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RÉSUMÉ. Cet article étudie l’enveloppe réflective engendrée par une
sous-catégorie pleine d’une catégorie complète. Il s’agit de la plus
petite sous-catégorie qui est pleine et réflective. Comme application
nous obtenons l’enveloppe coréflective de la sous-catégorie pleine de
cubes pointés dans la catégorie des espaces topologiques pointés. Par la
suite nous déterminons l’enveloppe réflective de la catégorie des espaces
metriques dans la catégorie des espaces uniformes, ainsi que certaines
autres sous-catégories.
ABSTRACT. This paper explores the reflective hull (smallest full reflec-
tive subcategory) generated by a full subcategory of a complete category.
We apply this to obtain the coreflective hull of the full subcategory of
pointed cubes inside the category of pointed topological spaces. We also
find the reflective hull of the category of metric spaces inside the category
of uniform spaces as well as certain subcategories.
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1. Introduction

If A ⊆ C is a full subcategory, then the reflective hull of A in C is, if
it exists, the smallest reflective subcategory of C which contains A . This
paper concerns the existence and nature of the reflective hull and, dually, the
coreflective hull. We particularly want to describe the reflective hull because
this often reveals subtle ways a subcategory relates to the category in which
it is embedded. Therefore, the purpose of this paper is partly to study the
general question, but mainly to consider some specific instances of reflective
hulls and coreflective hulls that seem especially interesting.

Reflective subcategories and reflective hulls have been studied in many
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papers, including [2, 3, 12, 13, 14, 19, 21, 25]. A useful summary of work
on this subject up through 1987 can be found in [25]. The existence of a
reflective hull is closely related to the question of whether the intersection
of an arbitrary collection of full reflective subcategories is reflective. (We
assume that arbitrary collections of classes always have an intersection.) The
existence question for reflective subcategories of the category of topological
spaces was raised in [13]. A counter-example was found in [2].

In Section 2 we discuss in detail the notion of the limit closure of a
subcategory as well as a stronger version originally introduced by Isbell.
In addition we give what appears to be a new adjoint functor theorem. In
Section 3 we describe a construction of the reflective hull, largely due to
[21, 22], based on a factorization system.

In Section 4 we look at the coreflective subcategory of pointed spaces
generated by the cubes. In Section 5 we characterize those uniform spaces
that are limits of metric spaces and show that the full subcategory of such
spaces is the reflective hull.

In [4] we have studied in much greater detail the limit closures of certain
full subcategories of integral domains in the category of commutative rings.

Convention. A subcategory will always be assumed to be full as well as
replete, that is, closed under isomorphic copies of its objects.

1.1. DEFINITION. A subcategory K ⊆ C is reflective if for each object
C ∈ C , there is a reflection map ηC : C // K(C) with K(C) ∈ K and
such that whenever f : C //B with B ∈ K , then

K(C) B
f

//____

C

K(C)

ηC

��

C

B

f

��?????????????

there is a unique extension f with f.ηC = f . This property of ηC is called
the unique extension property, see 3.8 for a full definition.

Under the above circumstances, it is well known (and easy to prove) that
K can be made into a functor and η into a natural transformation such that
K is left adjoint to the inclusion of K // C .
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We will say that K ⊆ C is epireflective if it is reflective in such a way
that for every C ∈ C , the reflection map ηC : C //K(C) is epic in C .

2. Limit closure and Isbell-limit closure

2.1. Limit closures of subcategories of complete categories. We empha-
size that when we talk of a limit closed subcategory B ⊆ C , we mean not
only that B is complete, but also that the limits in B are the same as in those
of C , that is, that the inclusion B ⊆ C preserves limits. The limit closure of
B is the meet of all limit closed subcategories of C that contain B .

2.2. Isbell limits.
It has long been observed that if a category with small homsets is not a

poset, it cannot have limits of arbitrary sized diagrams. If A,B are objects
of the category C such that Hom(A,B) has more than one element and∞
is the cardinality of the universe, then Hom(A,B∞) = Hom(A,B)∞ is not
small. However, Isbell observed that there is no problem in supposing that
a category have, in addition to all small limits, meets of arbitrary families
of subobjects of some object, since if B′ ⊆ B is an arbitrary subobject,
Hom(A,B′) is a subset of Hom(A,B).

Following Isbell, we call a monic m extremal if m = fe with e epic
implies that e is an isomorphism. Isbell considered the case of a category
with all small limits and having meets of arbitrary families of extremal sub-
objects. We will call such categories Isbell-complete.

A subcategory B of an Isbell-complete category C is Isbell-limit closed
(or “Left closed” in Isbell’s terminology, [17]) if it is Isbell-complete and the
inclusion B ⊆ C preserves small limits and arbitrary meets of B-extremal
subobjects (that is extremal in the category B). The Isbell-limit closure of a
subcategory is the smallest Isbell-limit closed subcategory containing it.

We also consider categories that have arbitrary meets of some other class
M of subobjects of any object. Such categories will be called M -complete.

Before relating Isbell-limit closures to reflective hulls, we need to discuss
Factorization Systems.

2.3. Factorization systems. Factorization systems go back to the notion of
a bicategory, see [23, 15]. With some modification, we will be using Isbell’s
terminology.
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2.4. DEFINITION. Let m : D // D′ and e : C // C ′ be two arrows in a
category C . We will say that m is right orthogonal to e and that e is left
orthogonal to m if, for any maps f : C // D and f ′ : C ′ // D′ with
mf = f ′e there is a unique t : C ′ //D such that

C ′ D′
f ′

//

C

C ′

e

��

C D
f // D

D′

m

��
C ′

D

t

??�������������

commutes. We note that if either e is epic or m is monic, then we need
assume only the existence of t; uniqueness follows.

Let E be a class of morphisms of a category C . We denote by E⊥, the
class of morphisms that are right orthogonal to E . Dually if M is a class of
morphisms, we denote by ⊥M , the class of morphisms that are left orthogonal
to M .

2.5. DEFINITION. A factorization system in C is a pair (E ,M ) of classes
of maps in C such that

FS-1. M and E contain all isomorphisms and are closed under composi-
tion.

FS-2. Every morphism f factors as f = me with m ∈M and e ∈ E .

FS-3. If m ∈M and e ∈ E , then m is right orthogonal to e (and therefore
e is left orthogonal to m).

We will say that a factorization system (E ,M ) is a left factorization
system if every m ∈M is monic, a right factorization system if every e ∈
E is epic and a strict factorization system if it is both a left factorization
system and a right factorization system.

If (E ,M ) is a factorization system and m : C // C ′ is a morphism in
M , we will sometimes say that C is an M -subobject of C ′ even though m
need not be monic. Dually, when e : C // C ′ is a morphism in E , we will
sometimes say that C ′ is an E -quotient of C, even though e need not be epic.
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Finally, we say that the category is E -cowell-powered if, up to isomor-
phism, each object has only a set of E -quotients and dually for M -well-
powered.

2.6. (Epic, extremal monic) factorization in Isbell-complete categories.

2.7. DEFINITION. By an ordinal indexed family of subobjects (respec-
tively, regular subobjects, extremal subobjects) of an object C we mean
a family of subobjects {uα : Cα // C}, indexed so that α varies in some
small (or possibly large) ordinal such that

1. For α > β, Cα ⊆ Cβ with inclusion uβα;

2. uα,α+1 is monic (respectively, regular monic, extremal monic);

3. when α is a limit ordinal, Cα =
⋂
β<αCβ .

These definitions are found in [17]. We follow Isbell and assume we
have small sets, large sets, and extraordinary sets. We will sometimes use
the term “class” to describe a set that is no bigger than large. A model of this
situation uses a strongly inaccessible cardinal we will call ∞. Then small
sets have cardinality less than∞, large sets have cardinality equal to∞ and
extraordinary sets have cardinality greater than∞.

2.8. Lemma. Let C be an Isbell-complete category. Then any morphism can
be factored as an epic followed by the limit of an ordinal string of regular
monics.

PROOF. Let f : C ′ // C be a morphism. If f is epic, there is nothing to
prove. If not, there are two maps out of C whose composite with f is the
same and whose equalizer, therefore, factors f , so that with C0 = C and
f0 = f we have a diagram:

C1 C0r01
//

C ′

C1

f1

���������������
C ′

C0

f0

��?????????????
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with r01 regular epic. If f1 is epic, we can stop here. If not repeat to get the
diagram

C2 C1r12
// C1 C0r01

//

C ′

C2

f2

���������������
C ′

C1

f1

��

C ′

C0

f0

��?????????????

with r12 regular monic. Let r02 = r01r12. Continue in this way, if possible,
to get a diagram

C ′

Cω · · · Cn · · · C1 C0

fω

uullllllllllllllllllllllllllll

fn

������������

f1
JJJJJJJJ

$$JJJJJJJJ f0
RRRRRRRRRRRRR

))RRRRRRRRRRRRR

// rn,n+1 // rn−1,n // r1,2 // r0,1 //

in which Cω = limCn and rnω : Cω // Cn is the element of the limit cone.
For m < n, let rmn = rn−1,nrm,n−1. Then the commutativity in the limit
diagram implies that rmω = rnmrm.ω. So long as we do not get an epic
first factor, continue to define Cω+1, Cω+2 and all the relevant maps. This
might continue through all small ordinals and we can let C∞ = limCα. The
map f∞ : C ′ // C∞ might not be an isomorphism. So continue to define
C∞+1, etc. through all large ordinals. An important observation is that if for
β < α, rβ = rα as subobjects of C0, then rβ = rα = rβrβα from which the
monic rβ can be cancelled to conclude that rβα is an isomorphism. But one
easily sees that this implies that rβ,β+1 is an isomorphism, contradicting the
construction. Since the class of large ordinals is an extra-large class, while
C0 can have only a large class of subobjects, this construction must stop.

2.9. Corollary. Every extremal epic in an Isbell-complete category factors
as a limit of an ordinal string of regular monics.

2.10. Corollary. Every morphism in an Isbell-complete category factors as
an epic followed by an extremal monic.

2.11. Isbell-limit closures. If A is a subcategory of the Isbell-complete
category C , its Isbell-limit closure is the meet of all Isbell-limit closed sub-
categories of C that contain A .
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2.12. Proposition. A reflective subcategory of an Isbell-complete category
is Isbell-limit closed.

PROOF. Let C be Isbell-complete and let B ⊆ C be a reflective subcategory.
Then B is limit closed in C , which implies that B is complete.

We claim that every B-extremal monic is a C -extremal monic. Suppose
m : B1

// B2 be a B-extremal mono. To prove that m is a C -extremal
mono, assume that m = ge where e : B1

// C is an epic in C . It suffices to
prove that e is invertible. Let η : C //B be the reflection of C into B . Then
there exists a map g : B // B2 such that gη = g. It is easily proven that ηe
is an epic in B and, since m = g(ηe) we see that ηe is a right factor of m in
the subcategory B . This implies that ηe is invertible, and that (ηe)−1η is a
left inverse for e. But then e is an epic with a left inverse which implies that
e is invertible.

It follows that every family of B-extremal subobjects of an object of B
is a family of C -extremal subobjects and thus has a greatest lower bound.
That greatest lower bound is an intersection and is in B as B is reflective
and is closed under all limits, including large intersections. Therefore B is
Isbell-complete and, in view of the proof, the inclusion B ⊆ C preserves
limits and meets of extremal subobjects.

2.13. Theorem. Let A ⊆ C be a subcategory, where C is Isbell-complete.
If the Isbell-limit closure of A is reflective, then it is the reflective hull of A .

2.14. NOTATION. If M is a class of monics of C , then SubM Prod(A)
denotes the full subcategory of M -subobjects of products of objects of A .

2.15. An adjoint functor theorem.
Let C be a category with a strict factorization system (E ,M ). We will

say that C is M -complete if it is complete and every class of M -subobjects
of an object of C has a meet. Note that if M is the class of extremal monics
then M -complete is the same as Isbell-complete.

A subcategory A ⊆ C will be called M -dense if C = SubM Prod(A).
We thank the referee for simplifying the next development.

2.16. Lemma. Suppose C is M -complete and the M -dense subcategory
B ⊆ C has a small weakly initial set. Then C has an initial object.
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PROOF. The product of all the objects in a weak initial set is a weak initial
object. If I is a weak initial object of B , then we claim the meet of all the M -
subobjects of I in C is initial. In fact, if C ∈ C , there is an M -embedding
m : C �

� //
∏
Bi, with all Bi ∈ B . Now form the pullback

C
∏
Bi

//
m

//

IC

C
��

IC I// mC // I

∏
Bi

��

Then mC ∈ M since m ∈ M and so the M subobjects of I are a weak
initial family in C . The meet I0 of all the M subobjects of I is at least
weakly initial. But if there were two maps I0

// //C for some object C ∈ C
their equalizer would be a smaller M subobject of I , a contradiction.

2.17. Theorem. Suppose C is M -complete, A ⊆ C is M -dense, and the
functor U : C // B preserves limits as well as arbitrary meets of M -
subobjects. If for each object B ∈ B , the comma category (B,U |A) has a
small weakly initial set, then U has a left adjoint.

HOW THE GENERAL AND SPECIAL ADJOINT FUNCTOR THEOREMS DIF-
FER. The proof of the GAFT basically boils down to the fact that if I is
weakly initial (the solution set condition), then the equalizer of all the en-
domorphisms of I is initial. Crucial to the argument is that there is some
morphism from I to that equalizer. In the SAFT, I is weakly initial in a
dense subcategory and you need the meet of all the subobjects of I to get an
initial object and that requires some control over the class of subobjects.

3. A two-step construction of the reflective hull

3.1. convention. Throughout this paper we assume we are given a cate-
gory C with a strict factorization system (E ,M ) such that C is M -complete,
cocomplete and E -cowell-powered. We also assume that A ⊆ C is a full
subcategory and we are trying to describe the reflective hull of A in C or
show that it does not exist.

To explain the two-step approach, we need some definitions and a propo-
sition:
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3.2. DEFINITION. Let A ⊆ C be as above. We define RefE (A) ⊆ C as
SubM Prod(A).

3.3. DEFINITION. Let (P , I ) be a right factorization system in C (see 2.5).
A reflective subcategory K ⊆ C is P -reflective if every reflection map ηC :
C // K(C) is in P . So if E is the class of all epis, then an E -reflective
subcategory is the same thing as an epireflective subcategory.

The next result is well-known, see Proposition 1.2 of [21].

3.4. Proposition. Let (P , I ) be a right factorization system in a category
B that has arbitrary products and is P -cowell-powered. Then K � � // B is
P -reflective if and only if K is closed under the formation of products and
I -subobjects.

It easily follows that RefE (A) is an E -reflective subcategory of C and the
two-step approach is based on the inclusions A ⊆ RefE (A) ⊆ C . It is well-
known that A is a reflective subcategory of C if and only if A is reflective
in RefE (A) which is in turn reflective in C . Similarly, the reflective hull of
A in C is related to the reflective hull of A in RefE (A) since these reflective
hulls coincide if they exist.

We note that RefE (A) is the smallest E -reflective subcategory of C
which contains A , which explains the term “E -reflective hull” of A . We
will define a class P of morphisms on RefE (A) such that the smallest P -
reflective subcategory of RefE (A) which contains A would be, if it exists,
the reflective hull of A in C and would coincide with the limit closure of A
in C . But if RefE (A) is not P -cowell-powered, then the reflective hull of A
may need to be bigger than the limit closure or might fail to exist. The Isbell
limit closure, the UEP-closure (see 3.15) and the tame closure (see 3.31) of
A all contain the limit closure and would be contained in the reflective hull.
If the tame closure is not reflective, then the reflective hull of A in C fails to
exist.

The next result follows from Proposition 1.3 of [21].

3.5. Proposition. Let C be a cocomplete category and let P be a class
of epimorphisms of C . Assume that C is P -cowell-powered. Then there
exists an I such that (P , I ) is a right factorization system if and only if the
following two conditions are satisfied:
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1. P contains all isomorphisms and is closed under compositions.

2. P is closed under cointersections and pushouts.

3.6. Proposition. Let B be a cocomplete, cowell-powered category. Let E
denote the class of all epimorphisms of B and M denote the class of all
extremal monomorphisms of B . Then (E ,M ) is a strict factorization system
on B .

3.7. Corollary. Let B be complete, cocomplete and cowell-powered. Then
K ⊆ B is epireflective if and only if K is closed under products and extremal
subobjects.

3.8. DEFINITION. The map p : B // B′ of K is epic with respect to
A ∈ K if the induced map Hom(B′, A) // Hom(B,A) is an injection.
Furthermore, p has the unique extension property with respect to A ∈ K
if the induced map Hom(B′, A) //Hom(B,A) is a bijection. Finally, p has
the unique extension with respect to A if it has this property with respect
to every A ∈ A .

3.9. Partial solution to the reflective hull problem. Our next result gives
a useful description of the reflective hull, assuming reasonable conditions for
C , the ambient category. We first need the following definition:

3.10. Proposition. Recall that we are given A ⊆ C satisfying the condi-
tions in 3.1. Let RefE (A) be the E -reflective hull of A . Let P denote the
class of maps of RefE (A) which have the unique extension property with
respect to A . Then every map in P is in M and is epic in RefE (A).

Note that not every epic in K need be an epic in C .

PROOF. Assume that p : C //D is in P . Let m : C // P be in M where
P =

∏
{Ai} is the product of the objects Ai ∈ A . Since p has the UEP with

respect to A , there is, for each i, a map gi : D // Ai such that gip = πim
where πi : P // Ai is the projection. Clearly there exists g : D // P for
which πig = gi for all i. It is easily verified that πigp = πim for all i so
gp = m. This implies that p ∈M as it is the right factor of a member of M .

To show that p : C // D is an epic in K , let g, h : D // E be such
that gp = hp. Let m : E // P be in M where P =

∏
Ai is the product

of the objects Ai ∈ A and πi : P // Ai the projection. Since p has unique
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extensions to objects of A , and since πimgp = πimhp we see that πimg =
πimh for all i. But this implies that mg = mh so g = h as m is monic.

3.11. Theorem. Assume that A ⊆ C and (E ,M ) satisfy the conditions in
the convention 3.1. Let RefE (A) and P be as above. Let I denote the class
P⊥, in the category RefE (A) and let Â be the full subcategory of all objects
B ∈ RefE (A) such that every p ∈ P has the unique extension property with
respect to B.

Assume that RefE (A) is P -cowell-powered. Then:

1. RefE (A) is the smallest E -reflective subcategory of C that contains
A .

2. (P , I ) is a right factorization system on RefE (A). Moreover g ∈ I
if and only if g = he with e ∈ P implies that e is an isomorphism.

3. Â is a P -reflective subcategory of RefE (A).

4. B ∈ Â if and only if B ∈ RefE (A) and B has no proper P -
quotient.

5. B ∈ Â if and only if every map of RefE (A) with domain B lies in
I .

6. Â is the reflective hull of A in C .

PROOF. 1 follows from Proposition 3.4 and 2 follows from 3.5. 3 and 6
follow from Theorem 3.1 of [21], while 4 and 5 follow from Proposition 3.2
of K’.

3.12. Proposition. Let A ⊆ C be as in 3.1. Assume that C is well-
powered and that A has a small cogenerating family. Then RefE (A) is
cowell-powered and the reflective hull of A is its limit closure.

PROOF. The small family that cogenerates A clearly cogenerates its limit
closure, which is then reflective by the special adjoint functor theorem. That
RefE (A) is then cowell-powered follows from Theorem 2.2.2 of [21].
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3.13. Some Theoretical Observations on the Reflective Hull. In what
follows we investigate when the reflective hull of A is its limit closure or is
its Isbell-limit closure or, perhaps the still larger UEP⊥ closure, or the tame
closure.

3.14. NOTATION. If A ⊆ C then we let UEPA denote the class of all
morphisms of C which have the unique extension property with respect to
A .

3.15. DEFINITION. Let A ⊆ C be given. We say that C ∈ C is attached
to A if every morphism with domain C is in (UEPA)⊥.

We say that A ⊆ C is UEP⊥ closed in C if C ∈ A whenever C ∈ C is
attached to A .

The UEP⊥ closure of A , denoted by Â , is the class of all objects which
are in every UEP⊥ closed subcategory of C that contains A .

3.16. Lemma. Assume A ⊆ B ⊆ C and let C ∈ C be attached to A . Then
C is also attached to B .

PROOF. Since A ⊆ B it is clear that UEPB ⊆ UEPA . It follows that
(UEPA)⊥ ⊆ (UEPB)⊥ and the result is then obvious.

3.17. Lemma. Let A ⊆ C be given and let Â be the UEP⊥ closure of A .
Then Â is itself UEP⊥ closed.

PROOF. Let C be attached to Â . Then whenever A ⊆ B where B is UEP⊥

closed, it follows by definition that Â ⊆ B . So, by the above lemma, C is
attached to B and so C ∈ B . Since this is true for all such B , it follows that
C ∈ Â .

3.18. Corollary. Â is the smallest UEP⊥-closed subcategory of C which
contains A .

3.19. Proposition. Every reflective subcategory is UEP⊥-closed.

PROOF. Suppose that B ⊆ C is a reflective subcategory and that C ∈ C is
attached to B . Let η : C // B(C) be the associated reflection map. Then,
obviously, η is in UEPB . SinceC is attached to B , we see that η ∈ (UEPB)⊥

which implies that η is invertible as it is in UEPB ∩ (UEPB)⊥. It follows
that C ∈ B .
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3.20. Corollary. Every reflective subcategory of C that contains A also
contains its UEP⊥ closure, Â . So if AHull, the reflective hull of A exists,
then Â ⊆ AHull. Moreover, if Â is reflective, then it is AHull.

3.21. EXAMPLE. Let A be the class of all small ordinals, with the oppo-
site of their usual ordering. We extend this ordered class by including two
additional elements, B,C which are both lower bounds for A with B and
C non-comparable. Let C denote the category corresponding to the ordered
class A ∪ {B,C}. It is easily shown that the only member of UEPA with
domain B is the identity map, 1B. So B is attached to A . Similarly C is
attached to A . Even though A is limit closed in C , the larger UEP⊥ closure
of A is all of C , and is therefore the reflective hull of A .

3.22. Proposition. Let A ⊆ C where C has pushouts. Let T be the class
of all objects that are attached to A . Then

1. Â = A ∪ T ;

2. UEPA = UEPÂ .

PROOF. Let A ′ = A ∪T . We claim that UEPA ′ = UEPA (which will prove
2 once we prove 1). Obviously UEPA ′ ⊆ UEPA . To show the opposite
inclusion, assume that p : D // E is in UEPA . Let f : D // C be given
where C ∈ T . Consider the following pushout diagram:

C Fq
//

D

C

f

��

D E
p // E

F

h

��

It is readily shown that UEPA is closed under pushouts, so q ∈ UEPA .
Since C ∈ T , we see that q is in (UEPA)⊥ which implies that q is invertible.
It follows that f = q−1h is an extension of f in the sense that fp = f .
Now suppose d : E // C also extends f , meaning that dp = f . Observe
that dp = 1Cf so, by the pushout property, there exists r : F // C such
that rq = 1C and rh = d. Since rq = 1C , and since q−1 exists, we see
that r = q−1 and so d = rh = q−1h = f . This proves the claim that
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UEPA = UEPA ′ . But this immediately implies that C is attached to A if
and only if C is attached to A ′ if and only if C ∈ T , which shows that A ′ is
UEP⊥ closed. So Â = A ∪ T , which proves 1.

3.23. REMARK. In our next set of results, we examine the reflective hull
of A in RefE (A). This will coincide with its reflective hull in C if both
reflective hulls exist. However, we cannot rule out the possibility that A has
no reflective hull in C but does have such a hull in RefE (A).

3.24. NOTATION. If P is a class of epimorphisms of a category K , we say
that C ∈ K has “no proper P -quotients” if every quotient p : C //D with
p ∈ P is such that p is invertible.

3.25. Proposition. Assume that A ⊆ C satisfies the conditions in 3.1.
Further assume that the E -reflective hull, RefE (A), is M -well-powered. In
the category RefE (A), let P = UEPA .

The following conditions on an object C ∈ RefE (A) are equivalent:

1. C is attached to A .

2. C ∈ Â .

3. Every p ∈ P has the UEP with respect to C.

4. C has no proper P -quotients.

PROOF. 1 +3 2: Obvious.
2 +3 3: This is proven in Proposition 3.22.2.
3 +3 4: Let p : C // D be a P -quotient of C. Since P has the UEP with
respect to C, there exists r : D // C such that rp = 1C . So p is invertible
as it is epic in RefE (A).

4 +3 1: Suppose that f : C //D be given. We must show that f ∈ P⊥. For
p ∈ P , let hp = fg. Since p has the UEP with respect to C, there exists d
such that dp = g. It follows that fdp = hp and so fd = h as p is epic. The
uniqueness of d also follows as p is epic.
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3.26. Proposition. Let A ⊆ RefE (A) ⊆ C and P be as above. Assume that
RefE (A) is M -well-powered. Let L0 be the limit closure and L the Isbell-
limit closure of A . Let B be any reflective subcategory of RefE (A) which
contains A . Then:

A ⊆ L0 ⊆ L ⊆ Â ⊆ B

PROOF. It is readily shown that objects of RefE (A), with respect to which
P has the UEP form a subcategory that contains A and is closed under all
limits (even large limits) and therefore closed under Isbell limits. By the
above proposition, Â is precisely this class of objects, so we easily see that
A ⊆ L0 ⊆ L ⊆ Â . Finally, if A ⊆ B ⊆ RefE (A) where B is reflective in
K , then, by Corollary 3.20, we see that Â ⊆ B .

For example, Theorem 3.11 gave conditions under which Â is the re-
flective hull of A . Next we give sufficient conditions for Â to be the limit
closure L0, the Isbell-limit closure L or the UEP⊥ closure.

3.27. Theorem. Let A ⊆ C be as in our conventions, 3.1. Let RefE (A) be
the E -reflective hull of A , and let P and Â be as in theorem 3.11. Then the
reflective hull of A is:

1. The Isbell-limit closure of A if RefE (A) is cowell-powered,

2. The limit closure of A if RefE (A) is cowell-powered and extremal-
well-powered,

3. The UEP⊥ closure of A if RefE (A) is P -cowell-powered.

PROOF.

1. We note that under our assumptions in 3.1, the category C is M -
complete. Since it easily shown that every extremal mono of C is
in M , we see that C is Isbell-complete. We claim that RefE (A) is
also Isbell-complete because every extremal mono of RefE (A) is
in M . To prove this claim, let m : B //C be an extremal mono of
RefE (A). Factor m = gh with h : B //D in E and g : D // C
in M . Since RefE (A) is closed under M -subobjects, we see that
D ∈ RefE (A). Clearly h is an epi of RefE (A) and since m is
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an extremal mono of RefE (A), we see that h is invertible, which
implies that m ∈M .

We further note that RefE (A) is P -cowell-powered (as it is cowell-
powered) so, by theorem 3.11, Â is the reflective hull of A . We
note that Â is epireflective in RefE (A) (as every map in P is epi
in RefE (A)). Therefore, Â is closed under subobjects which are
extremal in RefE (A).

Since RefE (A) is cowell-powered, the subcategory A1 ⊆ RefE (A)
of all extremal subobjects of products of objects of A is reflective in
RefE (A) (where the extremal subobjects are extremal in RefE (A)).
Since Â is the reflective hull of A , we see that Â ⊆ A1. So if
B ∈ Â , there exists m : B //

∏
Aα where m is an extremal

mono in RefE (A) and each Aα ∈ A We claim that B is in the
Isbell-limit closure of A because

∏
Aα clearly is, and because m

is an ordinal-indexed limit of regular maps which are determined
by being equalizers. We observe that if r : S // T is an equalizer
of maps v, w : T //W and if T is in the Isbell-limit closure of A ,
then so is S. To prove this, we need to replace W by an object in
the Isbell-limit closure of A . But since W ∈ RefE (A), there exists
m : W //W ′ where m ∈M and W ′ is a product of objects from
A . ThenW ′ is in the Isbell-limit closure of A and r is the equalizer
of mv,mw. So B is in the Isbell-limit closure of A .

2. If RefE (A) is extremal-well-powered, then the limit closure of A
coincides with the Isbell-limit closure, so this case follows from the
one above.

3. If RefE (A) is P -cowell-powered, then theorem 3.11 applies which
shows that Â is the reflective hull and also the UEP⊥ closure of A
as Â consists of the objects with no proper P quotients and P =
UEPA .

3.28. REMARK. We note that even when the reflective hull of A ⊆
RefE (A) exists and coincides with L , the characterization of the reflec-
tive hull in terms of P⊥ (which may be denoted I when it yields a right
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factorization system) will prove to be very useful in the example in the next
section.

3.29. REMARK. The above proposition does not address the case when
RefE (A) fails to be P -cowell-powered. In this situation, the reflective hull
might be bigger than Â or might fail to exist. To analyze what then happens,
we define the tame closure of A

3.30. Lemma. Let A ⊆ RefE (A) ⊆ C and P be as above. Assume that
RefE (A) is M -well-powered.

Let B be a reflective subcategory of RefE (A) with A ⊆ B . Let P1 =
UEPB . Then RefE (A) is P1-cowell-powered.

PROOF. Let C ∈ RefE (A) be given, and let η : C // R(C) be its re-
flection into B . We first claim that η ∈ M . By assumption, there exists
m : C //

∏
Aα where m ∈ M and Aα ∈ A for all α. Since

∏
Aα is

clearly in B , there exists a map f : R(C) //
∏
Aα such that fη = m. But

this implies that η ∈M as it is a right factor of m ∈M
Now let g : C // D be any map in P1, Since R(C) ∈ B , there exists

a map h : D // R(C) such that hg = η. And this implies that g ∈ M as
it is a right factor of η ∈ M . It follows that every P1 quotient of C is an
M -subobject ofR(C) so C has only a small set of P1-quotients asR(C) has
only a small set of M -subobjects.

3.31. DEFINITION. Assume that A ⊆ C satisfies the conditions in 3.1. Fur-
ther assume that the E -reflective hull, RefE (A), is M -well-powered. In the
category RefE (A), let P = UEPA . For each epimorphism e of RefE (A), let
Pe denote the smallest class of epimorphisms of RefE (A) which contains e
and all isomorphisms and is closed under compositions, cointersections, and
pushouts as in Proposition 3.5. We then say that e is a tame epimorphism
if RefE (A) is Pe-cowell-powered.

We let PT denote the class of all tame epics in P . We define the tame
closure of A , denoted by A , as the class of all objects B ∈ RefE (A) which
have no proper PT quotients.

3.32. Lemma. With the above assumptions and notation, the UEP⊥ closure
of A is contained in its tame closure. In symbols, Â ⊆ A .
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PROOF. By Proposition 3.25, an object is in Â if and only if it has no proper
P -quotients and, by definition, it is in A if and only if it has no proper PT
quotients. Since PT ⊆ P , the result follows.

3.33. Proposition. With the above assumptions and notation, A , the tame
closure of A , is the intersection of all reflective subcategories of K which
contain A .

PROOF. Assume that B ∈ RefE (A) is in the intersection of all reflective
subcategories A1 with A ⊆ A1 ⊆ RefE (A) and let e : B // Q be a PT -
quotient ofB. Since RefE (A) is Pe-cowell-powered, there is, by Proposition
3.5, a class Ie for which (Ie, Pe) is a right factorization system on RefE (A).
Then Ae = SubIeProd(A) is reflective by Proposition 3.4. Since A ⊆ Ae,
we see thatB ∈ Ae. Let i : B //

∏
Aα be a map in Ie. Let pα :

∏
Aα //Aα

be the projection. Since e ∈ P there is, for each α, a map gα : Q // Aα for
which gαe = pαi. Let g : Q //

∏
Aα be determined so that pαg = gα for

all α. Then, clearly, we have ge = i and since e ∈ Pe and i ∈ Ie we get that
e has a left inverse and, since e is epic in RefE (A), we see that e is invertible
which implies that B ∈ A .

Conversely, if B ∈ A , then B has no proper PT -quotient. Let A1 be a
reflective subcategory of RefE (A) with A ⊆ A1. Let P1 = UEPA1 . By
the above lemma, RefE (A) is P1-cowell-powered. It readily follows that
P1 ⊆ PT . But this implies that the reflection map η : B // R(B) is in PT
and, by our assumption on B, we have that η is invertible so B ∈ A1.

3.34. Theorem. Assume that A ⊆ C satisfies the conditions in 3.1. Further
assume that the E -reflective hull, RefE (A), is M -well-powered. Let PT be
as defined in 3.31. The following statements are then equivalent:

1. The tame closure of A is the reflective hull of A in RefE (A).

2. The reflective hull of A in RefE (A) exists.

3. The tame closure of A is a reflective subcategory of RefE (A).

4. RefE (A) is PT -cowell-powered and PT satisfies the hypotheses of
Proposition 3.5.
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PROOF. As before, let A denote the tame closure of A . The equivalence of 1,
2, and 3 follows from the fact that A is, by Proposition 3.33, the intersection
of all reflective subcategories of RefE (A) which contain A . To prove that 3
implies 4, we let P denote the class of all epimorphisms of RefE (A) which
have the unique extension property with respect to all objects of A . By
Lemma 3.30, we see that 3 implies that RefE (A) is P -cowell-powered and
this shows that P ⊆ PT . On the other hand, that PT ⊆ P is obvious given the
definition of A . It now follows that 3 implies 4 by Theorem 3.11.2 applied to
A instead of A . The proof that 4 implies 3 follows from Theorem 3.11.4.

3.35. Application to the construction of L . We now suppose that C is
Isbell-complete, that A is a full subcategory and that L is the Isbell-limit
closure of A . The aim is to find a left adjoint to the inclusion L � � // C .

As we have seen, one way of getting L is to first close A under prod-
ucts and then repeatedly under equalizers. It follows immediately that A
cogenerates L . Thus we can apply Theorem 2.17 above to conclude:

3.36. Theorem. Suppose that A is a full subcategory of the Isbell-complete
category C and that L is the Isbell-limit closure of A . If for every object
C ∈ C , the comma category (C,A) has a weak initial set, then L is a
reflective subcategory of C .

3.37. An example: the limit closure of Z in the category of commutative
rings.

Here we look at the single ring of integers and show, under the hypoth-
esis that there are no measurable cardinals, that the limit closure consists
exactly of all powers of Z. Alternately, this can be thought of as showing
that all rings in the limit closure of Z of cardinality below the first measur-
able cardinal, are powers of Z.

For this example, we assume that there are no measurable cardinals.
We begin with Łoś’s theorem, [8, Theorem 47.2], which implies that any

group homomorphism ZI // Z is a linear combination of projections.

3.38. Proposition. Any ring homomorphism ZI // Z is a projection.

PROOF. Let f : ZI // Z be a ring homomorphism. Since it is also a group
homomorphism, we can write f =

∑
nipi where the ni ∈ Z and pi is

projection on the ith coordinate. Let j be a coordinate for which nj 6= 0.
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Suppose k 6= j and let ej , respectively ek, denote the element that has a 1
in the jth, respectively kth coordinate, and 0 elsewhere. Then ejek = 0,
whence0 = f(ejek) = f(ej)f(ek) = njnk and, since nj 6= 0, it follows that
nk = 0. Since k was any coordinate other than j, we see that f = njpj .
Then f(1) = 1 implies that nj = 1 and so f = pj .

In view of Proposition 3.12. we have shown:

3.39. Theorem. Assuming there are no measurable cardinals. Let A be the
subcategory of the category of rings consisting of the ring Z of integers (and
isomorphic copies). Then the reflective hull of A coincides with its limit
closure and consists of the powers of Z.

PROOF. If R is an ring, there is a canonical injection R // Hom(R,Z). If
f : R // Z is a homomorphism, we have a commutative diagram

R RHom(R,Z)//R

Z

f

��

RHom(R,Z)

Z

pf

���������������

and Proposition 3.38 implies the uniqueness. This shows that the reflection
of R is ZHom(R,Z) so that the powers of Z are the reflective subcategory gen-
erated by Z.

4. The coreflective subcategory generated by the finite dimensional
cubes

In this section we look at the coreflective hull of Cube, the subcategory of
finite powers of ([0, 1], 0) in the category C of pointed topological spaces.
We let (E ,M ) be the strict factorization system for which E is the class of
surjections in C and M is the class of embeddings. We apply the dual of
Theorem 3.11. The dual of RefE (A) is CrflM (Cube), the images of sums of
cubes, is the subcategory of pointed path-connected spaces.

We let I be the dual of the class P in Theorem 3.11 so I is the class
of all maps with the unique lifting property (ULP), the dual of the unique
extension property, with respect to the cubes. We will prove that I is pre-
cisely the class of all Serre fibrations with totally path-disconnected fibers
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(cf. [21]). Such maps, in the category of pointed path-connected spaces
will be called Serre coverings. It follows that the coreflective hull consists
of those spaces which have no non-trivial Serre coverings. Thus they are
like simply connected spaces. In fact for nice spaces, the coreflection is the
universal connected covering. For spaces which are not locally simply con-
nected, the coreflection is the universal Serre covering. The topology of the
fiber over a point reflects the local situation near that point. The points in the
fiber correspond to elements of the deck-translation group.

4.1. NOTATION.

1. Let Cube be the colimit closure of the subcategory Cube.

2. A Serre fibration is a map which has the covering homotopy prop-
erty for homotopies between maps from cubes.

3. A Serre covering is a Serre fibration with pathwise totally discon-
nected fibers in CrflM (Cube).

4. If f : [0, 1] // X is a path on X , we let f
oo

denote the path for
which f

oo
(t) = f(1 − t). (Note that f

oo
need not preserve the

base point.)

5. If f, g : [0, 1] //X , with f(1) = g(0), let f • g : [0, 1] //X be
defined by

(f • g)(t) =

{
f(2t) for 0 ≤ t ≤ 1

2

g(2t− 1) for 1
2
≤ t ≤ 1

4.2. Lemma. Cube is the coreflective hull of Cube.

PROOF. This follows from the dual of Proposition 3.12.

4.3. NOTATION. We let εX : K(X) //X denote the coreflection ofX ∈ C
into Cube. By the dual of Theorem 3.11, there is a class P of maps for
which (P , I ) is a left factorization system on path-connected pointed spaces.
Recall that the objects of Cube are those which have no proper I -subobjects
which implies that every map into an object of Cube is in P . We proceed to
characterize the class of maps I .

We need some technical lemmas for which the following notation is con-
venient:
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4.4. NOTATION.

1. If x ∈ [0, 1]n then we write x = (x1, x2, . . . , xn).

2. If r ∈ [0, 1] then r̂ ∈ [0, 1]n is defined so that r̂i = r for all i.

3. If x ∈ [0, 1]n then x = â where a = (
∑
xi)/n is the average value

of the entries of x.

4. In what follows, we assume that n is given. Define D = {r̂ | 0 ≤
r ≤ 1

2
}, C = [1

2
, 1]n, and CD = (C ∪D, 0̂). (We think of CD as

the cube C together with a “tail” D.)

4.5. Lemma. For each n, the subset CD is a retract of [0, 1]n.

PROOF. For all x ∈ [0, 1]n and all t ∈ [0, 1] let f(x, t) = (1 − t)x + tx, a
convex combination of x with its “average value” x. Clearly f is continuous
in (x, t). For each x, we define t0(x) as the smallest value of t for which
f(x, t) ∈ CD. Define r(x) = f(x, t0(x)). It is simple to show that r is a
retraction in C , that is, r is continuous, base-point preserving and ri = 1CD,
where i : CD // [0, 1]n is the inclusion.

4.6. Corollary. (CD, 0̂) ∈ Cube.

PROOF. The map r : [0, 1]n //CD is the coequalizer of the maps ir, id[0,1]n :
[0, 1]n // [0, 1]n.

4.7. REMARK. CD is not the sum (in pointed topological spaces) of [0, 1]
and [0, 1]n because its base point is not in the right place for the sum. Later
we will show that we can move base points and stay in Cube.

4.8. Lemma. Let s ∈ I where s : (E, e0) // (X, x0) and suppose e1 ∈ E.
Then s : (E, e1) // (X, x1) is also in I , where x1 = s(e1).

PROOF. Since ([0, 1]n, 0̂) is isomorphic to ([1
2
, 1]n, 1̂

2
) it suffices to show that

every map f : ([1
2
, 1]n, 1̂

2
) // (X, x1) has a unique lift to (E, e1). Since E is

path-connected, there exists a path from e0 to e1. Since D is isomorphic to
the unit interval, we may as well assume that this path is given by g : D //E

with g(0̂) = e0 and g( 1̂
2
) = e1. Clearly there exists h : (CD, 0̂) // (X, x0)

such that h | D = sg and h | C = f . Since the class of objects for which
s has the unique lifting property is closed under colimits, the map h has a
unique lift to (E, e0) and this easily gives us the desired unique lift of f .
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The following is well-known, e.g. [26], Theorem 3.1. We note that
Ungar assumes that all spaces are Hausdorff, but that is not used in this proof.
We could also apply our construction to the category of pointed Hausdorff
spaces, with strictly analogous results.

4.9. Proposition. The maps in I are precisely the Serre coverings.

PROOF. Assume s : (E, e0) // (X, x0) is in I . We first need to show that
s is a Serre fibration. Let h : [0, 1]n × [0, 1] // X be a homotopy and
let g : [0, 1]n × {0} // E be such that sg = h | [0, 1]n × {0}. Then
[0, 1]n× [0, 1] and [0, 1]n×{0} are both (homeomorphic to) cubes, so by the
dual of Theorem 3.11.5 the inclusion map f : [0, 1]n×{0} // [0, 1]n× [0, 1]
must be in P . Since s ∈ I there is a diagonal fill-in d for which sd = h and
df = g. Clearly d is the required lifting of the homotopy h. Moreover, it is
easily verified that the fibers of s must be pathwise totally disconnected in
order for s to be in I (with the unique lifting property for all cubes).

Conversely, assume s : E // X is a Serre covering (so that E,X are
path-connected). We will show that s ∈ I . It follows by an easy induction
that, once base points have been assigned, then s has the lifting property for
cubes. To show that these lifts are unique, it suffices to show that s has the
unique lifting property for [0, 1]. But this is obvious since if a path had two
lifts, they would have to be homotopic and this would lead to a non-trivial
path component in one of the fibers of s.

4.10. Lemma. The path-connected, pointed space A is in Cube if and only
every s ∈ I has the ULP (unique lifting property) with respect to A.

PROOF. Assume A ∈ Cube. By definition, every s ∈ I has the ULP with
respect to every cube and, moreover, the class of objects with respect to
which s has the ULP is easily seen to be limit closed. It follows that s has
the ULP with respect to A.

Conversely, assume that every s ∈ I has the ULP with respect to A. Let
ε : K(A) //A be the coreflection map. Then, clearly, ε ∈ I , so the identity
map 1A : A // A lifts to a map r : A // K(A) with εr = 1A. But ε is
epic in the category of path-connected pointed spaces, and, since ε also has
a right inverse r, it follows that r = ε−1 and so A ∈ Cube.
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4.11. Proposition. If (A, a0) ∈ Cube then, for each a1 ∈ A, we have
(A, a1) ∈ Cube.

PROOF. By the above lemma, it suffices to show that every map in I has
the ULP with respect to (A, a1). Let s : (E, e1) // (X, x1) be in I . Let
h : (A, a1) // (X, x1) be given. We need to show that h lifts to (E, e1).

Since A is path-connected, there is a path g : [0, 1] //A with g(0) = a0
and g(1) = a1. Then g : ([0, 1], 1) // (X, x1). Since ([0, 1], 1) is iso-
morphic to ([0, 1], 0), it is in Cube and therefore hg : ([0, 1], 1) // (X, x1)
has a unique lift hg : ([0, 1], 1) // (E, e1). Let e0 = hg(0). Now let
x0 = h(a0). Then s(e0) = a0 as shg = hg. But by Lemma 4.8, we see
that s : (E, e0) // (X, x0) is in I . Since (A, a0) ∈ :Cube, there exists
h : (A, a0) // (E, e0) with sh = h. We claim that h(a1) = e1 and so
h gives us the required lift (and h is unique as s is epic in path-connected,
pointed spaces). It obviously suffices to show that hg = hg. But this fol-
lows as shg = shg and both hg and hg are base point preserving maps from
([0, 1], 0) to (E, e0).

4.12. REMARK. In view of the above proposition, the condition that A ∈
Cube is independent of the choice of a base point. By Lemma 4.8, the con-
dition that a morphism s is in I is also independent of the base point. It
follows that we can safely omit any explicit reference to base points when
saying s : K(B) //B is the coreflection of B into Cube. More precisely:

4.13. Proposition. Assume s : (Y, y0) // (X, x0) is the coreflection of
(X, x0) into Cube and assume y1 ∈ Y and x1 = s(y1). Let s′ be the function
s, regarded as a map from (Y, y1) to (X, x1). Then s′ : (Y, y1) // (X, x1) is
the coreflection of (X, x1) into Cube.

PROOF. To say that s : (Y, y0) // (X, x0) is the coreflection of (X, x0) into
Cube means that (Y, y0) ∈ Cube and that s ∈ I . But, by the previous results,
both of these conditions are preserved by change of base point, so s1 is the
coreflection of (X, x1) into Cube.

4.14. Theorem. A path-connected, non-empty space A is in Cube if and
only if A has no non-trivial Serre covering.

PROOF. This follows from the dual of Theorem 3.11.5.
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4.15. DEFINITION. Let s = εB : K(B) // B be the coreflection of
B into Cube. By ∆(B), the deck translation group of B, we mean the
group of all continuous, not-necessarily base point preserving, functions f :
K(B) //K(B) for which sf = s. (We will prove that all such maps f are
necessarily homeomorphisms and that ∆(B) is really a group.)

4.16. Proposition. Let s : (K(B), e0) // (B, b0) be the coreflection of
(B, b0) into Cube. Let e1 ∈ s−1(b0) be given. Then there is a unique δ ∈
∆(B) for which δ(e0) = e1.

PROOF. Let s′ be the same function as s, but regard it as a morphism
(K(B), e1) // (B, b0). Then, by Proposition 4.13, we see that s′ is also a
coreflection of (B, b0) into Cube. It follows that there exists an isomorphism
δ : (K(B), e0) // (K(B), e1) for which sδ = s so that δ is the required
member of ∆(B).

4.17. Corollary. Every map in the deck translation group is a homeomor-
phism and the deck translation group is actually a group under composition
of functions.

PROOF. Let B be a given path-connected pointed space with base point
b0. If f : K(B) // K(B) is a continuous, not necessarily base point
preserving, map for which sf = s, let e0 be the base point of K(B)
and let e1 = f(e0). Then f : (K(B), e0) // (K(B), e1) is a lift of
s : (K(B), e1) // (B, b0) to a map (K(B), e1) // (K(B), e0) which
factors through s : (K(B), e0) // (B, b0). By the uniqueness of the lift, f
must coincide with the homeomorphism δ constructed in the above proof.

The fact that the deck translation group is actually a group under compo-
sition of functions is now easily verified.

4.18. DEFINITION. Let g : [0, 1] // (B, b0) be a loop, (meaning that b0 =
g(0) = g(1)) and let s : (S, s0) // (B, b0) be a Serre covering. Let b :
[0, 1] // (S, s0) be the unique lifting of g. Then s deloops g if b is no longer
a loop; that is if b(0) 6= b(1).

A loop is Serre trivial if no Serre covering deloops it. Equivalently, if
the coreflection εB : K(B) // B fails to deloop g. We say that γ ∈ π(B)
is Serre trivial if γ is represented by a Serre trivial loop g.

It readily follows that:
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4.19. Theorem. For each path-connected pointed space (B, b0) there is a
natural surjective group homomorphism π(B) //∆(B) whose kernel is the
subgroup of Serre trivial members of π(B).

4.20. REMARK. Covering maps are not closed under either composition
[24] or limits in CrflM (Cube) of diagrams with a fixed codomain. But Serre
coverings, characterized by having the ULP for cubes, are closed under both.

4.21. DEFINITION. For each path-connected, pointed topological space B,
let π̂(B) denote the quotient of the fundamental group π(B) by the normal
subgroup of Serre-trivial loops. As shown above, then π̂(B) is isomorphic
to the deck translation group of B.

We say a pointed, path-connected space B is Serre-simply connected if
π̂(B) is the trivial group, equivalently, if all loops on B are Serre-trivial.

4.22. DEFINITION. A subset U of a topological space X is path-open if
for every path f : [0, 1] //X , we have that f−1(U) open in [0, 1]. A space
X is [0, 1]-generated if every path-open subset is open.

4.23. Proposition. (X, x0) ∈ Cube if and only if X is [0, 1]-generated,
path-connected, and Serre-simply connected.

PROOF. Suppose (X, x0) satisfies the given conditions. Since X is path-
connected the coreflection map εX : K(X, x0) // (X, x0) is surjective.
Since every loop on X is Serre trivial, εX is injective. Since X is [0, 1]-
generated it follows that εX is a topological quotient map. To prove this, it
suffices to show that every path on X lifts to K(X, x0). But since εX is a
Serre fibration, this is immediate.

Conversely, assume that (X, x0) ∈ Cube. Obviously every loop on it is
trivial. Since Cube ⊆ CrflM (Cube), we see that it is path-connected. To
prove that X is [0, 1]-generated, it suffices to observe that the subcategory of
all [0, 1]-generated pointed spaces is coreflective and contains all the cubes,
hence contains the coreflective hull Cube.

4.24. DEFINITION. Recall that a space is locally path-connected if the path-
connected open subsets form a base for the topology.
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4.25. REMARK. It is well-known that the subcategories of sequential spaces
and of locally path-connected spaces are both coreflective in Top. It easily
follows that both pointed sequential spaces and pointed locally connected
spaces are coreflective in pointed spaces. So sequential spaces as well as
locally path-connected spaces are both closed under the formation of co-
products and quotients. See [6, 10, 11].

It is also well known, and readily proven, that locally path-connected
spaces are characterized by the property that path components of open sub-
sets are open.

4.26. Lemma. All [0, 1]-generated spaces are locally path-connected and
sequential.

PROOF. It is obvious that the [0, 1]-generated spaces form the coreflective
hull of the space [0, 1]. Since [0, 1] is contained in the coreflective subcat-
egory of locally path-connected sequential spaces, it is clear that the core-
flective hull of [0, 1] is also contained in locally path-connected sequential
spaces.

4.27. Corollary. If (X, x0) ∈ Cube, then X is locally path-connected and
sequential.

4.28. Lemma. An open subset of a [0, 1]-generated space is [0, 1]-generated.

PROOF. Let X be [0,1]-generated, let U ⊆ X be open and let V ⊆ U be
path-open in U . We need to show that V is open. SinceX is [0,1]-generated,
it suffices to show that V is path-open in X . So if p : [0, 1] // X is an
arbitrary path on X , it suffices to show that p−1(V ) is open in [0,1]. Let
r ∈ p−1(V ) be arbitrary. It suffices to show that p−1(V ) is a neighbourhood
of r. But U is open inX and p is continuous, so p−1(U) is open in [0,1] and it
clearly contains r. Obviously, we can find a closed subinterval [a, b] ⊆ [0, 1]
so that [a, b] is a neighbourhood of r. Let p1 be the restriction of p to [a,b].
Then p1 : [a, b] // U so, by recalibrating [a, b], we can regard p1 as a path
on U . Since V is path-open in U , we see that p1−1(V ) is open in [0,1]. Note
that r ⊆ p1

−1(V ) ⊆ p−1(V ) which shows that p−1(V ) is a neighbourhood
of r.
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4.29. Lemma. Let U ⊆ X be an open subset of the [0, 1]-generated, path-
connected, pointed space X such that U is Serre-simply connected. Let εX :

K(X) //X be the coreflection of X into Cube. Then εX−1(U) is a disjoint
union of open sets each of which is mapped homeomorphically onto U by
the restriction of εX .

PROOF. Since X is [0, 1]-generated, it is locally path-connected. Similarly,
by 4.23, K(X) is [0,1]-generated and locally path-connected. It suffices to
prove the lemma in the case that U is path-connected (then apply that result
to the path-components of U ). Let V be any path-component of (εX)−1(U).
Let εV : V // U be the restriction of εX to V . We note we can move
the base point of X to a point in U and move the base point of K(X) to
a point in V lying over the base point in U . It is straightforward to prove
that εV ∈ I and thus is a Serre Covering. By the above lemma, U is [0, 1]-
generated and since U is also Serre-simply connected, it follows that U is in
the colimit closure of Cube. Therefore, the only Serre coverings into U are
isomorphisms. Thus εV is a homeomorphism and the result follows.

4.30. Corollary. Suppose εX : K(X) // X is a coreflection map where
X is a [0, 1]-generated, pointed, path-connected space. Let U ⊆ X be an
open subset which is Serre-simply connected. Then the fibers (εX)−1(u) are
discrete for every u ∈ U .

4.31. Example. For each positive integer n, let Cn be the circle in R × R
with center ( 1

n
, 0) and radius 1

n
. The “Hawaiian earring”, HE is defined as⋃

{Cn}. Note that all of these circles pass through (0, 0), which we take as
the base point of E.

For each n, we let an be a loop in HE which starts at (0, 0) and travels
once around Cn in a counterclockwise direction. There are additional loops
of the form an1 • · · · • ank

. Moreover, there are loops which wind around
infinitely many Cn. For example, we can define a loop ` : [0, 1] // E so
that ` restricted to [1

2
, 1] goes once around C1, then ` restricted to [1

3
, 1
2
] goes

once around C2 and so forth, with ` restricted to [ 1
n+1

, 1
n
] going around Cn

(and `(0) = (0, 0)). This map is continuous.
There are even stranger loops. Recall that the Cantor set is found by first

removing (1
3
, 2
3
), the “open middle third” of the interval [0, 1], then removing

(1
9
, 2
9
) and (7

9
, 8
9
), the middle thirds of the two intervals that remain, then

removing the middle thirds of four intervals that remain and so forth. Define
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a loop λ : [0, 1] //HE so that on [1
3
, 2
3
] the loop λ goes once around C1, and

on each of the next two middle thirds, λ goes around C2. In general, define λ
so that it goes once around Cn on the closure of each open interval of length
(1
3
)n in the complement of the Cantor set. Finally, define λ to be the base

point, (0, 0), on each point in the Cantor set. Clearly HE has a rich set of
loops and a complicated fundamental group.

We now construct the coreflection of the Hawaiian earring in Cube. For
each positive integer n, let HEn be C1∪C2∪ · · · ∪Cn. Let qn : HE //HEn

be the quotient map which collapses each circle Cm for m > n to the base
point. Note that HEn is connected, locally path-connected, and locally sim-
ply connected so it has a universal covering space which pulls back along qn
the covering map en : Wn

// HE. The fiber of Wn over the base point is
clearly the fundamental group of HEn which is the free group on a1, . . . , an.

Note that whenever m > n there is a map en,m : Wm
// Wn such

that enen,m = qm. Consider the filtered diagram formed by the family of
maps {en,m} We let ê : W∞ // HE be the limit of this diagram taken in
the category of path-connected, [0,1]-generated pointed spaces. This means
starting with the filtered limit L∞ in pointed spaces, then taking the path
component of the base point of L∞ and, finally, replacing the topology on
this component with its [0,1]-generated coreflection. (Note that this final
step does not change any of the paths or homotopies.)

We claim that ê : W∞ // HE is the coreflection of HE. It is readily
shown that ê has the ULP with respect to all cubes as each covering map en
does. Therefore ê : W∞ // HE is a Serre covering. By Proposition 4.23,
It suffices to show that W∞ ∈ Cube or that W∞ is path connected, [0,1]-
generated and Serre-simply connected. It is, by construction, path-connected
and [0,1]-generated. To show that W∞ is simply connected, we note that
by theorem 2.5 and the discussion in 3.3 of [5], a loop p : [0, 1] // E is
homotopically trivial if and only if it is not delooped by any of the coverings
en : Wn

// E. Equivalently, the loop p is homotopically trivial if and
only if it is not delooped by the Serre covering ê : W∞ // E. It follows
that the fundamental group of W∞ is trivial, for if P : [0, 1] // W∞ is a
given loop, then P is a lifting of p = êP . Observe that p is not delooped
by W∞ // E because p lifts to the loop P , so p is homotopically trivial.
It follows by the covering homotopy property that P is trivial too. So W∞
is simply connected and a fortiori, Serre-simply connected. [5] has a nice



30

description of the fundamental group of HE as it is embedded in the inverse
limit of the free groups on a1, . . . , an.

4.32. REMARK. For the coreflective subcategory generated by the con-
tractible pointed spaces, see [22, 21]. The results are similar except that the
earlier papers do not have a nice characterization of the maps with the unique
lifting property for contractible pointed spaces. Also in the earlier case, the
fibers of the coreflection are homeomorphic to each other and therefore do
not mirror local properties.

5. Limit closures in uniform spaces

5.1. Uniformities. In this section, we study limit closures in the category
of uniform spaces. Uniform spaces were first studied in [27] to do for uni-
form continuity what topology does for continuity. The studies have been
continued in many places including, for example [18, 16, 28]. There are
three ways (at least) to present uniform spaces. The first way describes a
uniformity on X as a family of subsets of X ×X , called entourages in [27]
(sometimes translated as “surroundings”), subject to certain conditions. The
second is in terms of a family of covers, called uniform covers, subject to
certain conditions, and the third is in terms of a family of pseudometrics
which we describe in detail below. For a development of the three ways and
proofs that they are equivalent, see [28], Sections 35-39. The arguments in
this section rely mainly on the pseudometrics, but the other approaches are
important elsewhere. See also [7], Chapter IX, Sections 10, 11 (where pseu-
dometrics are called gauges) for the equivalence of the three definitions, or
see [18], Chapter 6 for the construction of a pseudometric from a sequence
of entourages each a *-refinement of the next.

Basically, uniformities generalize metrics. In a metric space, a typical
entourage is {(x, y) | d(x, y) < ε}, a typical uniform cover is the set of
all ε-balls and the single metric generates the family of pseudometrics. See
[18, 16, 28] for further details.

5.2. A primer on pseudometrics. SupposeX is a set and d : X×X //R is
a function. We consider the following six conditions on d, for all x, x′ ∈ X:

M-1. d(x, x′) ≥ 0;
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M-2. d(x, x) = 0;

M-3. d(x, x′) = 0 implies x = x′

M-4. d(x, x′) = d(x′, x);

M-5. d(x, x′′) ≤ d(x, x′) + d(x′, x′′).

M-6. d(x, x′′) ≤ d(x, x′) ∨ d(x′, x′′).

Obviously M-1 and M-6 imply M-5. If d satisfies M-1 to M-5, it is called
a metric on X . If it satisfies M-1 to M-6, it is called an ultrametric on X .
If it satisfies M-1, M-2, M-4, and M-5, it is called a pseudometric on X . If
it satisfies M-1, M-2, M-4, and M-6, it is called an ultra-pseudometric on
X .

The set of pseudometrics on X is clearly partially ordered by d ≤ e if
for all x, x′ ∈ X , d(x, x′) ≤ e(x, x′).

5.3. DEFINITION.

1. A base for a uniform structure (or a base for short) on a set X
is a family D of pseudometrics which is directed by ≤. Note the
parallel between this definition and that of base for a topology.

2. If D and E are bases for uniform structures on X and Y respec-
tively, then a function f : X // Y is uniform or a unimorphism
if, for all e ∈ E and all ε > 0, there are d ∈ D and δ > 0 such that,
for all x, x′ ∈ X , d(x, x′) < δ implies e(fx, fx′) < ε.

3. If D consists of a single pseudometric d, we will sometimes write
(X, d) instead of (X, {d}).

4. A base D on a set X is saturated if whenever e is a pseudometric
on X for which id : (X,D) // (X, e) is a unimorphism, then e ∈
D . This is equivalent to the assertion that adding any pseudometric
to D changes the uniformity.

5. A uniformity (or a uniform structure) on a set X is a saturated
base of pseudometrics.
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We note that in [18] the term gage is used to denote what we have called
a saturated base. We also note that if d, e are pseudometrics on a set X , then
their sum d+ e and their sup d ∨ e are also pseudometrics.

A subset D0 ⊆ D generates D if D is the smallest (saturated) uni-
formity containing D0. We will sometimes let (X,D0) denote the uniform
space given by the saturated base generated by D0.

We say that D is a pseudometric structure if it is generated by a single
pseudometric d. If d is a metric, we say that the uniformity is metrizable, or
even that it is a metric space.

Let X be a uniform space with uniform structure given by D . If A ⊆
X is a subset then for any d ∈ D and any x ∈ X , we define d(x,A) =
d(A, x) = infa∈A d(x, a). We say that x is adherent to A if d(x,A) = 0 for
all d ∈ D and define cl(A) to consist of all points that are adherent toA. This
is easily seen to be a Kuratowski closure operator and defines a topology on
X called the uniform topology.

The following is quoted verbatim from [16], II.8.

5.4. Proposition. The uniform topology of a sum, product, or subspace is
the sum, product, subspace topology, respectively.

Two non-isomorphic uniform spaces can define homeomorphic uniform
topologies. For example, the sequence { 1

n
}, n a positive integer, is a uniform

space with the usual metric from R. The uniform topology is discrete. A
second uniformity, called the discrete uniformity is generated by setting
the distance between any two distinct elements to be 1. But the identity
function from the second to the first is not uniform, although both uniform
topologies are discrete. On the other hand, the uniformity that the space of
integers inherits from the reals is isomorphic to the discrete metric generated
by setting the distance between any two distinct elements to be 1.

A uniform spaceX is said to be separated if points are closed in the uni-
form topology. This turns out to be true if and only if the uniform topology is
Hausdorff (in fact, completely regular Hausdorff). Obviously a pseudomet-
ric space is separated if and only if the generating pseudometric is a metric.

Important properties of compact Hausdorff spaces include that they have
a unique uniformity, they are obviously separated, and every map from a
compact Hausdorff space that is continuous in the uniform topologies of the
spaces is also uniform.
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For a uniform space X , the obvious definition of totally disconnected is
that for every pair x 6= x′ of elements of X there is a uniform map to the
discrete space 2 that separates them. This is equivalent to having an injective
unimorphism into a power of 2. If X is also compact, such a map is clearly a
uniform embedding, that is, it has the induced uniformity. In general, it will
not be an embedding. However, we will say that X is uniformly totally dis-
connected if its uniform structure has a base of ultra-pseudometrics. As we
will see, this is equivalent to having a uniform embedding into a product of
discrete uniform spaces. If the discrete spaces are each given the uniformity
in which the distance between any two distinct points is 1, then one easily
sees that any product of such spaces has a uniformity given by a family of
ultra-pseudometrics.

5.5. Proposition. Every monic in the category of separated uniform spaces
is injective. Hence the category is well-powered and Isbell-complete.

PROOF. If f : X // Y is not injective, there are points x, x′ ∈ X such that
f(x) = f(x′). These give two maps, evidently uniform, from a one point
space to X with the same composite with f and thus f is not monic.

5.6. Proposition. Suppose that C is a full subcategory of separated uni-
form spaces that is closed under products and closed subspaces, then C is
reflective.

PROOF. We let (E ,M ) be the strict factorization system on the category of
separated uniform spaces for which M is the class of embeddings of closed
subspaces and E is the class of all maps e : B // C for which e(B), the
image of e, is dense in C. The proof that this is a strict factorization system
is straightforward. For example to prove orthogonality, suppose fe = mg
where e : B // C is in E and m : M //X is the embedding of the closed
subspaceM ofX . By hypothesis, e(B), is dense in C. Clearly, f maps e(B)
into M and, since M is closed and e(B) is dense and f is continuous, we
see that f maps all of C into M . The proof of the orthogonality condition
is now obvious, and the proof of this Proposition follows from Proposition
3.4.

Suppose that C is a limit closed full subcategory of separated uniform
spaces that is closed under subspaces. Then C is reflective.
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PROOF. Let B denote the category of separated uniform spaces. We want
an adjoint to the inclusion C � � // B . In order to apply Theorem 2.17, with
A = C , we must show that for every separated uniform space X , the comma
category (X,C ) has a small weakly initial set. Let {fi : X // Xi} be the
set of all quotients of the underlying set of X and all possible uniformities
for which the quotient map is uniform. This is clearly a small set. If f :
X // Y is uniform and Y ∈ C , let Y0 ⊆ Y be the image of f with the
induced uniformity. By hypothesis, Y0 ∈ C . It is clear that the corestriction
f0 : X //Y0 is, up to isomorphism, one of the fi and the conclusion follows.

5.7. Collapsing a closed subspace. If X is a separated uniform space and
C ⊆ X is a closed subspace, we denote by EC the equivalence relation
defined by xECy if x = y or x, y ∈ C. Then the space X/EC is the quotient
gotten by collapsing C to a point.

The sup of two pseudometrics is easily seen to be a pseudometric, but the
inf is not in general. For example, let X = {x, y, z} with distance functions
d1 and d2 given by d1(x, z) = d2(x, z) = 3, d1(x, y) = d2(y, z) = 1, and
d1(y, z) = d2(x, y) = 2. Then d1 and d2 satisfy the triangle inequality but
d = d1 ∧ d2 does not.

However, we do have a simple criterion for the inf of two pseudometrics
to be a pseudometric.

5.8. Proposition. Let d1 be a pseudometric (respectively, ultra-pseudometric)
and d2 satisfy M-1, M-4, and M-5 (respectively, M-1, M-4, and M-6) on the
set X . Then a necessary and sufficient condition that d = d1 ∧ d2 be a
pseudometric (respectively ultra-pseudometric) is that for all x, y, z ∈ X ,
we have d(x, z) ≤ d1(x, y) + d2(y, z) (respectively, d(x, z) ≤ d1(x, y) ∨
d2(y, z)).

PROOF. We will use the sign +∨ to denote either + or ∨ as appropriate in the
argument below. Let us note that by exchanging x and z and using symmetry
the inequality becomes d(x, z) ≤ d2(x, y) +∨ d1(y, z). It is obvious that d
satisfies M-1, M-2, and M-4, so that the only issue is M-5 or M-6, as the
case might be. The necessity of the condition is obvious since d ≤ d1 and
d ≤ d2. To verify that

d(x, z) ≤ d(x, y) +∨ d(y, z)
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it is, in principle, necessary to consider 8 cases depending on which of the
three terms in the inequality is given by d1 or d2. But if, for example, the
two terms on the right are given by the same di, i = 1, 2, then we can argue
that d(x, z) ≤ di(x, z) ≤ di(x, y) +∨ di(y, z) = d(x, y) +∨ d(y, z). Thus we
concentrate on the cases in which they differ, say d(x, y) = d1(x, y), while
d(y, z) = d2(y, z). But then d(x, z) ≤ d1(x, y) +∨ d2(y, z), the latter being
exactly our hypothesis.

5.9. Proposition. Suppose d is a pseudometric onX andC ⊆ X is a subset.
Then the function dC defined by dC(x, y) = d(x,C) +∨ d(y, C) is a pseudo-
metric and an ultra-pseudometric in the case that d is an ultra-pseudometric
and +∨ = ∨.

PROOF. The only thing we need show is that dC(x, z) ≤ dC(x, y) +∨ dC(y, z)
or that d(x,C) +∨ d(z, C) ≤ d(x,C) +∨ d(y, C) +∨ d(y, C) +∨ d(z, C) which is
obvious since +∨ is monotone.

5.10. Corollary. Suppose d is a pseudometric on X and C ⊆ X is a
subset. Then the function dC defined by dC(x, y) = d(x, y) ∧ dC(x, y) is
a pseudometric on X and is an ultra-pseudometric in the case that d is an
ultra-pseudometric and +∨ = ∨.

PROOF. We must show that dC(x, z) ≤ d(x, y) +∨(d(y, C) +∨ d(C, z)). Since
dC(x, z) ≤ d(x,C) +∨ d(C, z), it suffices to show that d(x,C) +∨ d(C, z) ≤
d(x, y) +∨ d(y, C) +∨ d(C, z). Since both + and ∨ are monotone, it suffices
to show that d(x,C) ≤ d(x, y) +∨ d(y, C). For any ε > 0, there is a c ∈
C such that d(C, y) > d(c, y) − ε. Then we have d(x,C) ≤ d(x, c) ≤
d(x, y) +∨ d(c, y) ≤ d(x, y) +∨(d(C, y) + ε) ≤ (d(x, y) +∨ d(C, y)) + ε. But
for this to hold for all ε > 0, we must have d(x,C) ≤ d(x, y) +∨ d(y, C) as
required.

We have not found the following in standard references although it would
seem too obvious not to be known. The fact that it fails for completely
regular spaces shows that 5.4 would not hold for quotients.

5.11. Theorem. Suppose X is a separated uniform space and C ⊆ X is
a closed subspace. Then X/EC has a separated uniform structure such that
the projection X // X/EC is uniform. If X is uniformly totally discon-
nected, the same is true of X/EC .
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PROOF. For each pseudometric d on X , let dC be as above. For x ∈ X and
y ∈ C, it is clear that dC(x, y) = d(x,C) since d(x,C) ≤ d(x, y). Also,
if x, y ∈ C, then dC(x, y) = 0 so that dC is actually a pseudometric on
X/EC . If x /∈ C, then the fact that C is closed implies that there is at least
one pseudometric d on X such that d(x,C) 6= 0 so that the set of all dC
separates the points of X/EC that are not in C from C. If x /∈ C and y /∈ C,
then choose a d1 so that d1(x, y) 6= 0 and, since C is closed, a d2 so that
d2(x,C) 6= 0. Then d = d1 +∨ d2, dC separates x from y. Finally, the fact that
dC(x, y) ≤ d(x, y) implies that the projection is uniform. Clearly dC is an
ultra-pseudometric when d is, which proves the last sentence.

We note that the monotonicity of the operation d 7→ dC trivially implies
that {dC} is a base for a uniformity.

5.12. Corollary. In the category of separated uniform spaces, an inclusion
of a closed subspace is regular and every extremal monomorphism is regular.

5.13. Corollary. Suppose D ⊆ C are full subcategories of separated uni-
form spaces such that

1. C is limit closed in the category of separated uniform spaces.

2. Every object of C has a closed uniform embedding into a product
of objects of D;

3. Whenever C ⊆ X =
∏
Di is isomorphic to a closed subspace of

a product of objects of D , then the object X/EC has an injective
unimorphism into such a product.

Then C is the limit closure of D in the category of separated uniform
spaces.

PROOF. Let C �
� // X be a closed uniform embedding with X a product of

objects of D . Let q : X // X/EC be the canonical projection onto the
quotient and let u : X // X/EC be the constant morphism u(x) = C
for all x ∈ X . It is clear that C is the equalizer of q and u. Now let f :
X/EC // Y be an injective unimorphism into a product of objects of D .
Then the equalizer of fq and fu is still C and thus C belongs to the closure
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of D under products and equalizers. Conversely, it is clear that a regular
subspace of a uniform space in the category of separated uniform spaces is
closed and then Corollary 2.9 implies that so is every extremal subspace.
The category of closed subspaces of objects of D is evidently complete.

5.14. Proposition. If X is a separated uniform space, C ⊆ X a closed
subspace, then C �

� //X is an equalizer of a pair of maps to a power of [0, 1].

PROOF. Let D be a set of pseudometrics that define the uniformity. For each
d ∈ D , define fd : X // [0, 1] by fd(x) = d(x,C)∧1. Let f : X // [0, 1]D

be the map whose dth coordinate is fd. Let g : X // [0, 1] be the map whose
every coordinate is 0. From the definition of closure in the uniform topology
there is, for each x /∈ C some d ∈ D for which d(x,C) 6= 0. It is immediate
that C �

� //X is the equalizer of f and g.

5.15. Proposition. Every separated uniform space can be embedded into a
product of metric spaces.

PROOF. For any pseudometric d on the separated uniform space X , let Ed
be the equivalence relation defined by xEdx′ when d(x, x′) = 0. Then one
easily sees that the space Xd = X/Ed is a metric space with metric given by
d. Two uses of the triangle inequality easily shows that d is well defined mod
Ed. If D is the set of all pseudometrics onX , then the uniformity induced on
X by the injective function X //

∏
d∈D Xd is just the infimum of the (non-

separated) uniformities given by all the pseudometrics, which is the given
uniformity on X .

5.16. Proposition. The full subcategory of separated uniform spaces whose
objects are the closed subspaces of a product of metric spaces is limit closed
and reflective in the category of separated uniform spaces.

PROOF. It is reflective by Prop 5.6, and is therefore limit closed.

Putting the last three propositions together, we see:

5.17. Theorem. The limit closure and reflective hull of metric spaces con-
sists of those separated uniform spaces that have a closed embedding into a
product of metric spaces.
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Along similar lines, we have:

5.18. Theorem. The limit closure in separated uniform spaces of the unit
interval [0, 1] is the category of separated compact uniform spaces.

PROOF. It is well known that every compact Hausdorff space X is embed-
dable in a cube, say X �

� //Y = [0, 1]I . Since a compact Hausdorff space has
a unique uniformity and every continuous map is uniform, this embedding
is closed and uniform. Proposition 5.14 implies X �

� // Y is an equalizer of
two maps to a cube. The converse is trivial as compact Hausdorff spaces are
closed under the formation of products and closed subspaces.

5.19. Proposition. The category of separated uniform spaces is cowell-
powered.

PROOF. Let e : X // Y be an epic of separated uniform spaces. Let C ⊆
Y be the closure of the image of X . From 5.11, we know that X/EC is
separated. We now define two maps g, h : Y // Y/EC with ge = he. Let g
be the canonical projection Y //Y/EC and h the map which sends all of Y
to the point C ∈ Y/EC . Since e is epic, it follows that C is all of Y and that
e is epic if and only if its image is dense. So there can be no more points in
Y than there are ultrafilters on X .

As we were trying to work out which separated uniform spaces have
a closed embedding into a product of metric spaces we posted the ques-
tion on the web site MathOverflow (http://mathoverflow.net/
questions/), we got a private answer from James Cooper who stated the
following conjecture: “A separated uniform space satisfies your condition if
and only if strong Cauchy nets (defined below) converge.” We have proved
Cooper’s conjecture and the argument follows the definition below.

5.20. DEFINITION. Let (X,D) be a separated uniform space. We will say
that a net {xi | i ∈ I} is a strong Cauchy net if, for all d ∈ D , there is an
i ∈ I such that j ∈ I with j ≥ i implies d(xi, xj) = 0. This means that the
image of the net in X/Ed is eventually constant.

We will say that a separated uniform space (X,D) is Cooper complete
if every strong Cauchy net converges.



39

5.21. Theorem. A separated uniform space is uniformly isomorphic to a
closed subspace (with the relative uniformity) of a product of metric spaces
if and only if it is Cooper complete.

PROOF. We begin by showing that a product of Cooper complete spaces is
Cooper complete. Let X =

∏
Xτ and pτ : X // Xτ be the projection on

the product. We describe a base for the pseudometrics on X as follows. Let
dτ be a pseudometric on Xτ . Define d̂τ on X by d̂τ (x, x′) = dτ (pτx, pτx

′).
The set of finite sups of the set of all d̂τ , taken over all the pseudometrics
on Xτ and over all indices τ , is the canonical base of pseudometrics on
X . It generates, as it must, the least uniformity of X for which the pτ are
all unimorphisms. Now if {xi} is a strongly Cauchy net on X , then given
a τ , and a pseudometric dτ on Xτ , there must exist an i such that j ≥ i
implies d̂τ (xi, xj) = 0. But this is the same as dτ (pτxi, pτxj), so that {pτxi}
is a strongly Cauchy sequence in Xτ and so converges to xτ ∈ Xτ . But
then {xi} converges to the element x = (xτ ). Next we show that a closed
subspace of a Cooper complete space is Cooper complete. Let X be Cooper
complete and C ⊆ X be a closed subspace. A pseudometric on C is simply
the restriction to C of a pseudometric on X . It is immediate that a strongly
Cauchy net in C is strongly Cauchy in X and thus converges to an element
of X , which must lie in C since C is closed.

Conversely, suppose that X is Cooper complete. Let D denote a base for
the pseudometrics onX . We use the notation introduced in the proof of 5.15:
Ed is the equivalence relation on X defined by a d ∈ D and Xd = X/Ed.
We denote by qd : X //Xd the quotient mapping. Recall that D is partially
ordered by d ≤ e if d(x, x′) ≤ e(x, x′) for all x, x′ ∈ X . It is also directed
since if d, e ∈ D then d ∨ e ∈ D and clearly d ≤ d ∨ e and e ≤ d ∨ e. We
saw in 5.15 that X is embedded in

∏
d∈D Xd. We claim that if every strong

Cauchy net inX converges, thenX is closed in the product. For each d ∈ D ,
denote by pd :

∏
Xd

//Xd the canonical projection. If d ≤ e, it is clear that
there is a canonical quotient mapping qd,e : Xe

//Xd such that qd,eqe = qd.
Since qd = pd|X , we also have that d ≤ e implies that qd,epe|X = qd|X . But
Xd is Hausdorff and hence we conclude that qd,epe| cl(X) = qd| cl(X).

Now suppose that y ∈ cl(X). Since qd is surjective we can choose, for
each d ∈ D , an element xd ∈ X such that qd(xd) = pd(y). If d ≤ e, then we
have

qd(xe) = qd,e(qe(xe)) = qd,e(pe(y)) = pd(y) = qd(xd)
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which is possible only if d(xd, xe) = 0. Since this holds whenever d ≤ e, it
follows that the D-indexed net {xd} is strong Cauchy and hence converges
to some x ∈ X . Since pd(x) = pd(y) for all d ∈ D and the pd are jointly
monic, we conclude that y = x ∈ X .

An examination of the proof of the converse above shows that:

5.22. Proposition. IfX is Cooper complete and D a base of pseudometrics
on X , then the map X //

∏
d∈D Xd is a closed uniform embedding.

Example. This is an example of a separated uniform space in which there
is a strong Cauchy net that does not converge. It was suggested by James
Cooper. Let X = Ω denote the set of all countable ordinals. We give it the
uniformity that it inherits from Ω + 1 which is the set of all ordinals that are
less than or equal to Ω. Since Ω + 1 is compact in its order topology it has a
unique uniformity. Every uniform function fromX //[0, 1] can be extended
to Ω + 1 since [0, 1] is complete. In particular, every pseudometric d on X is
the restriction toX of a pseudometric we will also call d on Ω+1. It is shown
in [9], 5.12 (c) that any continuous function Ω + 1 // [0, 1] is eventually
constant onX , . The same is true for any bounded uniform functionX //R.
If d is one of these pseudometrics, then d(x,Ω) is a continuous function of
x. Thus, by the above, it is eventually constant, so there is an ordinal α < Ω
such that β > α implies that d(β,Ω) is constant and, since d(Ω,Ω) = 0,
that constant must be 0. Thus if d is one of these pseudometrics, there is
an ordinal α < Ω such that β > α implies that d(β,Ω) is constant and,
since d(Ω,Ω) = 0 and pseudometrics are continuous, that constant must be
0. Then if β, γ > α, we have that d(β, γ) ≤ d(β,Ω) + d(γ,Ω) = 0. The
result is that the identity function of X , which is an Ω-indexed net on X , is
a strong Cauchy net that cannot have a limit.

5.23. Embeddings of uniformly totally disconnected spaces. We will
now suppose thatX is uniformly totally disconnected and that D is a base of
ultra-pseudometrics for the uniform structure. To simplify the presentation,
from now on we may assume, without loss of generality, that D is closed
under positive scalar multiplication. Then we may simplify the definition of
uniform map: f : (X,D) // (Y,E) is uniform if and only if for all e ∈ E ,
there is a d ∈ D such that d(x, x′) < 1 implies e(fx, fx′) < 1. If x ∈ X ,
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d ∈ D let
N(x, d) = {y ∈ X | d(x, y) < 1}

5.24. Proposition. If d ∈ D , the family {N(x, d) | x ∈ X} covers X by a
family of disjoint clopen sets.

PROOF. From the ultra-pseudometric property, if d(x, y) < 1 and d(y, z) <
1, then d(x, z) < 1. Therefore the relation of having d(x, y) < 1 is transitive
and thus the N(x, d) partition X . Since each one is open, the union of all
but that one is open and so each one is closed.

5.25. Corollary. Let X/d be the set of equivalence classes in the partition
above, with the metric in which the distance between distinct elements is 1.
We will call this the unit discrete metric. Then the map X // X/d that
takes x to the equivalence class N(x, d) is uniform.

5.26. Theorem. A separated uniformly totally disconnected space can be
embedded in a product of discrete uniform spaces.

PROOF. LetX //X/d be as in the preceding corollary and letX //
∏

d∈D X/d
be the resulting map into the product. We claim this is an embedding. First
we show it is injective. For x 6= y, choose a d ∈ D so that d(x, y) ≥ 1. Then
x and y go to distinct elements in X/d and thus X //

∏
X/d is injective. If

we give X/d the unit discrete metric, it is clear that the map into the product
is an embedding.

5.27. Proposition. Suppose X and D are as above and C ⊆ X is closed.
Then for all d ∈ D , the set N(C, d) = {x ∈ X | d(C, x) < 1} is clopen.

PROOF. Suppose y ∈ N(x, d) ∩ N(C, d). Then d(C, y) < 1 so there must
exist c ∈ C such that d(c, y) < 1. From d(x, y) < 1, we infer that d(x, c) <
1 and thus d(C, x) < 1. If z ∈ N(x, d), then we also see that d(z, C) < 1
and therefore N(x, d) ⊆ N(C, d). Clearly N(C, d) is open and so is the
union of all the N(x, d) that do not meet N(C, d) and hence N(C, d) is also
closed.

5.28. Corollary. The set consisting of N(C, d) together with all the N(x, d)
for x /∈ N(C, d) is a clopen partition of X .
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5.29. Corollary. LetXC,d denote the set of partitions as just described, with
the unit discrete metric. Then the map fC,d : X // XC,d that takes each
element to its equivalence class in the partition is uniform.

5.30. Proposition. Suppose X , D , and C ⊆ X are as above. Let fC =
(fC,d) : X //

∏
d∈D XC,d and gC : X //

∏
d∈D XC,d be the map whose

dth coordinate is the constant map at the element {N(C, d)} of XC,d. Then
C is the equalizer of fC and gC .

PROOF. Trivial.

We now have all the elements needed to show:

5.31. Theorem. The limit closure and reflective hull of the discrete uniform
spaces in the category of separated uniform spaces is the category of sepa-
rated, Cooper complete, uniformly totally disconnected spaces.

PROOF. IfX is a limit of discrete uniform spaces, then it is a closed subspace
of a product of such spaces and each factor can be assumed to have the
unit discrete metric. The induced metrics on the product will all be ultra-
pseudometrics and the same is true of any subspace of the product.

For the converse, suppose X is Cooper complete and uniformly totally
disconnected. Then there is a base of ultra-pseudometrics on X for which
the corresponding Xd are all discrete and, by Proposition 5.22, the canonical
map X //

∏
Xd is a uniform closed embedding. The previous proposi-

tion guarantees that X is the equalizer of two maps to a uniformly totally
disconnected space. The latter can, in turn, be embedded in a product of
uniformly discrete spaces, whence X is a limit of uniformly discrete spaces
since Corollary 5.13 applies.

5.32. Corollary. The limit closure and reflective hull of the finite discrete
uniform spaces in the category of separated uniform spaces is the category
of uniformly totally disconnected compact Hausdorff spaces.

PROOF. IfX is compact in the theorem above, then all theX/d are quotients
of X , hence are compact. They are also discrete, hence finite. The converse
is trivial.
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5.33. Corollary. The limit closure and reflective hull of the 2 element dis-
crete spaces in the category of separated uniform spaces is the category of
uniformly totally disconnected compact Hausdorff spaces.

PROOF. Every finite discrete space is a limit of 2 element discrete spaces
and hence the limit closure of a 2 element space includes all finite discrete
spaces and hence has the same limit closure.

5.34. A uniformly totally disconnected metric space is ultrametric. Al-
though this claim is not relevant to the rest of this section, it does answer an
obvious question. We list a series of steps that will verify it. Let X denote a
uniformly totally disconnected metric space with metric d.

1. X is embedded in a product of discrete spaces with metric bounded
by 1. This is clear from the development above.

2. The uniformity on X has a base of bounded ultra-pseudometrics.

3. There is a countable base of bounded ultra-pseudometrics. To see
this, use the fact that the map from X // (X, d) is uniform. Then
for each positive integer n there is a bounded ultra-pseudometric
dn such that for all x, x′ ∈ X , dn(x, x′) < 1 implies d(x, x′) < 1

n
.

Then the set of finite sups of the {dn} are a base for the uniformity.

4. Assume that each dn is bounded by 1. We may also suppose that
d1 ≤ d2 ≤ · · ·. Then d =

∨
1
n
dn is in the saturation of the {dn}.

To see this, we show that X // (X, d) is uniform. If x, x′ ∈ X are
such that di(x, x′) < i

n
for i < n, then obviously d(x, x′) < 1

n
. We

leave to the reader the easy proof that d is an ultrametric.

5. d generates the uniformity. This follows since 1
n
dn ≤ d for all n.

5.35. The non-separated case.
Until now, we have supposed that all uniform spaces were separated,

which is well known to imply that the uniform topology is Hausdorff. We
haven’t explored the non-separated case deeply, but there is one result that
seems to be interesting.
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5.36. Proposition. Let X be a uniform space (not necessarily separated)
and C ⊆ X be a subset. Let X/C denote the quotient in which C is col-
lapsed to a point and equipped with the trivial pseudometric (the distance
between any pair of points is 0). Let f : X //X/C assign to each element
its class and g : X //X/C be constant at {C}. Then f and g are uniform
and C �

� //X is their equalizer.

PROOF. Trivial.

5.37. Theorem. The limit closure and reflective hull of pseudometric spaces
in the category of all (not necessarily separated) uniform spaces is the entire
category.

PROOF. Let (X,D) be a uniform space. For d ∈ D , we let (X, d) denote
the same point set X , but with the uniformity generated by the sole pseu-
dometric d. Then the diagonal X //

∏
(X, d) embeds X uniformly into

the diagonal. Clearly X has the induced uniformity from the product. The
previous proposition shows that X ⊆

∏
(X, d) is an equalizer of two maps

to a pseudometric space.
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