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CLOSED CATEGORIES AND TOPOLOGICAL VECTOR SPACES

by Michael BARR 

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVII-,3 (1976)

INTRODUCTION I

In the paper [1], henceforth referred to as DVS, we considered

two duality theories on the category 2 of topological vector spaces over

a discrete field K . They were each described by a certain topology on the

set of linear functionals. The first, the weak dual, led to a category of re-

flexive spaces ( i. e. isomorphic to their second dual) which gave a closed

monoidal category when the hom sets are topologized by pointwise con-

vergence.

The second, strong duality, was based on uniform convergence on

linearly compact (LC) subspaces. This led to a nicer duality theory (now
the discrete spaces are reflexive) but we did not describe there any closed

monoidal category based on that strong hom . In this paper we fill that gap.

It is clear that one cannot expect an internal hom-functor which be-

haves well on all spaces or even all reflexive ones. It is a consequence

of the closed monoidal structure that the tensor product of two LC spaces
must be LC ( see Section 1). Such a product is totally bounded (in a sui-

table generalized sense which is, together with completeness, equivalent
to linear compactness). This fact suggests looking at a subcategory of spa-
ces which satisfy same completeness condition. If the category is to have

a self-duality theory, a dual condition is imposed as well. When this is done

the result is indeed a closed monoidal category in which every object is

reflexive. The set of morphisms between two spaces is topologized by a

topology finer (possibly) than LC convergence to provide the internal hom .

* I would like to thank the Canada Council and the National Research Council of

Canada for supporting this resarch, and the I.F.M., E.T.H., Zurich, for providing
a congenial environment.
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The dual, moreover, has the strong topology.

One word about notation. For the most part we adhere to that of DVS.

However there is one significant change. Owing to a lack of enough kinds

of brackets and hieroglyphs, we take advantage of the fact that this paper
concerns exclusively itself with the strong hom to use (-, -) and (- )* to

refer to the strong hom and strong dual, respectively. Similarly, a space

V is called reflexive if it is isomorphic with the strong second dual, here

denoted V**.

1. Preliminaries.

The subject of this paper is the category 2 as described in DVS,

equipped with the strong internal hom functor defined there. Specifically,
if U and V are spaces, we let ( U, V ) denote the set of continuous linear

maps U - v topologized by uniform convergence on LC Sl spaces. A basic

open subspace is

where Uo is an LC subspace in U and V0 is an open subspace of V.

We l et V*=(V,K).

P R O P O S IT ION 1.1. Let U be a fixed space. The functor ( U,- ) commutes
with projective limits and has an adjoint - 0 U.

PROOF. It certainly does at the underlying set level so only the topology
is in question. Let

be the projection. A basic open set in (U , V ) is {f) l f (U0) C V0} where

Uo is an LC subspace of U and Vo an open subspace of V . We can sup-

pose Vo = TT Ww where Ww is open in Vw and is, Vw for all but a finite

set 00 of i ndices. Then

There is no restriction on the other coordinates of f . Then I f l f (U0) C V0}
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corresponds to the set

The argument for equalizers is easy and is omitted. In fact, when

V is a subspace of W , ( U, V) has the subspace topology in ( U, W).
Now the existence of the adjoint follows from the special adjoint

theorem ( cf. DVS, 1.2 -1.4 ).

This hom is not symmetric and is not closed monoidal. A map from

U h to W can be easily seen to be a bilinear map U X V - W which is, for

each u f U , continuous on V , and for each LC subspace C v , an equi-
continuous family on U . From this it is easy to see the assymmetry. To

see that we don’t even get a closed monoidal category, we observe that that

would imply that the equivalences between maps

arise from a natural isomorphism (UXV, W) = (U, (V, W)) (see [2],11.3).

Suppose X and Y are infinite sets, U = K X and V = Ky . Then assuming
that the above isomorphism held, we would have ( U X V ) *= ( U , V*), which

can be directly calculated to be KXXY Let W be the subspace of KXxY I
proper when X and Y are infinite, whose elements are those of the alge-
braic tensor product K X XKY . Then on purely algebraic grounds there is
a map KX-&#x3E; (KY, W) which is continuous when W is given the subspace

topology. This clearly has no continuous extension KXxY -&#x3E; W.

There is, however, an alternative. To explain it we require a defini-

tion. A space V is called (linearly) totally bounded if for every open sub-

space U , there is a finite number of vectors vl , ... , vn which, together
with U , span V . Equivalently, every discrete quotient is finite dimensio-

nal. The obvious analogy of this definition with the usual one is streng-

thened by the following proposition whose proof is quite easy and is omitted.

P RO P O SITION 1.2. The space V is LC iff it is complete and totally boun-

ded.
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PROPOSITION 1.3. Let U be totally bounded and V be LC. Then UXV

is totally bounded.

P ROO F. Let W be discrete and f : U X V ,-&#x3E; W. Then there corresponds a

g: U , ( V, W) and the latter space is discrete. Hence the image is genera-
ted by the images of a finite number of elements, say g(u1 ), ... , g(un) .
Each of these in turn defines a map V - W whose image is a finite dimen-

sional subspace of W, and thus the whole image f (U X V) is a finite di-

mensional subspace of W

2. S- and C*-spaces.

We say that a space U is a (-space if every closed totally bounded

subspace is LC (or, equivalently, complete). The full subcategory of I -
spaces is denoted CZ .

P R O P O S I T I O N 2.1. The space U i s a (-space iff every map to U from a

dense subspace of a LC space to U can be extended to the whole space.

PROOF. Let V0 -&#x3E; U be given where Vo is a dense subspace of the LC

space V. The image Uo C U is totally bounded and hence has an LC clo-

sure which we may as well suppose is U . Now U is LC, hence is a power

of K , which means it is a complete uniform space and thus the map ex-

tends, since a continuous linear function is uniformly continuous.

The converse is trivial and so the proposition follows.

We say that U is a (*-space provided U* is a (-space. Since both
discrete and LC spaces are C-spaces, they are each (*-spaces.

PROPOSITION 2.2. Let U be a (-space. Then U* is a (*-space; i. e.,

U ** is a ispace.
P RO O F . Let V0 -&#x3E; V be a dense inclusion with V an LC space. If ho -&#x3E; U **
is given, we have, using the fact that U - is a (-space, the commutative dia-
gram
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Double dualization gives us the required V = V** - U** .

If U is a space, it has a uniform completion U" , and we let CU
denote the intersection of all the C-subspaces of U" which contain U . Evi-

dently, U is a dense subspace of CU.

For any subspace V C U", let (I V be the union of the closures

of the totally bounded subspaces of V. For an ordinal 11, let

and, for a limit ordinal ft , let

Let C V be the union of all the v
PROPOSITION 2.3. SU = CooU.

PROO F. It is clear that SooU is closed under the operation of C, and hence

is a C-space containing U . Thus (V C Soo U , while the reverse inclusion
is obvious.

PROPOSITION 2.4. The construction U l-&#x3E; SU is a functor which, together
with the inclusion U C U, determines a left adjoint to the inclusion of
.

P ROO F. Let f : U - V be a map. Since it is uniformly continuous, there is

induced a map f -: U- -&#x3E; V-. It is clearly sufficient to show that f- ((U )CSv.
But since the continuous image of a totally bounded space is totally bound-

ed, we see that whenever W is a subspace of U"’ with f (W) C S V , and

W0 C W is totally bounded, f ( cl ( W0 )) C (Vas well. From this it follows

that f(S1W)CSV, and so we see by induction f((W)C’V. Applying
this to U , we see that f (SU) C C V.

PROPOSITION 2.5. Let U be reflexive. Then so is CU.

so that

can be extended to The diagram
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commutes, the first square by construction, the second by naturality. Since
U is dense in (U and the top map is the identity, so is the bottom one.

Thus’ U is reflexive.

PROPOSITION 2.6. Let U be a reflexive ’*-space. Then so is CU.

P RO O F . Let Vo - V be a dense inclusion with V an LC space. Given a map

this extends, since U * is a C-space, to a map V-&#x3E; U * . This gives us

and since V * is discrete, hence complete, this extends to £ U - V* whose
dual is a map

The outer square and lower triangle of

commute, and since the lower map is 1-1 and onto, so does the upper triangle.

If X is a topological space and X1 and X2 are subsets of X , say
that X1 is closed in X2 if Xi n X2 is a closed subset of X 2 . Equivalently
there is a closed subset

X’1 C X such that

We use without proof the obvious assertion that XI closed in X2 and X 3
closed in X4 implies that X1 n X2 is closed in X3 n X4. 

PROPOSITION 2.7. Let {U w } be a family of discrete spaces and U be a

subspace of TT U. Then U is a S-space iff for every choice of a collection



229

of finite dimensional subspaces V w C Uw , U is closed in TT Vw .
PROOF. Suppose the latter condition is satisfied and U 0 is a closed total-

ly bounded subspace of U . Then the image of

is a totally bounded, hence finite dimensional subspace Vw C Uw . Evident-
ly Uo C TTVw, and since Uo is closed in U , it is closed in U n TT Vw,
which is closed in TT Vc. Thus Uo is LC. Conversely, if U is a C-space,
then for any collection ( V (L) } of finite dimensional subspaces, U n TT Vw is

a closed totally bounded subspace of U and hence is LC, hence closed

in II V (L).

3. The internal hom .

If U and V are spaces, we recall that ( U, V) denotes the set of

continuous linear mappings U - V topologized by taking as a base of open

subspaces {f I {(U0) C V0 I where Uo is an LC subspace of U and Vo
an open subspace of V . An equivalent description is that ( U , V) is topo-

logized as a subspace of TT(UY, V/ Vw) where U Y ranges over the LC sub-
spaces of U and Vw over the open subspaces of V . We may consider that

V / V(L) range over the discrete quotients of V. Each factor is given the dis-

crete topology. From that description and the duality between discrete and

LC spaces, the following becomes a formal exercise.

PROPOSITION 3.1. L et U and V be reflexive spaces. Then the equival-
ence between maps U , V and V* , U* underlies an isomorphism

LEMMA 3.2. Suppose U is a reflexive S*-space and V a reflexive’ -space.
Then ( U, h) is a £.space.

P RO O F . Let {UY} and {Vw} range over the LC and open subspaces, resp-
ectively, of U and V. A finite dimensional subspace of (UY, V/ Vw) is
spanned by a finite number of maps, each of which has a finite dimensional

range. Thus altogether it is contained in a subspace of the form
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where U,,, is a cofinite dimensional subspace of U , and VYw /Vw is a fi-

nite dimensional subspace of h/ Vw . To apply 2.7 it is sufficient to consider
families of finite dimensional subspaces of the factors. So let us suppose

that for all pairs w ifI of indices a cofinite dimensional quotient UY /UYw
and a finite dimensional subspace VYw/w, have been chosen. Then for

each glr , V is closed in fl VYw/ Vw and so (U ) V) is closed in
cv Y

It follows that is closed in
q

1 . Using 3.1, we

have similarly that, for each ;&#x26; , (U, V/ V.) is closed in J

and so is closed in

is closed in

A collection of maps U4 -+ V is the same as a map : , and similarly
a collection of maps U - V/V (L) is equivalent to one U - II V / V úJ. Now a

map in both TT (UY, V) and TT (U , V/ V(L)) corresponds to a commutative square

The top map is onto and the lower a subspace inclusion and hence there

is a fill-in on the diagonal. Thus the intersection is exactly ( U, V). Clear-

ly any map Uy/UY w -&#x3E; V 41 w /Vw belongs to both

and hence to their intersection. Thus (U, V) is closed in
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and is a C-space.

4. The category R.

Ye let 31 denote the full subcategory of b whose objects are the

reflexive S-S*-spaces.

PROPOSITION 4. 1. The functor UF l-&#x3E; 6 U = (((U*))* is right adjoint to the

inclusion R -&#x3E; SB. For any U, 8 U -&#x3E; U is 1-1 and onto.

P ROO F. The map U* -&#x3E; S U* is a dense inclusion so that

are each 1-1 and onto and so their composite is. If h is in N and V-&#x3E;U is

a map, we get

Now U* is a reflexive ( DVS 4.4 ) (-(*-space (2.2), and so I s SU* (2.6),

and hence its dual is reflexive as well. If h is in fl and V -&#x3E; U , we get

and then

The other direction comes from

We now define, for U, h in R, [U, V] = 6 (U, V) (cf. 3.2). It

consists of the continuous maps U - V with a topology (possibly) finer

than that of uniform convergence on LC subspaces. Note, of course, that

U* [U, K] is unchanged.

If U, V are in 91 and W0 is a totally bounded subset of ( ll , V) ,
its closure W is LC. Then 8 W = W is an LC subspace of [U, V] and con-

tains the same W0 . Thus Wo is totally bounded in [U, V] . The converse

being clear, we see that ( U , V) and [U, h ] have the same totally bounded

subspaces.

LEMMA 4.2. ,Suppose U, V in 91. Any totally bounded subspace of [U, V]
is equicontinuous.
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PROO F. Let W C (U, V ) be totally bounded. Corresponding to W -&#x3E; (U, V )
we have Jl’ - (V*, U*) (3.1), and thus WX V* -&#x3E; U * . If Vo is an open sub-

space of V , its annihilator ann Vo in V * is LC . This follows from the re-

flexivity of V and the definition of the topology V** . Then WX(ann V0 ) is

totally bounded (1.2 ) and hence so is its image in U * . The closure of that

image is an LC subspace of U * which we can call ann Uo , with Uo open

in U ( same reason as above). From this it is clear that the image of W X U0
is in Vo , which means that W is equicontinuous.

COROLLARY 4.3. L et U, V, W be in R. There is a 1-1 correspondence
between maps U , [ V, W] and V - [ U, W] . 

PROOF. A map U-&#x3E;[V,W] gives U -&#x3E; (V, W) and UXV -&#x3E; W. To any LC

subspace of U corresponds an equicontinuous family V , W . Certainly any
vc V gives a continuous map U , W and thus, by the discussion in Section

1, we get V -+ (U, W) and then V -&#x3E; [U,W] .

PROPOSITION 4.4. Let U and V be in R. Then [U, V]= [V*, U*] by
the natural map.

PROOF. Apply 6 to both side s in 3.1.

Now we define, for U , h in R,

P R O P O S IT IO N 4.5. Let U, V, W be in 31. Then there is a 1-1 correspon-

dence between maps U X V -+ W and maps U -&#x3E; I V , W].

PROOF. Each of the transformations below is a 1-1 correspondence

COROLLARY 4.6. For any i

PROPOSITION 4.7. Let U, V be LC spaces. Then U0V = S(U XV) and

is an L C space.

PROOF, We know it is totally bounded (1.2) so that S( U X V) is LC. When

W is in 31 , each of the transformations below is a 1-1 correspondence:
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PROPOSITION 4.8. Let U, V and W’ belong to m. The natural composi-

tion of maps (V, W) x (U, V) -&#x3E; (U, W) arises from a map

PROOF. If G is an LC subspace of (U,. V ), U0 an LC subspace of U ,
and Wo an open subspace of W, the closure of the image of the evalua-

tion map -

is an LC subspace in V. Then the basic open set in (V, W),

is transformed by G into

Thus G determines an equicontinuous family of maps ( V, W) -&#x3E; (U, W) and
so we have the indicated map.

PROPOSITION 4.9. Let U, V and W belong to 91. Then natural composi-
tion arises from a map

P RO O F . Let FC[V, W] and GC[U, V] be LC subspaces. From

and the fact that (U, W) is a (-space, we have

and then, by adjointness,

This gives us G -&#x3E; [F, [U, W]]] . Now G is an LC space and hence de-

fines an equicontinuous family. Each fc F gives, by composition, a con-

tinuous function to -: ( U, V ) -&#x3E; ( U, W) which extends by functoriality to

a continuous function [ U, V] -&#x3E; [U, W]. Hence we have a bilinear map:

F x [ U, V] -&#x3E; [U, W] which is, for all ff F, continuous on [U, V], and for
all LC subspaces G C [U, V] , equicontinuous on F . There results a map
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F X[U, V] - [U, W] which gives F -&#x3E; ([ U, V), [ U, W] ) and, by adjoint-

ness, F -&#x3E; [[ U, V], [ U, W]] . Then F determines an equicontinuous family,
so that we have a bilinear map [ V, W] X [U , V]-&#x3E; , [ U, W] with the property

that every LC subspace of [ V, W] determines an equicontinuous family on

[U, V] . Repeating the argument used above, we see that every element

of [ U , V] determines a continuous map on [V, W] . Hence we have

THEOREM 4-io. The category N, equipped with - @ - and [ - , - ] , isaclosed
monoidal category in which every object is reflexive.
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