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CLOSED CATEGORI ES AND BANACH SPACES

by Michael BARR

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVII-4 (1976)

INTRODUCTION

In previous papers we have described a duality for vector spaces
over a discrete field [1] and for a category which is a natural extension

of the category of Banach spaces [2] . We have also described a closed cat-

egory containing  most &#x3E;&#x3E; of the spaces of 1) ( see [3]). In this paper we
extend the results of [3] to the context of Banach spaces, that is, we find

a largish full subcategory of the category B of balls considered in [2] that,

when equipped with an internal hom which is essentially compact conver-

gence, becomes a closed monoidal category in which every object is re-

flexive.

As we did in [3], we depart from the notation of [1] J and [2] and

let (A, B) and A * denote the internal hom and the dual space topologized
by uniform convergence on compact subballs. As in (2) , we let I x l ... I

denote the set of x such that....

1. Preliminaries.

Recall from [2] that a ball is the unit ball of a Banach space equip-

ped with a second, coarser locally convex topology in which the original
norm is lower semi-continuous. We showed there that the topology and the

norm were determined by the continuous seminorms which were bounded by
the norm. The topology is determined in the usual way and the norm as the

sup of the seminorms. A ball was called discrete when the second topology

* I would like to thank the Canada Council and the National Research Council of
Canada for supporting this research, and the Forschungsinstitut fur Mathematik, E.
T. H., Zurich, for providing a congenial environment.
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was that of the norm and it was shown that a seminorm p on an arbitrary
B leads to a discrete ball Bp and a projection 77 p: B - B p such that p is

77p followed by the norm function on B p . These facts will be used without

further reference.

Most of this paper is concerned with adapting the results of [ 3] to

the present circumstance. A reference of the form «cf. [3], x.y» means

that proof given there works here without essential change.

PROPOSITION 1.1. Let B be a fixed ball. The functor (B , - ) commutes
with pro jective limits and has an adjoint - OB.

PROOF. Cf. [3], 1.1.

For similar reasons as in [ 31 , the internal hom constructed above

does not directly give a closed monoidal category. The same dodge used

there works here too. A subset A of the ball B is called totally bounded
if for every 0 -n eighborhood M of B there are elements

This is easily seen to be equivalent to the uniform notion when A is given
its canonical uniformity, in which a cover of the form

is a uniform cover. In particular A is compact iff it is complete and totally
bounded.

PROPOSITION 1.2. Let B be totally bounded and C be compact. Then,
BOC is totally bounded.

PROOF. Given an open set M C B 0 C , there is a discrete ball D , a map

f : B 0 C , 1) and an c &#x3E; 0 such that MD f-1 (c D ) . There corresponds a map
g: B - ( C, D) and the latter is a discrete ball. Hence g-1 (E 2)(C,D)) is

2

open and so there are bl , ... , bn such that :

For each i = 1, ... , n , g ( bi): C- D and by reasoning similar to above,

there are
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The result is that

or finally that

Here we use b 0 c to denote the image of b at c under the map

given by the adjunction.

2. C- and (*-ball I s.

Following [3], we say that B is a (-ball if every closed, totally
bounded subball is compact ( or, equivalently, complete). The full subcat-

egory of B of (-balls is denoted CB .

PROPOSITION 2.1. The ball B is a E-ball iff every map to 8 frotti a dense

subball of a compact ball can be extended to the whol e ball.

PROOF. The proof of [3], 2.1, extends to this case. It is even easier be-

cause we already know that a compact ball is complete.

yVe say that B is a £*-ball if B * is a E-ball . As in [ 3’1 it is clear

that both discrete and compact balls are (-(,*-balls.

PROPOSITION 2.2. Let B be a C-ball. Then B * is a (,*-ball, i. c. B** is

a ?,-ball.

PROOF. Cf. [3], 2.2.

As in [3L we let B" be the completion of B. The easiest descrip-
tion of it is the closure of B in 11 BPI the product being taken over all the
seminorms p of B . Since each Bp is the unit ball of a Banach space, it

is complete and so is the product. Now let’ R be the intersection of all

the C-subballs of B . For a subball A C B- let (¡A be the union of the clo-

sures of the totally bounded subballs of B . Evidently El A. If. A1 and
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A 2 are two totally bounded subballs of A , so is A1 U A2 and then so is
their convex sum ( [4], 4.3, where totally bounded is called precompact).
Thus (1 A is a subball. Then E uA for a cardinal u can be defined induc-

tively as in [3] . Finally EooA is their union.

PROPOSITION 2.3. CB = EooB .
PROOF. Cf. [3L 2.3.

PROPOSITION 2.4. The construction B - CB is a functor which, together
with the inclusion B C-E B, determines a left adjoint to the inclusion of
EB- B.

PROOF. Cf. [3], 2.4.

PROPOSITION 2.5. Let B be reflexive. Then so is (B.

PROOF. Cf. [3], 2.5.

PROPOSITION 2.6. Let B be a reflexive (*...ball. Then so is (, B .

PROOF. Cf. [3], 2.6.

We recall from [3] that given two subsets X1 and X2 of a topolo-
gical space X , we say that X1 is closed in X2 if X1 n X2 is a closed sub-

set of X2 . 

PROPOSITION 2.7. L et {Bw} be a family of discrete balls and B a sub-

ball of M Bw. Then B is a (-space iff for every choice of compact subballs

Cw C Bw, B is closed in fl C,,.

PROOF. The argument goes essentially as in the proof of 2.7 of [3]. One

minor change has to be made. When Bo is a closed, totally bounded sub-

ball of B , let Cw be the closure of the image of Bo in Bw. Since Bw is

complete, that closure is compact.

We note, in connection with the above, that unlike the case of vec-

tor spaces over a discrete field, a compact subball of a discrete ball need

not be finite dimensional. For example, let C be the unit ball of loo with

the weak topology in which it is compact, and let B be the unit ball of l1 . 
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The map

embeds C in B . Since C is compact, it is isomorphic with its image.

3. The internal hom .

We recall that when A and B are balls, ( A, B) denotes the set of

continuous maps A - B which preserve the absolutely convex structure. It

is topologized as a subball of II (Aw, Bp) , where Aw runs over the com-

pact subballs of A and p over all the seminorms of B . Each (Aw, Bp has
the discrete ( i. e. norm) topology. We know from [2], 6.5, that the semi-

norms on A * are all described as suprema on the A w, so that the Aw, can
be thought of as indexed by the seminorms of A * . From these observations,

the following becomes a formal exercise.

PROPOSITION 3.1. Let A and B be reflexive balls. Then the equivalence
between maps A - B and B *- A * underlies an isomorphism

LEMMA 3.2. Let A be a reflexive ’*-ball and B be a reflexive ball. Then

any totally bounded subball of ( A , B) is equicontinuous.

PROOF. If

is totally bounded, we have F O B *- A * . Let M be open in B and choose

a seminorm p such that M DM-1p (EBP). The ball B * is a compact subball

of B * and F 0 B p * is totally bounded by 1.2. The closure of its image in
A * is compact and determines a seminorm g on A ** = A . Tracing through
the isomorphisms, we find that for any f E F ,

and hence

LEMMA 3.3. Suppose A is a reflexive (*..ball and B is a reflexive E-ball.
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Then ( A , B ) is a E-ball.

P ROO F. Let {Aw} range over the compact subballs of A and {p} over the

seminorms of B . A compact subball CwpC(Aw,Bp) is equicontinuous.

Corresponding to the inclusion we have a map CwpOAw - B P whose image
is contained in a compact subball B Cùp of Bp . Under the isomorphism

we also find a compact subball of A * which we will call A *w p C A *w which
contains the image. The supremum on A*wp determines a seminorm on A.
which we will also - somewhat irregularly - call p to conform with the pre-

vious name A*wp. The result is that

(We cannot go on to claim it is in (A, Bwp) by analogy with [3] because,
for example, Aw- Awp is not onto, but that does not matter.) Now suppose
Cwp are given for all o and p and Awpp and B úJp chosen as above. Then

n is closed in II Bwp and so (A , B) is closed in IIp(Aw, Bwp) . This
in turn implies that II w(Aw, Bw), is closed in IIw,p(Aw,Bwp). Using 3.1
and the fact that ,4 * is a C-space, we similarly conclude that Mp (A,Bp)
is closed in and hence that

closed in

o fortiori in IIC. . A map which belongs to both

determines a commutative square

r

and with the top map onto, we get a diagonal fill-in A - B . Thus no matter
how compact subballs CwpC(Aw,Bp) are chosen, (A , B) is closed in

HCwp By 2.7, (A.B) is a E-ball.
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4. The category R.

We let R denote the full subcategory of B whose objects are the

reflexive E-E* -balls.

PROPOSITION 4. 1. The functor B t-4 l) B = (C 13 *)* is right adjoiiit to th.e

inclusion. For any B, 8 B - B is 1-1 and onto.

P ROO F . Cf. [3], 4.1.

We now define, for A, B in R ,

( cf. 3.3). It consists of the same set of maps topologized by a possibly
finer topology. ’When B = 1 , we get

so the dual is unchanged.

PROPOSITION 4.2. Let A and B be in R. Any totally bounded subball of
[ A , B] is equicontinuous.

P ROO F. It is a special case of 3.2.

COROLLARY 4.3. Let A, B, C be in R. Then there is a 1-1 cnrrespnn-

dence between maps A - [B , C] and maps B - [ A , C1 .

PROOF. Cf. [3J, 4.5.

PROPOSITION 4.4. Let A and B be in R. Then [A,B] =[B*,A*] by
the natural map.

PROOF. -4pply 8 to both sides in 3.1.

Now define, for A , B in R,

PROPOSITION 4.5. L et A, B, C be in R. Then there ia a 1-1 correspon-

dence between maps A 0 B - C and maps 4 - [B, C 1 .

P ROO F. Cf.[3], 4.5
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COROLL ARY 4.6. For any A, Bin R, AO B = B O A .

PROPOSITION 4.7. Let A and B be compact balls. Then A O B = E(AO B)
and is compact ball.

P ROOF. Cf. [3],4.7.

PROPOSITION 4.8. Let A, B, C belong to R. The natural composition of
maps (B, C)X(A, B)- (A, C) arises from a map

PROOF. Cf.  [3], 4.7.

PROPOSITION 4.9. Let A, B and C belong to R. Then natural composi-
tion arises from a map [B , C] O[ A , B ] [ A , B].

PROOF. Cf. [3] , 4.8.

THEOREM 4. 10. The category R equipped with - a- and [-, -] is a closed

monoidal category in which every object is reflexive.

REFERENCES.

1. M. BARR, Duality of vector spaces, Cahiers Topo. et Gio. Dif. XVII- 1 ( 1976),
3 - 14.

2. M. BARR, Duality of Banach spaces, idem, 15 - 52.

3. M. BARR, Closed categories and topological vector spaces, idem XVII-3,223-234.

4. H. H. SCHAEFFER, Topological Vector spaces, Springer, New- York, 1970.

Department of Mathematics
Mc Gill University
P . O. Box 6070, Station A

MONTREAL, P. Q. H3C 3G 1
CANADA


