals.

3.16. Definition. Let H be a T -horn. We use transfinite induction to define a T -horn
Hn for every ordinal n and maps θmk : Hk

//Hm as follows:

1. We start by letting H0 = L(H), and letting η : H //H0 be the reflection map.

2. If n is a non-limit ordinal, then we have H0, H1, . . . , Hn−1 and can define Hn =
Succ(Hn−1), the successor of Hn−1. We use Proposition 3.12, to define θn,n−1.

3. If n > 0 is a limit ordinal, then the n diagram {Hm | m < n} has been defined and
we let Hn be the colimit of this diagram in the category of separated T -horns. (Note
this colimit is found by taking the colimit in THorn then reflecting that colimit into
the subcategory of separated T -horns.) The maps in the colimit diagram give us the
transition maps θmn.

3.17. Proposition. Given a T -horn H, the ordinal-indexed family {Hn} together with
the maps θmk defined above forms an ordinal sequence in the category of T -horns.

Moreover, all of the maps θm,k as well as the map η : H // H0 have the unique
extension property with respect to T -algebra horns.

Proof. Using Proposition 3.12 and the properties of colimits, the details of the proof
follow by a straightforward transfinite induction.
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3.18. Definition. The basic ordinal sequence generated by a T -horn H is the
ordinal sequence of Definition 3.16. The T -horn H is called the generator of the basic
ordinal sequence.

Sometimes we will let H−1 denote the generating horn H.

4. Applications

In this section we will show that if the basic ordinal sequence generated by JX stabilizes
(4.9), then X generates a free T -algebra, and that if it does so for every X ∈ X , then T
generates a free triple. Moreover if the basic ordinal sequence for every T -horn stabilizes,
then T-Alg is cocomplete.

Recall that U : T -Alg //X is the obvious underlying functor, that K : T -Alg //THorn
is given by K(Z, z) = (Z, TZ, id, z), and that J : X //THorn is given by JX = (X, 0, v, w)
where 0 is an initial object and v and w are forced.

4.1. Proposition. For any X ∈ X and (Z, z) ∈ T -Alg, there is a one-one correspon-
dence between admissible maps X // Z in X and maps JX //K(Z, z) in THorn .

Proof. This is obvious from the diagram

0 TX

X TZ TZ

Z

v //

w

�� ��?
??

??
??

??
??

??

Tf

��?
??

??
??

??
??

??

f

��?
??

??
??

??
??

??
id //

z

��

Combining this with 3.17 we have:

4.2. Corollary. Let {Hn} be the basic ordinal sequence generated by JX. Then for any
T -algebra (Z, z) and any ordinal n, there is a one-one correspondence between admissible
maps X // Z and maps Hn

//K(Z, z).

4.3. Definition. A basic ordinal sequence {Hn, θmn} will be said to stabilize at n if
for all m > n, the transition maps θmn are isomorphisms. We will often say that such a
sequence converges.
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4.4. Definition. The horn (X, Y, v, w) splits if there exists a map x : TX //X such
that both triangles commute in the pushout diagram

Y TX

X P

v //

w

��
r //

s

��

x

����
��
��
��
��
��
�

4.5. Lemma. The horn (X, Y, v, w) splits iff r : X //P is an isomorphism in the diagram
above.

Proof. If r is an isomorphism, then it is trivial to see that r−1s makes both triangles
commute. For the other direction, suppose such an x is given. In the diagram

X Pr //

Y

X

w

��

Y TX
v // TX

P

s

��

TX

X

x

zztt
tt
tt
tt
tt
tt
tt
tt
t
TX

X

x

��/
//
//
//
//
//
//
//
//
//
//
//
/

X

X

id

))RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

in which the upper left square is a pushout, we conclude that there is a map g : P //X
such that gr = id and gs = x. Moreover rg : P // P satisfies rgr = r and rgs = rx = s.
The uniqueness of maps from a colimit forces rg = id so that r is an isomorphism.

4.6. Lemma. The horn (X, Y, v, w) splits if v is epic and there is a map x : TX // X
such that xv = w.

Proof. In the diagram of the previous lemma, r is split monic, while also epic, therefore
an isomorphism.

4.7. Corollary. If (Z, z) is a T -algebra, then K(Z, z) is split.

Proof. Recall that K(Z, z) = (Z, TZ, id, z) so v = id is epic and we can take x = z.

4.8. Proposition. If the horn (X, Y, v, w) is split by x : TX // X, then (X, x) is a
T -algebra and the successor of (X, Y, v, w) is K(X, x).
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Proof. Since r is an isomorphism, we can construct the pushout so that P = X, r = id
and s = x. Then the pre-successor is clearly (X,TX, id, x) because the square in the
diagram below is a pushout:

X X
id

//

Y

X

w

��

Y TXv // TX

X

x

��
X

TX

X
��

TX TXid // TX

Moreover, the pre-successor is clearly K(X, x). Since the pre-successor is a T -algebra, it
is clearly separated and therefore is the successor.

4.9. Theorem. Suppose that {Hn, θmn} is the ordinal sequence as in 3.15. If there is an
ordinal n such that Hn splits, then the sequence stabilizes at Hn+1.

Proof. Suppose Hn is split by x : TXn
//Xn. Then Hn+1 is the successor of Hn which,

by the above lemma is K(X, x). We claim that Hm is K(X, x) for all m > n. The proof
is by transfinite induction, so we assume that Hk = K(X, x) for all k with n < k < m.
If m is a non-limit ordinal, the inductive step follows by considering the successor, as
above. If m is a limit ordinal, we first compute colimk<mHk. But this is clearly K(X, x)
as Hk = K(X, x) for a cofinal subsequence. Then we take the separated reflection of
K(X, x) but this is clearly K(X, x) as K(X, x), being a T -algebra horn, is obviously
separated.

4.10. Corollary. Suppose the sequence of {Hm} stabilizes at n. Then the transition
map (un+1,n, vn+1,n) is a horn isomorphism. Suppose that (f, g) : Hn

//K(Z, z) is a map
in THorn , then f : (Xn, u

−1
n+1,nwn+1) // (Z, z) is a map in T-Alg.

Proof. From the diagram

Yn TXn

TZ TZ

Xn Xn+1

Z

vn+1,n //
g

**UUU
UUUU

UUUU
UUUU

UUUU

wn

��

wn+1

��

z

��

id
//

un+1,n //

f

((RR
RRR

RRR
RRR

RRR
RRR

RRR
R

Tf

**UUU
UUUU

UUUU
UUUU

UUUU
U

we have fu−1n+1,nwn+1 = fwnv
−1
n+1,n = zgv−1n+1,n = z.Tf .

Combining this with 4.2, we have:

4.11. Theorem. Given an object X ∈ X for which the basic ordinal sequence generated
by H−1 = JX stabilizes at n, then Hn is the free T -algebra horn generated by X.
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4.12. Theorem. Suppose n is a limit ordinal such that T preserves the colimit of n-
sequences, so that the canonical map

colimm<n TXm
// T (colimm<nXm)

is an isomorphism. Then every basic ordinal sequence stabilizes at n+ 1.

Proof. We compute Hn+1 = (Xn+1, Yn+1, vn+1, wn+1) by first finding the colimm<nHn

then taking its separated reflection. But the colimit is (X, Y, v, w) where X = colimXm

and Y = colimYm = colimTXm and v is the obvious map from Y // TX. But, by
hypothesis, v is an isomorphism. Therefore the colimit is a T -algebra horn, see 4.8. It
follows that this T -algbra horn is separated, so it coincides with Hn+1 and, by the above
theorem, the sequence stabilizes at Hn+1 .

4.13. Corollary. If there exists a limit ordinal n such that T commutes with colimits
over n, then all basic ordinal sequences stabilize and every X ∈ X generates a free T -
algebra. Thus U : T -Alg // X has a left adjoint and T generates a free triple.

Proof. The last claim follows from [Barr (1970), Theorem 5.4].

Putting this all together we get

4.14. Theorem. If for each object X ∈ X , the basic ordinal sequence generated by JX
stabilizes, then T generates a free triple. Moreover, if the basic ordinal sequence generated
by H−1 converges, then the T -algebra horn to which it converges is the reflection of H−1
in the subcategory of T -algebra horns.

In the case when X is M -well-powered, the converse is also true.

4.15. Theorem. Suppose that X is M -well-powered and T is an endofunctor for which
a free triple exists. Then the basic ordinal sequences of T -horns generated by horns JX
converge for all X ∈ X . Moreover, if a horn H has a reflection in the subcategory of T -
algebra horns, then the basic ordinal sequence generated by H converges to that reflection.

Proof. Suppose T generates the free triple F = (F, η, µ). For any object X, we form
the basic ordinal sequence of horns {Hn} as described above. The map η : X // FX
generates a horn morphism H // K(FX, µX) which then generates unique maps θn :
Hn

// K(FX, µX) for each n. Let {Hn
// K(Zi, zi)} be a cone of THorn-morphisms

for which the associated cone {Xn
// Zi} is an M -cone. Since (FX, µX) is free, each of

the maps Hn
// K(Zi, zi) factors through K(FX, µX). But then the map Xn

// FX
must be in M , for any first factor in E would also be a first factor in every X // Zi
which implies that such a factor would be an isomorphism. But since FX has only a set
of M -subobjects, the class of all these Xn

// FX can only be a set, which implies that
the sequence of Xn stabilizes.
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4.16. Remark. Recall that if H is a horn, then a horn morphism θ : H //K(ZH , zH)
reflects H into the T -algebra horns if every horn map H // K(Z, z) factors uniquely
through θ.

4.17. Theorem. If every basic ordinal sequence of horns stabilizes, then T-Alg is cocom-
plete.

Note that this hypothesis differs from that of 4.14 in that it requires every basic
ordinal sequence of horns to converge. See [Adámek (1977), Section III].

Proof. Since K : T -Alg // THorn is full and faithful and THorn is cocomplete, the
conclusion follows as soon as K has a left adjoint.

4.18. Example. Let X be the ordered category whose objects are the ordinals, together
with one more object ∞ such that n < ∞ for all ordinals n. We let M consist of all
the morphisms, while E consists of the isomorphisms (which are all identities). Define
a functor T : X // X by Tn = n + 1 and T∞ = ∞. The only T -algebra is ∞ since
there can be no maps n + 1 // n. Clearly, the free triple generated by T exists and is
the constant functor at ∞, while the ordinal chain never stabilizes. Note that X is not
M -well-powered.

4.19. Colimits in tripleable categories. Although not precisely an application of
the above, we can apply the same type of construction to colimits in a category of algebras
for a triple TT = (T, η, µ). The main change is to replace the category of T -algebras for the

triple by the category of TT-algebras which we will denote XTT. We use the same definition
of horn, but say that a horn is TT-separated if it has an M -cone whose base consists of

TT-algebras. We denote by V : XTT // X the underlying functor.

Let D : J // XTT be a diagram in XTT. Let X = colimV D. Let {X // V (Zi, zi)}
be the cone of all maps from X to the object underlying a TT-algebra such that, for all

j ∈ J , the composite V Dj
// X // Zi underlies a map in XTT. H = JX and let H0

be its TT-separated reflection. Continue to build an ordinal sequence {Hn}, using at all
stages the TT-separated reflection. If this stabilizes at n, then (R, r) = (Xn, u

−1
n+1,nwn+1) is

a T -algebra as above. We wish to show that it is a TT-algebra in which case it is a colimit

in XTT.

The first condition that has to be satisfied is that r.ηR = id. Let R
id //
r.ηR

// R e // S

be a coequalizer. For any fi : R // U(Zi, zi) where (Zi, zi) is a TT-algebra, we have a
commutative diagram

R TR R S

Zi TZi Zi

ηR // r // e //

fi

��

Tfi

��

fi

��ηZi // zi //
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The left hand square commutes because of the naturality of η and the right hand one does
because fi is a morphism of T -algebras. It then follows that fi.r.ηR = fi.id so that there
is a map gi : S // Z such that gie = fi. Then for each i in an M -cone of TT-algebras we
have a commutative diagram

R Zifi
//

R

R

id

��

R Se // // S

Zi

gi

��

and the diagonal fill-in forces e to be an isomorphism, so that r.ηR = id. The argument

for the identity r.T r = r.µR is similar. Let T 2R
r.T r //
r.µR

//R //S be a coequalizer and argue

as above.

5. Endofunctors on Set
5.1. Ordinal Rank. Suppose {Hn = (Xn, Yn, vn, wn)} is the n-th horn of a basic
ordinal sequence. An element of Xn or Yn may have an “ancestry”, in some cases going
back to elements in X0 and Y0. Other elements may be more recent, only going back
as far as elements in Xm or Ym where m is close to n. And some elements of Xn and
Yn may be new—not being the image of any elements from Hm for any m with m < n.
The ordinal rank of an element in Xn or Yn is a way of measuring the “ancestry” of an
element. We can sometimes show that an ordinal sequence H0, H1, . . . , Hn, . . . converges
or show that it fails to converge by keeping track of “ordinal rank”.

5.2. Notation.

1. In what follows, T is an endofunctor on the category of sets.

2. We recall that each ordinal n is the set of all strictly smaller ordinals. It follows
that m ≤ n iff m ⊆ n.

3. If m ≤ n, we let inm : m // n be the inclusion of the subset m ⊆ n.

4. We let 0 denote the empty set.

5.3. Definition. Let an ordinal n and an element b ∈ Tn be given. Then the ordinal
rank, or simply the rank, of b, denoted by rank b, is the smallest ordinal m ≤ n for which
b is in the image of Tm under the map Tinm.

5.4. Lemma. If 0 < m ≤ n then the map Tinm is an injection.

Proof. The function inm has a left inverse in Sets, so Tinm also has a left inverse.
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5.5. Lemma. The functions Tinm : Tm // Tn are always rank-preserving.

Proof. Suppose that b ∈ Tm has rank r. Then b is in the image of Tr under Timr :
Tr // Tm. Let c = Tinmb. Then c is clearly in the image of Tr under the map Tinr so
rank c ≤ rank b. So if the rank b = 0, then clearly rank c = 0.

Now suppose that rank b = r > 0 and assume that rank c = k < r. Then there exists
d ∈ Tk such that Tinkd = c. Let b′ = Timk(d). Then Tinm(b′) = c = T ′inm(b). By Lemma
5.4, this implies that b′ = b which implies that rank b ≤ k which is a contradiction.

Next, we will assume that {Hn = (Xn, Yn, v, w)} is the basic ordinal sequence starting
with H0 = J0 = (0, 0, v, w). We will, in effect, inductively define the rank of each element
of Yn and each element of Xn. To get a conceptual sense of how the induction will proceed,
suppose we had a notion of rank for elements of Xn and Yn and suppose that pnx denotes
the rank of x for every x ∈ Xn and that qny denotes the rank of y for every y ∈ Yn.
Suppose pm : Xm

// m and qm : Ym // m have already been defined for all ordinals
m < n.

Then, if n is a non-limit ordinal, Yn = TXn−1. It follows that Tpn−1 : Yn =
TXn−1 // T (n − 1). Let rn−1 : T (n − 1) // n − 1 be the ranking function defined
above for members of T (n − 1). Then qn = rn−1.Tpn−1 : Yn // n − 1 is the ranking
function for Yn. The ranking function pn : Xn

// n can now be defined as follows: If
x ∈ Xn and x = wny then pnx = qny. Of course it remains to show that this definition
does not depend on which y ∈ Yn was chosen in case more than one element of Yn maps
to x. And if there is no y ∈ Yn with wy = x, then x lacks any “ancestry” going back to
ordinals less than n, so, in this case, x is a recent addition to Xn and pnx = n.

We would also have to consider the case when n is a limit ordinal. It turns out that
the maps (pn, qn) give us a horn morphism from the Hn to a special type of horn we will
call an “ordinal horn”, see below. However, it is easier to directly define the horn
morphisms from Hn to the ordinal horn.

5.6. Definition. An element b ∈ Tn is said to be of maximal rank if rank b = n.

5.7. Definition. We say that T is maximal if, for every ordinal n, the set Tn has
elements of maximal rank.

5.8. Notation. For every ordinal n, we let Tmaxn be the set of all maximal elements of
Tn, and we let T0n be the set of all non-maximal elements of Tn. So Tn is the disjoint
union Tn = Tmaxn ∪ T0n.

The Ordinal horns. For each ordinal n, we let Ohn, the ordinal horn of degree
n, be (n, T0n, i, r) where i : T0n // Tn is the inclusion and r : T0n // n be defined by
rb = rank b.

5.9. Lemma. For every ordinal n, the horn Ohn is separated.
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Proof. If n > 0, we can easily embed Ohn into a T -algebra horn by extending the map
r : T0n // n to any function Tn // n.

The case n = 0 then n is the empty set and T0n is empty too. But we can start by
embedding Oh0 into Oh1 then proceeding as above.

5.10. Lemma. If T is maximal, then for every ordinal m ≤ n, there is an element
b ∈ Tn with rank b = m.

Proof. By definition, there exists a ∈ Tm with rank a = m. Since m ⊆ n we see that
inma is an element of Tn of rank m.

The Ordinal sequence of Ordinal Horns. It is not hard to find a horn map
λn+1,n : Ohn // Ohn+1. We note that λn+1,n factors through the pre-successor of Ohn,
whose construction is indicated by the following diagram, where the square is a pushout.

n Pu
//

T0n

n

r

��

T0n Tn
i // Tn

P

s

��
P

Tn

P
��

Tn TP
Tu // TP

By Lemma 5.10 we see that Tn has elements of rank m for all m ≤ n. So T0n, which
excludes all elements of Tn of rank n, has elements of rank m for all m < n. But recall
that n is precisely the set of all such ordinals m, so r : T0n // // n is onto.

For m < n, note that r−1m, the set of all elements of rank m, is a subset of both T0n
and Tn. Since the entire subset gets mapped to the element m ∈ n, it is readily shown
that s : Tn // P must map the entire subset r−1m to a single element of P . We will let
m denote that element. It is readily shown that P is the union of n, the set of all m for
which m < n with the set Tmaxn. Recall that the successor horn to Ohn is L(P, Tn, Tu, s).
But notice that there is a map r′ : P // n + 1 for which r′m = m and r′b = n for all
maximal elements b ∈ Tn. It is easily verified that this gives us an onto horn map from
(P, Tn, Tu, s) to Ohn+1. We then define λn+1,n as the canonical horn map from Ohn to
its pre-successor followed by the onto map mentioned above.

Similarly, for n is a limit ordinal, there is an obvious onto map from colimm<n Ohm //Ohn.
It is readily shown that these maps can be used to define the maps λm,k : Ohk // Ohm
for k ≤ m, such that we have a functor from the ordered category of all ordinals to the
ordinal horns.

5.11. Proposition. If T is a maximal functor, and if H0, H1, . . . , Hn, . . . is the basic or-
dinal sequence for the empty set, then, for all n > 0, there is a surjection from Hn

//Ohn.

Proof. We use transfinite induction to define a natural transformation φ from the basic
ordinal sequence {Hn} to the ordinal sequence {Ohn}.

For n = 0 observe that H0 = (0, 0, v, w) = Oh0 and let φ0 be the identity map.
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Assume φk : Hk
// Ohk has been defined for 0 ≤ k < n. We then will define

φn : Hn
//Ohn. First assume that n is a non-limit ordinal,. Then φn−1 : Hn−1 //Ohn−1

has been defined. it is readily shown that φn−1 induces a horn map from the pre-successor
of Hn−1 to the pre-successor of Ohn−1. In turn, the pre-successor of Ohn−1 maps onto
Ohn, giving us a map ρ from the pre-successor of Hn−1 to Ohn. Since Ohn is separated,
the map ρ extends to a map from Hn, the separated reflection of the pre-successor of
Hn−1 to Ohn. Let φn : Hn

// Ohn be this extension of ρ.

Finally, if n is a limit ordinal, then Hn is the colimit of {Hk | k < n} and the colimit
property enables us to define φn using the maps {λn,kφk : Hk

// Ohn | k < n}. Letting
φn = (pn, qn), it is straightforward, in view of the above discussion, that pn : Xn

// n is
onto for all n.

5.12. Corollary. If T is maximal, the basic ordinal sequence for the empty set does
not stabilize.

Proof. In view of the above, the horns in the basic ordinal sequence for the empty set
must have arbitrarily large cardinality since for every n we see that Hn must map onto
Ohn. This implies that it cannot stabilize.

5.13. Remark. Some functors T may have the property Tn is maximal once n is
sufficiently large. A similar argument then shows that the ordinal sequence for JS cannot
converge if S is sufficiently large. See example 2 below.

5.14. Examples.

1. Let T be the covariant power set functor. If f : R // S, then Tf is defined as the
direct image, so that Tf(A) = {f(a) | a ∈ A}. Then T is easily seen to be maximal
so the basic ordinal sequence for J(0) does not converge.

2. On the other hand, if we take T to be the finite power set functor, with direct
image, then it is clear that T commutes with colimits over ω so that the existence
of a free triple follows from 4.13. Any restriction of the sizes of the subsets allowed
will have the same effect.

3. Let T be the ultrafilter functor for which T (R) is the set of all ultrafilters on R. If
f : R //S and if U is an ultrafilter on R, define Tf(U) = V where V ⊆ S is in V
iff f−1(V ) ∈ U. Then T is not maximal as T (0) = 0. The basic ordinal sequence for
J(0) converges immediately. But if R is an infinite set, the basic ordinal sequence
for J(R) does not converge as the argument given above applies. Even if R has
only one element, it can be shown that the sequence for J(R) fails to converge.
(Suppose {H0, H2, . . . , Hn = (Xn, Yn, vn, wn), . . .} is the basic ordinal sequence for
a one-point set. Then, for finite n the set Xn has n+ 1 elements and has infinitely
many elements whenever n is infinite and the above argument applies.)
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