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Introduction

In ordinary homological algebra, if M is an R-module, the usual way of starting to con-
struct a projective resolution of M is to let F be the free R-module generated by the
elements of M and F // M the epimorphism determined by (m) Â // m. One then takes
the kernel of F // M and continues the process. But notice that in the construction of
F // M a lot of structure is customarily overlooked. F is actually a functor MG of M ,
F // M is an instance of a natural transformation G // (identity functor); there is also a
“comultiplication” G // GG which is a little less evident. The functor G, equipped with
these structures, is an example of what is called a standard construction or “cotriple”.

In this paper we start with a category C, a cotriple G in C, and show how resolu-
tions and derived functors or homology can be constructed by means of this tool alone.
The category C will be non-abelian in general (note that even for modules the cotriple
employed fails to respect the additive structure of the category), and the coefficients will
consist of an arbitrary functor E:C // A , where A is an abelian category. For ordinary
homology and cohomology theories, E will be tensoring, homming or deriving with or
into a module of some kind.

To summarize the contents of the paper: In Section 1 we define the derived functors
and give several examples of categories with cotriples. In Section 2 we study the derived
functors Hn( , E)G as functors on C and give several of their properties. In Section 3 we
fix a first variable X ∈ C and study Hn(X, )G as a functor of the abelian variable E.
As such it admits a simple axiomatic characterization. Section 4 considers the case in
which C is additive and shows that the general theory can always, in effect, be reduced
to that case. In Section 5 we study the relation between cotriples and projective classes
(defined—essentially—by Eilenberg-Moore [Eilenberg & Moore (1965)]) and show that
the homology only depends on the projective class defined by the cotriple. Sections 6–9
are concerned largely with various special properties that these derived functors possess
in well known algebraic categories (groups, modules, algebras, . . . ). In Section 10 we
consider the problem of defining a cotriple to produce a given projective class (in a sense,
the converse problem to that studied in Section 5) by means of “models”. We also
compare the results with other theories of derived functors based on models. Section 11
is concerned with some technical items on acyclic models.
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Before beginning the actual homology theory, we give some basic definitions concerning
the simplicial objects which will be used. Let G = (G, ε, δ) be a cotriple in C, that is,

C G // C

G ε // C and G δ // GG

and the unitary and associative laws hold, as given in the Introduction to this volume.
(Note that here and throughout we identify identity maps with the corresponding objects;
thus C denotes the identity functor C // C.) If X is an object in C, the following is an
augmented simplicial object in C:

XGX
ε0oo XG XG2δ0 // XG2XG

ε0oo
XG2XG

ε1

oo · · ·XG2
oo · · ·XG2 oo · · ·XG2
oo

XG2 · · ·//
XG2 · · ·// XGn+1· · · oo

XGn+1· · · oo· · · XGn+1... // · · ·XGn+1
oo · · ·XGn+1
ooXGn+1 · · ·... //

XGn+1 is the n-dimensional component,

εi = GiεGn−i: Gn+1 // Gn and δi = GiδGn−i: Gn+1 // Gn+2

for 0 ≤ i ≤ n, and the usual simplicial identities hold:

εiεj = εj+1εi for i ≤ j

δiδj = δj−1δi for i < j
δiεj =





εj−1δi for i < j − 1

identity for i = j − 1 and i = j

εjδi−1 for i > j.

(composition is from left to right).
If X admits a map s: X // XG such that s ◦Xε = X (such X are called G-projective,

see (2.1)), then the above simplicial object develops a contraction

X
h−1 // XG

h0 // XG2 // · · · // XGn+1 hn // · · ·

namely hn = sGn+1. These operators satisfy the equations

hnε0 = XGn+1 and hnεi = εi−1hn−1

for 0 < i ≤ n+1 and n ≥ −1. They express the fact that the simplicial object (XGn+1)n≥0

is homotopically equivalent to the constant simplicial object which has X in all dimensions.
If (Xn)n≥−1 is a simplicial set with such a contraction, we conclude Πn(X) = 0 for

n > 0, and Π0(X) = X−1.
On the other hand, if E:C // A is a functor into any other category and E possesses

a natural transformation ϑ: E // GE such that ϑ ◦ εE = E, then (XGn+1E)n≥−1 also has
a contraction

XE
h−1 // XGE

h0 // XG2E // · · · // XGn+1E
hn // · · ·
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Here hn = XGn+1ϑ and the identities satisfied are a little different (This is a “right”
homotopy [Kleisli (1967)]):

hnεi = εihn−1 and hnεn+1 = XGn+1E

for 0 ≤ i ≤ n and n ≥ −1. Both here and above some equations involving degeneracies
also hold, but our concern is usually with homology so we omit them.

If the functor E takes values in an abelian category, then as follows from a well known
theorem of J.C. Moore [Moore (1956)] the homotopy in any sense of (XGn+1E)n≥0 is the
same as the homology of the associated chain complex

0 oo XGE oo ∂1 XG2E oo ∂2 · · · oo ∂n XGn+1E oo · · ·

where ∂n =
∑

(−1)iεiE. If there is a contraction, Hn = 0 for n > 0, H0 = XE.

1. Definition of the homology theory Hn(X,E)G

Let X ∈ C, let G = (G, ε, δ) be a cotriple in C, and let E:C // A be a functor into an
abelian category. Applying E to (XGn+1)n≥−1 we get an augmented simplicial object in
A :

XGEXE oo XGE XG2E// XG2EXGE
oo

XG2EXGE oo · · ·XG2E oo · · ·XG2E oo · · ·XG2E
oo

XG2E · · ·//
XG2E · · ·// XGn+1E· · · oo

XGn+1E· · · oo· · · XGn+1E... // · · ·XGn+1E
oo · · ·XGn+1E ooXGn+1E · · ·... //

The homotopy of this simplicial object, or what is the same thing by Moore’s theorem,
the homology of the associated chain complex

0 oo XGE oo ∂1
XG2E oo ∂2 · · ·

is denoted by Hn(X, E)G, for n ≥ 0. These are the homology groups (objects) of
X with coefficients in E relative to the cotriple G. Often G is omitted from the
notation if it is clear from the context.

The homology is functorial with respect to maps X // X1 in C and natural transfor-
mations of the coefficient functors E // E1.

A natural transformation (augmentation)

H0( , E)G
λ=λE // E

is defined by the fact that H0 is a cokernel:

XGE

XE

∂0

ÂÂ?
??

??
??

??
??

??
XGE H0(X,E)// H0(X,E)

XE

λ

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

XG2E XGE
∂1 // H0(X,E) 0//
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λ(H0( , E)) and H0( , λE) coincide since they both fit in the diagram

XG2E XGE// XGE H0(X,E)// H0(X,E) 0//

H0(XG2, E) H0(XG, E)//H0(XG2, E)

XG2E

λ

²²

H0(XG, E) H0(X, H0( , E))//H0(XG, E)

XGE

λ

²²

H0(X, H0( , E))

H0(X,E)
²²

H0(X, H0( , E)) 0//

Thus λ can be viewed as a reflection into the subcategory of all functors E:C // A

with λ: H0( , E)
∼= // E. These are the functors which transform XG2 //// XG // X

into a coequalizer diagram in A , for all X ∈ C, a sort of right exactness property.
The following variations occur. If, dually, T = (T, η, µ) is a triple in C and E:C // A

is a coefficient functor, cohomology groups Hn(X,E)T, for n ≥ 0, are defined by means
of the cochain complex

0 // XTE
d1

// XT 2E
d2

// · · · // XT n+1E
dn

// · · ·

where dn =
∑

(−1)iXηiE for 0 ≤ i ≤ n, and ηi = T iηT n−i.
If G = (G, ε, δ) is a cotriple and E:Cop // A is a functor (or E:C // A is contravari-

ant), the complex would take the form

0 // XGE // XG2E // · · · // XGn+1E // · · ·

In effect this is cohomology with respect to the triple Gop in the dual category. However,
we write the theory as Hn(X,E)G.

For the most part we will only state theorems about the cotriple-covariant functor
situation and leave duals to the reader. Usually cotriples arise from adjoint functors,
although another method of construction will be essayed in Section 10. If F :A // C
is left adjoint to U :C // A, there are well know natural transformations η:A // FU
and ε: UF // C. If we set G = UF , we have ε: G // C, and if we set δ = UηF , then
δ: G // G2.a The relations obeyed by η and ε

F FUF
ηF //F

F

=

ÂÂ?
??

??
??

??
??

??
FUF

F

Fε

²²

U UFU
Uη //U

U

=

ÂÂ?
??

??
??

??
??

??
UFU

U

εU

²²

imply that G = (G, ε, δ) is a cotriple in C. This fact was first recognized by Huber [Huber
(1961)].

aEditor’s footnote: The C here and in the sentence before were B in the original, but as this was a
mistake they are corrected now.
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1.1 Additive example: Homology of modules. Let R-Mod be the category of
(left) R-modules. Let G = (G, ε, δ) be the cotriple generated by the adjoint pair

R-Mod

Set

U

ÂÂ?
??

??
??

??
??

??
R-Mod R-ModG // R-Mod

Set

??

F

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

U is the usual underlying set functor, F a U is the free R-module functor. Thus we
have MG = R(M), the free R-module with the elements of M as basis, and the counit
Mε: Mg // M is the map which takes each basis element into the same element in M (just
the usual way of starting to construct an R-free resolution of M). The comultiplication
Mδ: MG // MG2 we leave to the reader.

Later we shall show that the complex

0 oo M oo ∂0 MG oo ∂1 MG2 oo · · · oo ∂n MGn+1 oo · · ·
where ∂n =

∑
(−1)iMεi for 0 ≤ i ≤ n, is an R-free resolution of M (the only issue is

exactness). Taking as coefficient functors ME = A ⊗R M or ME = HomR(M, A), we
obtain Hn(M,A⊗R ) and Hn(M, HomR( , A)) as n-th homology or cohomology of

0 oo A⊗R MG oo A⊗R MG2 oo · · ·
0 // HomR(MG,A) // HomR(MG2, A) // · · ·

That is, Hn = TorR
n (A,M) and Hn = Extn

R(M, A).
Since R-modules are an additive category and the coefficient functors considered were

additive, we could form the alternating sum of the face operators to obtain a chain complex
in R-Mod before applying the coefficient functor.

As another example of this we mention the Eckmann-Hilton homotopy groups
Πn(M, N) (as re-indexed in accordance with [Huber (1961)]). These are the homol-
ogy groups of the complex

0 oo HomR(M,NG) oo HomR(M,NG2) oo · · ·
Of course, in these examples the homology should have a subscript G to indicate that

the cotriple relative to the underlying category of sets was used to construct the resolution.
Other underlying categories and cotriples are possible. For example, if

K
ϕ // R

is a ring map, we get an adjoint pair

R-Mod

K-Mod
ÂÂ?

??
??

??
??

??
??

R-Mod R-Mod
Gϕ // R-Mod

K-Mod

??

⊗KR

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
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where the underlying [functor] is restriction of operators to K by means of ϕ. We have
MGϕ = M ⊗K R. The standard resolution is

M oo M ⊗K R oooo M ⊗K R⊗K R oooooo · · ·
Using the above coefficient functors we will find that the homology and cohomology are
Hochschild’s K-relative Tor and Ext [Hochschild (1956)]:

Hn(M, A⊗R ) = Torϕ
n(A,M)

Hn(M, HomR( , A)) = Extn
ϕ(M,A)

Hochschild actually considered a subring K // R and wrote Tor(R,K), etc.
We now turn to homology of groups and algebras. A useful device in the non-additive

generalizations of homology theory is the comma category (C, X) of all objects (of a given
category C) over a fixed object X. That is, an object of (C, X) is a map C // X, and
a map of (C, X) is a commutative triangle

C0

X
##GG

GG
GG

GG
C0 C1

// C1

X
{{www

ww
ww

w

A cotriple G = (G, ε, δ) in C naturally operates in (C, X) as well. The resulting cotriple
(G, X) has

(C
p // X)(G,X) = CG Cε // C

p // X

(C // X)(ε,X) =
CG

X
$$JJJ

JJ
CG C

Cε // C

X
zzttttt

(C // X)(δ,X) =
CG

X
$$JJJ

JJ
CG CG2Cδ // CG2

X
zzttt

tt

The standard (G, X)-resolution of an object C // X over X comes out in the form

CGC
ε0oo CG CG2δ0 // CG2CG

ε0oo
CG2CG

ε1

oo · · ·CG2
oo · · ·CG2 oo · · ·CG2
oo

CG2 · · ·//
CG2 · · ·// CGn+1· · · oo

CGn+1· · · oo· · · CGn+1... // · · ·CGn+1
oo · · ·CGn+1
ooCGn+1 · · ·... //C

X
''OOOOOOOOOOOOOOOOOOOOOOO CG

X
ÂÂ?

??
??

??
??

??
??

CG2

X
²²

CGn+1

X
wwoooooooooooooooooooooo

In other words, the usual faces and degeneracies turn out to be maps over X.
Homology groups Hn(C,E)(G,X) are then defined, when E: (C, X) // A is a coefficient

functor. We could write, with greater precision, Hn(p, E)(G,X), or with less, Hn(C, E)X

or Hn(C,E), leaving X understood.
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Usually the coefficient functors involve a module over the terminal object X. This
can be treated as a module over all the objects of (C, X) simultaneously, by pullback
via the structural maps to X. For example, derivations or differentials with values in an
X-module become functors on the category of all algebras over X. This is the way in
which homology and cohomology of algebras arise.

1.2 Homology of groups. Let Gr be the category of groups and G the cotriple arising
from

Gr

Set
U ##GGG

GGG
GG

Gr GrG // Gr

Set

;;

Fwwwwwww

Thus ΠG is the free group on the underlying set of Π, and the counit ΠG // Π is the
natural surjection of the free group onto Π.

If W // Π is a group over Π and M is a left Π-module, a derivation f : W // M
(over Π) is

a function such that (ww′)f = w · w′f + wf (W // Π allows W to act on M). The
abelian group of such derivations, Der(W,M)Π, gives a functor (Gr, Π)op // Ab. We
define the cohomology of W // Π with coefficients in M , Hn(W,M)Π (relative to G) as
the cohomology of the cochain complex

0 // Der(WG, M)Π
// Der(WG2,M)Π

// · · · // Der(WGn+1,M)Π
// · · ·

It is known that this theory coincides with Eilenberg-Mac Lane cohomology except for a
shift in dimension [Barr & Beck (1966)]

Hn(W,M)Π

∼= //

{
Der(W,M)Π for n = 0

Hn+1
E−M(W,M) for n > 0

Derivations W // M are represented by a Π-module of differentials of W (over Π)
which we write as DiffΠ(W ):

Der(W,M)Π ∼= HomW (IW,M)

= HomΠ(ZΠ⊗W IW,M)

Hence DiffΠ(W ) = ZΠ ⊗W IW . (It is well known that the augmentation ideal IW =
ker(ZW // Z) represents derivations of W into W -modules [Cartan & Eilenberg (1956),
MacLane (1963)]. This is fudged by ZΠ⊗W to represent derivations into Π-modules.)

The homology of W // Π with coefficients in a right Π-module M is defined
as the homology of

0 oo M ⊗ZΠ DiffΠ(WG) oo M ⊗ZΠ DiffΠ(WG2) oo · · · oo M ⊗ZΠ DiffΠ(WGn+1) oo · · ·
Then

Hn(W,M)Π

∼= //

{
M ⊗ZΠ DiffΠ(W ) = M ⊗ZΠ IW for n = 0

HE−M
n+1 (W,M) for n > 0
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This is because (DiffΠ(WGn+1))n≥−1 is a Π-free resolution of DiffΠ(W ), and as [Cartan
& Eilenberg (1956), MacLane (1963)] show, the Eilenberg-Mac Lane homology can be
identified with TorZW

n+1(Z, N) = TorZW
n (IW,N). Π-Freeness is because DiffΠ(WG) =

ZΠ⊗W I(WG), and I(WG) is well known to be WG-free. As for acyclicity, the cohomology
of

0 // HomΠ(DiffΠ(W ), Q) // HomΠ(DiffΠ(WG), Q) // · · ·
is zero in all dimensions ≥ −1, if Q is an injective Π-module; this is true because the
cohomology agrees with the Eilenberg-Mac Lane theory, which vanishes on injective coef-
ficient modules. A direct acyclic-models proof of the coincidence of the homology theories
can also be given.

As special cases note: if Π is regarded as a group over Π by means of the identity map
Π // Π, the Hn(Π,M)Π and Hn(Π,M)Π are the ordinary (co-)homology groups of Π with
coefficients in a Π-module. On the other hand, if Π = 1, any W can be considered as a
group over Π. Since a 1-module is just an abelian group, Diff1(W ) = W/[W,W ], [which
is] W abelianized, i.e. with its commutator subgroup divided out. The (co-)homology is
that of W with coefficients in a trivial module.

Remark. [Beck (1967), Barr & Beck (1966)] Via interpretation as split extensions,
Π-modules can be identified with the abelian group objects in the category (Gr, Π).
Der(W,M)Π is then the abelian group of maps in (Gr, Π):

W

Π
##GGGGGGGGW Π×M// Π×M

Π
{{www

www
ww

DiffΠ is just the free abelian group functor, that is, the left adjoint of the forgetful functor

(Gr, Π) oo Ab(Gr, Π) = Π-Mod

where Ab(Gr, Π) denotes the abelian groups in (Gr, Π).

For general triple cohomology this interpretation is essential. In particular, the ana-
logue of Diff exists for any category tripleable over Set, provided the triple has a rank in
the sense of [Linton (1966a)].

For the next example we need the comma category (X,C) of objects and maps in C
under X. An object of this category is a map X // Y , a map is a commutative triangle

Y0 Y1
//

X

Y0

{{ww
ww

ww
ww

X

Y1

##GG
GG

GG
GG

Assuming C has coproducts X ∗ Y , a cotriple G = (G, ε, δ) in C naturally induces a
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cotriple (X,G) = ((X, G), . . .) in (X,C):

(X
f // Y )(X, G) = X // X ∗ Y G (coproduct injection)

(X // Y )(X, ε) =
X ∗ Y G Y

(f,Y ε)
//

X

X ∗ Y G
{{www

www
ww

X

Y
##GGGGGGGG

(X // Y )(X, δ) =
X ∗ Y G X ∗ (X ∗ Y G)G

X∗(Y δ,jG)
//

X

X ∗ Y G
wwooooooooooo X

X ∗ (X ∗ Y G)G
''OOOOOOOOOO

where j: Y G // X ∗ Y G is a coproduct injection.
Actually, the coproduct X∗( ) defines an adjoint pair of functors (X,C) // C // (X,C);

the right adjoint is (X // C) Â // C, the left adjoint is C Â // (X // X ∗ C). By a general
argument [Huber (1961)], the composition

(X,C) // C G // C
X∗( ) // (X,C)

is then a cotriple in (X,C), namely (X,G).
Replacing (X,C) // C // (X,C) by an arbitrary adjoint pair and specializing G to

the identity cotriple proves the remark preceding (1.1).
Homology and cohomology relative to the cotriple (X,G) will be studied in more detail

in Section 8. This cotriple enters in a rather mild way into:

1.3 Homology of commutative rings and algebras. Let Comm be the category
of commutative rings. For A ∈ Comm let (A,Comm) be the category of commutative
rings under A, that is, maps A // B ∈ Comm. Thus (A,Comm) is our notation for the
category of commutative A-algebras. We review the notions of differentials and derivations
in this category.

For the same reason as in the category of groups we place ourselves in a category of alge-
bras over a fixed commutative ring D, that is, in a double comma category (A,Comm, D);
here an object is an A-algebra A // B equipped with a map B // D, and a map is a
commutative diagram

B C//

A

B
{{wwwwwwww

A

C
##GGGGGGGG

B

D
##GGGGGGGGB C// C

D
{{wwwwwwww

If M is a D-module, an A-derivation B // M is an A-linear function satisfying
(bb′)f = b′ · bf + b · b′f , where B ∈ (A,Comm, D) and A and B act on M via the given
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maps A // B // D. Such modules of derivations define a functor

(A,Comm, D)op A-Der( ,M)D // D-Mod

This eventually gives rise to cohomology.
As is well known, any A-derivation B // M , where M is a B-module, factors uniquely

through a B-module map

Ω1
B/A M//_______

B

Ω1
B/A

d

{{wwwwwww
B

M
##GG

GG
GG

GG

where Ω1
B/A is the B-module of A-differentials of B, and d is the universal such

derivation. Ω1
B/A can be viewed as I/I2 where I = ker(B⊗AB // B) and db = b⊗1−1⊗b,

or as the free B-module on symbols db modulo d(b+ b′) = db+db′ as well as d(ab) = a ·db
and d(bb′) = b′ ·db+b·db′ [Lichtenbaum & Schlessinger (1967), Grothendieck & Dieudonné
(1964)]. [A] universal [object] for A-derivations of B // M , where M is a D-module, is
then

DiffD(A // B) = Ω1
B/A ⊗B D

The functor which is usually used as coefficients for homology is

(A,Comm, D)
DiffD(A // ( ))⊗DM=Ω1

( )/A
⊗( )M

// D-Mod

There are two natural ways of defining homology in the category of A-algebras (over D),
depending on the choice of cotriple, or equivalently, choice of the underlying category.

First let G = (G, ε, δ) be the cotriple in the category of commutative rings arising
from the adjoint pair

Comm

Set

U

ÂÂ?
??

??
??

??
??

??
Comm CommG // Comm

Set

??

F

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

Then CG = Z[C], the polynomial ring with the elements of C as variables; the counit
CG // C is the map defined by sending the variable c [to the element] c ∈ C. This
cotriple operates in (Comm, D) in the natural fashion described before (1.2).

Now consider the category (A,Comm) of commutative A-algebras. According to the
remarks preceding this section, G gives rise to a cotriple (A,G) in this category. Since
the coproduct in the category Comm is A⊗Z B, we have

(A // C)(A,G) = A // A⊗Z CG

= A // A⊗Z Z[C]

= A // A[C]
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the polynomial A-algebra with the elements of C as variables. This cotriple is just that
which is induced by the underlying set and free A-algebra functors

(A,Comm)

Set

U

ÂÂ?
??

??
??

??
??

?
(A,Comm) (A,Comm)

(A,G) // (A,Comm)

Set

??

F

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Furthermore, (A,G) operates in the category of A-algebras over D, (A,Comm, D), the
values of (A,G, D) being given by:

D D

C

D
²²

C A[C]A[C]

D
²²

C A[C]Â //

A

C
²²

A AA

A[C]
²²













The counit is:

A[C] C//

A

A[C]
{{wwwwwww

A

C
##GGGGGGGG

A[C]

D
##GGGGGGG

A[C] Cε // C

D
{{wwwwwwww

If M is a D-module we thus have homology and cohomology D-modules Hn(C, M)
and Hn(C, M) for n ≥ 0, writing simply C for an A-algebra over D. These are defined
by

Hn(C,M) = Hn[(DiffD(C(A,G)p+1)⊗D M)p≥0]

= Hn[(Ω1
A[···[C]··· ]/A ⊗A M)p≥0]

where there are p + 1 applications of the A-polynomial operation to C in dimension p,
and by

Hn(C,M) = Hn[(A-DerD(C(A,G)p+1,M))p≥0]

= Hn[(A-DerD(A[· · · [C] · · · ],M))p≥0]

again with p + 1 A[ ]’s.
This homology theory of commutative algebras over D coincides with those considered

in [André (1967), Quillen (1967)]; of course, one generally simplifies the setting slightly
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by taking C = D above. Both of these papers contain proofs that the cotriple theory
coincides with theirs. The homology theory of [Lichtenbaum & Schlessinger (1967)] also
agrees.

This theory, however it is described, is called the “absolute” homology theory of
commutative algebras. The term arises as a reference to the underlying category which is
involved, namely that of sets; no underlying object functor could forget more structure.
But it also seems germane to consider so-called relative homology theories of algebras
for which the underlying category is something else, usually a category of modules.

As an example of this, consider the homology theory in (A,Comm) comming from
the adjoint functors

(A,Comm)

A−Mod

U

ÂÂ?
??

??
??

??
??

?
(A,Comm) (A,Comm)

GA // (A,Comm)

A−Mod

??

F

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

That is

(A // C)GA = A + C +
C ⊗A C

S2

+
C ⊗A C ⊗A C

S3

+ · · ·

the symmetric A-algebra on C (the S’s are the symmetric groups). Note that this cotriple
is not of the form (A,G) for any cotriple G on the category of commutative rings. Exactly
as above we now have homology and cohomology groups

Hn(C,M) = Hn[(DiffD(CGp+1
A )⊗D M)p≥0]

= Hn[(Ω1
CGp+1

A /A
⊗D M)p≥0]

Hn(C,M) = Hn[(A-Der(CGp+1
A ,M)D)p≥0]

where M is a D-module, and we are writing C instead of A // C for an A-algebra.
These two cohomology theories should really be distinguished by indicating the cotriple

used to define them:

Hn(C, M)(A,G) = absolute theory, relative to sets

Hn(C,M)GA
= theory relative to A-modules

The following is an indication of the difference between them: if C = D and M is a
C-module, then H1(C, M)(A,G) classifies commutative A-algebra extensions E // C such

that I = ker(E // C) is an ideal of E with I2 = 0, and such that there exists a lifting of
the counit

C(A,G) C//

E

C(A,G)

??

Ä
Ä

Ä
Ä

Ä
Ä

Ä
E

C
²²
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H1(C, M)GA
classifies those extensions with kernel of square zero that have liftings

CGA C//

E

CGA

??

Ä
Ä

Ä
Ä

Ä
Ä

Ä
E

C
²²

The absolute lifting condition is equivalent to the existence of a set section of E // C,
i.e. to surjectivity, the A-relative condition to the existence of an A-linear splitting of
E // C, as one can easily check. The relative theory is thus insensitive to purely A-linear
phenomena, while the absolute theory takes all the structure into account. (We refer to
[Beck (1967)] for details on classification of extensions).

The A-relative cohomology theory has been studied but little. Harrison has given
an A-relative theory in [Harrison (1962)] (A was a ground field but his formulas are
meaningful for any commutative ring). Barr [Barr (1968)] has proved that

Hn(C, M) ∼=
{

Der(C, M) for n = 0

Harrn+1(C,M) for n > 0

if A is a field of characteristic zero.

1.4 Homology of associative K-algebras. Let GK be the cotriple relative to the
underlying category of K-modules:

K-Alg

K-Mod

F

ÂÂ?
??

??
??

??
??

?
K-Alg K-Alg

GK // K-Alg

K-Mod

??

U

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Thus if Λ is an associative algebra with unit over the commutative ring K, then

ΛGK = K + Λ + Λ⊗ Λ + · · ·
the K-tensor algebra.

If Γ // Λ and M is a Λ-Λ-bimodule, we define Hn(Γ,M)Λ as the cohomology of the
cosimplicial object

0 // Der(ΓGK ,M)Λ
// // Der(ΓG2

K ,M)Λ
////// · · · // Der(ΓGn+1

K ,M)Λ
// · · ·

It is known that this coincides with Hochschild cohomology [Barr (1966), Barr & Beck
(1966)]:

Hn(Γ,M)Λ

∼= //

{
Der(Γ,M) for n = 0

Hochn+1(Γ,M) for n > 0
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The universal object for K-linear derivations Γ // M , where M is a two-sided Λ-
module, is

DiffΛ(Γ) = DiffΓ(Γ)⊗Γe Λe = Λ⊗Γ JΓ⊗Γ Λ

where JΓ is the kernel of the multiplication Γe = Γ⊗K Γop // Γ and represents derivations
of Γ into Γ-modules [Cartan & Eilenberg (1956), MacLane (1963)]. The homology of
Γ // Λ with coefficients in M is defined as the homology of the complex

0 oo DiffΛ(ΓGK)⊗Λe M oo ∂1 DiffΛ(ΓG2
K)⊗Λe M oo ∂2 · · ·

[Barr (1966)] proves that (DiffΛ(ΓGn+1
K ))n≥−1 is a K-contractible complex of Λe-modules

which are free relative to the underlying category of K-modules. Thus

Hn(Γ,M)
∼= //

{
DiffΛ(Γ)⊗Λe M for n = 0

Hochn+1(Γ,M) for n > 0

the last being Hochschild homology as defined in [MacLane (1963), Chapter X].
The foregoing is a K-relative homology theory for associative K-algebras, in the sense

of (1.3). There is also an absolute theory, due to Shukla [Shukla (1961)], which Barr has
proved coincides with the cotriple theory relative to the category of sets (with the usual
dimension shift) [Barr (1967)]. We shall not deal with this absolute theory in this paper.

This concludes the present selection of examples. A further flock of examples will
appear in Section 10.

2. Properties of the Hn(X, E)G as functors of X, including exact sequences

Objects of the form XG, that is, values of the cotriple G, can be thought of as free
relative to the cotriple. Free objects are acyclic:

Proposition (2.1).

H0(XG, E)G
λ
∼=

// XGE

Hn(XG, E)G = 0 for n > 0

An object P is called G-projective if P is a retract of some value of G, or equivalently,
if there is a map s: P // PG such that s ◦Pε = P . G-projectives obviously have the same
acyclicity property.

To prove (2.1), we just recall from the Introduction that there is a contraction in the
simplicial object (XGGn+1E)n≥−1.

If f : X // Y in C, we define “relative groups” or homology groups of the map,
Hn(f, E)G for n ≥ 0, such that the following holds:
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Proposition (2.2). If X // Y in C, there is an exact sequence

· · · Hn(X,E)G// Hn(X,E)G Hn(Y,E)G// Hn(Y,E)G Hn(X // Y , E)G// Hn(X // Y , E)G

Hn−1(X, E)G

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(X, E)G · · ·// · · · H0(X // Y , E)G// H0(X // Y , E)G 0//

Proposition (2.3). If X // Y // Z in C, there is an exact sequence

· · · Hn(X // Y , E)G// Hn(X // Y , E)G Hn(X // Z,E)G// Hn(X // Z,E)G Hn(Y // Z,E)G// Hn(Y // Z,E)G

Hn−1(X // Y , E)G

∂

ssgggggggggggggggggggggggggggggggggg

Hn−1(X // Y , E)G · · ·// · · · H0(Y // Z, E)G// H0(Y // Z, E)G 0//

If 0 is an initial object in C, that is, if there is a unique map 0 // X for every X, then
0 is G-projective and

H0(X, E)
∼= // H0(0 // X,E)

Hn(X, E)
∼= // Hn(XG

ε // X,E) for n > 0

Examples of these sequences will be deferred to Section 8. There we will show that
under certain conditions the homology group Hn(X // Y,E) can be interpreted as a
cotriple homology group relative to the natural cotriple in the category (X, C). For one
thing, it will turn out that the homology of a map of commutative rings, Hn(A // B), is
just the homology of B as an A-algebra.

Imitative though these sequences may be of theorems in algebraic topology, we don’t
know how to state a uniqueness theorem for G-homology in our present context.

As to the definition of the relative groups, we just let

Hn(X
f // Y, E)G = Hn(Cf)

where Cf is the mapping cone of the chain transformation

fGn+1E: XGn+1E // Y Gn+1E for n ≥ 0

That is,

(CF )n =

{
Y Gn+1E ⊕XGnE for n > 0

Y GE for n = 0

∂n =

(
∂Y 0

fGn+1E −∂X

)
: (Cf)n

// (Cf)n−1 for n ≥ 2

∂1 =

(
∂Y

fGE

)
: (Cf)1

// (Cf)0
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(These matrices act on row vectors from the right, ∂X and ∂Y indicate boundary operators
in the standard complexes of X and Y .)

(2.2) follows from the exact sequence of chain complexes

0 // (Y Gn+1E)n≥0
// Cf Π // (XGn+1E)n≥0

// 0

where the projection Π is a chain transformation of degree −1.
(2.3) follows from (2.2) by routine algebraic manipulation ([Eilenberg & Steenrod

(1952), Wall (1966)]).

3. Axioms for the Hn(X, E)G as functors of the abelian variable E

In this section we show that the functors Hn( , E)G : C // A are characterized by the
following two properties. (In Section 4 it will appear that they are characterized by a
little bit less.)

3.1. G-acyclicity.

H0( , GE)G
∼=
λ

// GE,

Hn( , GE)G = 0, n > 0.

3.2. G-connectedness. If 0 // E ′ // E // E ′′ // 0 is a G-short exact sequence of
functors C // A , then there is a long exact sequence in homology:

· · · Hn( , E ′)G// Hn( , E ′)G Hn( , E)G// Hn( , E)G Hn( , E ′′)G// Hn( , E ′′)G

Hn−1( , E ′)G

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1( , E ′)G · · ·// · · · H0( , E ′′)G// H0( , E ′′)G 0//

The acyclicity is trivial: as mentioned in the Introduction, the simplicial object XG∗GE
always has a contraction by virtue of

GE
δE // G(GE).

For the homology sequence, we define a sequence of functors 0 // E ′ // E // E ′′ // 0 to
be G-exact if it is exact in the (abelian) functor category (C, A ) after being composed
with G : C // C, i.e., if and only if 0 // XGE ′ // XGE // XGE ′′ // 0 is an exact
sequence in A for every object X ∈ C. In this event we get a short exact sequence of
chain complexes in A ,

0 // (XGn+1E ′) // (XGn+1E) // (XGn+1E ′′) // 0, n ≥ −1,

from which the homology sequence is standard.
Next we show that properties 3.1 and 3.2 are characteristic of the homology theory

HG. Define L = (Ln, λ, ∂) to be a theory of G-left derived functors if:
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1. L assigns to every functor E : C // A a sequence of functors LnE : C // A , and
to every natural transformation ϑ : E // E1 a sequence of natural transformations
Lnϑ : LnE

// LnE1, n ≥ 0, such that Ln(ϑϑ1) = Ln(ϑ) · Ln(ϑ1);

2. λ is a natural transformation L0E
// E which has property 3.1 for every functor

which is of the form GE;

3. whenever 0 // E ′ // E // E ′′ // 0 is a G-exact sequence of functors C // A ,
then there is a long exact homology sequence

· · · LnE
′// LnE
′ LnE// LnE LnE

′′// LnE
′′

Ln−1E
′

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Ln−1E
′ · · ·// · · · L0E

′′// L0E
′′ 0//

where ∂ actually depends on the given sequence, of course, and

LnF
′′ Ln−1F

′
∂

//

LnE
′′

LnF
′′

²²

LnE
′′ Ln−1E

′∂ // Ln−1E
′

Ln−1F
′

²²

commutes for every map of G-short exact sequences

0 F ′// F ′ F// F F ′′// F ′′ 0//

0 E ′// E ′ E//E ′

F ′
²²

E E ′′//E

F
²²

E ′′

F ′′
²²

E ′′ 0//

We now prove a uniqueness theorem for G-left derived functors. A proof in purely
abelian-category language exists also, in fact, has existed for a long time (cf. [Röhrl
(1962)] and F. Ulmer’s paper in this volume.)

Theorem (3.3). If L is a theory of G-left derived functors, then there exists a unique
family of natural isomorphisms

LnE
σn // Hn( , E)G, n ≥ 0,

which are natural in E, and are compatible with the augmentations

L0E

E
ÂÂ?

??
??

??
??

??
?

L0E H0( , E)G
σ0 // H0( , E)G

E
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ



Michael Barr and Jon Beck 18

and connecting homomorphisms

Hn( , E ′′)G Hn−1( , E ′)G∂
//

LnE
′′

Hn( , E ′′)G

σn

²²

LnE
′′ Ln−1E

′∂ // Ln−1E
′

Hn−1( , E ′)G

σn−1

²²

corresponding to G-short exact sequences.

Proof. In this proof we write Hn( , E) for Hn( , E)G.
As we shall prove in a moment, the following is a consequence of G-connectedness:

Lemma (3.4). L0(G
2E)

L0∂1 // L0(GE)
L0∂0 // L0E // 0 is an exact sequence in the

functor category (C, A ).

Supposing that λ is a natural transformation L0E
// E which is natural in E as well,

we get a unique map of the cokernels

G2E GE// GE H0( , E)// H0( , E) 0//

L0(G
2E) L0(GE)//L0(G
2E)

G2E

λ

²²

L0(GE) L0E//L0(GE)

GE

λ

²²

L0E

H0( , E)

σ0

²²

L0E 0//

which is compatible with the augmentations:

L0E

E

λ

ÂÂ?
??

??
??

??
??

?
L0E H0( , E)

σ0 // H0( , E)

E

λ

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Now extend σ0 inductively to a map of G-connected theories, σn : LnE // Hn( , E) for
all n ≥ 0, as follows. Let N = ker(GE // E) so that

0 // N i // GE // E // 0

is an exact sequence of functors, a fortiori G-exact as well. As σ0 is obviously natural in
the E variable, we get a diagram

0 H1( , E)// H1( , E) H0( , N)
∂

// H0( , N) H0( , GE)//

L1E L0N
∂ //L1E

H1( , E)

σ1

²²

L0N L0(GE)//L0N

H0( , N)

σ0

²²

L0(GE)

H0( , GE)

σ0

²²
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the bottom row being exact by virtue of H1( , GE) = 0. This defines σ1. For σn, n ≥ 2,
use the diagram

(3.6)

Hn( , E) Hn−1( , N)
∂

∼= //

LnE

Hn( , E)

σn

²²

LnE Ln−1N
∂ // Ln−1N

Hn−1( , N)

σn−1

²²
0 Hn( , E)// Hn−1( , N) 0//

This defines all of the maps σn. But to have a map of G-connected homology theories,
we must verify that each square

Hn( , E ′′) Hn−1( , E ′)
∂

//

LnE ′′

Hn( , E ′′)

σn

²²

LnE ′′ Ln−1E
′∂ // Ln−1E
′

Hn−1( , E ′)

σn−1

²²

corresponding to a G-exact sequence 0 // E ′ // E // E ′′ // 0 commutes.
We prove this first for σ1 and σ0, using what is basically the classical abelian-categories

method. We are indebted to F. Ulmer for pointing it out. Form the diagram

0 N ′′// N ′′ GE ′′// GE ′′ E ′′// E ′′ 0//

0 M// M GE//M

N ′′
²²

GE E ′′//GE

GE ′′
²²

E ′′

E ′′

=

²²

E ′′ 0//

where M is ker(GE // E ′′). The left vertical arrow exists by virtue of N ′′ being
ker(GE ′′ // E ′′). This induces

(3.7)

0 H1( , E ′′)// H1( , E ′′) H0( ,M)
∂

// H0( ,M) H0( , N ′′)//

L1E
′′ L0M//L1E
′′

H1( , E ′′)

σ1

²²

L0M L0N
′′//L0M

H0( ,M)

σ0

²²

L0N
′′

H0( , N ′′)

σ0

²²

Since the map labeled ∂ is the kernel of H0( ,M) // H0( , GE), there exists a map
L1E

′′ // H1( , E ′′) such that the left square commutes. As the right square com-
mutes by naturality of σ0, the outer rectangle commutes when this unknown map
L1E

′′ // H1( , E ′′) is inserted. But this is exactly the property which determines σ1
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uniquely. Thus the left square commutes with σ1 put in. As there is obviously a map

0 E ′// E ′ E// E E ′′// E ′′ 0//

0 M// M GE//M

E ′
²²

GE E ′′//GE

E
²²

E ′′

E ′′

=

²²

E ′′ 0//

a prism is induced:

H1( , E ′′) H0( ,M)//

L1E
′′

H1( , E ′′)

σ1

²²

L1E
′′ L0M// L0M

H0( ,M)

σ0

²²

L1E
′′

L0E
′

∂ %%LLLLLLL
L1E

′′ L0M// L0M

L0E
′

yyrrrrrrr

H1( , E ′′)

H0( , E ′)
∂ %%LLLLLLL

H1( , E ′′) H0( ,M)H0( ,M)

H0( , E ′)
yyrrrrrrr

L0E
′

H0( , E ′)

σ0

²²

The top and bottom commute by naturality of the connecting homomorphisms in the L-
and H( , )-theories, the right front face commutes by naturality of σ0, the back commutes
as it is the left square of 3.7, so the left front face also commutes, q.e.d.

The proof that the σn are compatible with connecting homomorphisms in dimensions
> 1 is similar.

Finally, assuming that the theory L also satisfies the acyclicity condition 2. (or 3.1):

L0(GE)
∼=
λ

// GE,

Ln(GE) = 0, n > 0,

then from 3.5, σ0 : L0E
∼= // H0( , E), and inductively from 3.7, σn : LnE

∼= // Hn( , E)
for n > 0. This completes the uniqueness proof, except for Lemma 3.4.

Let 0 // N // GE // E // 0 be exact, as above, and let ν : G2E // N be defined
by the kernel property:

(3.8)

N GE
i

//

G2E

N

ν

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
G2E

GE

∂1

²²
0 N// GE E

∂0

// E 0//
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Then

H0( , N) H0( , GE)//

H0( , G2E)

H0( , N)

H0( ,ν)

zzvvvvvvvvvvvvvvv
H0( , G2E)

H0( , GE)

H0( ,∂1)

²²
H0( , GE) H0( , E)

H0( ,∂0)
// H0( , E) 0//

has an exact bottom row as 0 // N // · · · is G-exact as well. To prove H0( , ∂1)
and H0( , ∂0) exact it suffices to prove that H0( , ν) is onto. Let K = ker ν, so that
0 // K // G2E // N is exact. Composing this with G, it is enough to show that

0 // GK // GG2E Gν // GN // 0

is exact, which just means Gν onto (in fact it turns out to be split). If we apply G to 3.8,
we get

GN GGE
Gi //

GG2E

GN

Gν

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
GG2E

GGE

OO

h0

GN GGEoo
j

GG2E

GN

Gν

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
GG2E

GGE

G∂1

²²
0 GN// GGE GE

G∂0 //
GGE GEoo

h−i

GE 0//

where the contracting maps h−1 and h0 obey G∂0 · h−1 + h0 · G∂1 = GGE, among other
things, and the bottom row is split (h−1 = δE and h0 = δGE). Now Gν splits, for
Gi · h0 ·Gν = GN . Since Gi is a monomorphism it suffices to prove Gi · h0 ·Gν ·Gi = Gi.
But

Gi · h0 ·G(νi) = Gi · h0 ·G∂1

= Gi · (GGE −G∂0 · h−1)

= Gi−G(i∂0) · h−1

= Gi

since i∂0 is zero.

4. Homology in additive categories

Now we assume that C is an additive category and G = (G, ε, δ) is a cotriple in C. It is
not necessary to suppose that G : C // C is additive or even that 0G = 0.

If E : C //A is a coefficient functor, and this is assumed to be additive, the homology
functors Hn( , E)G : C // A are defined as before, and are additive. They admit of an
axiomatic characterization like that in homological algebra (cf. 4.5).
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G-projectives play a big role in the additive case. We recall P ∈ C is G-projective if
there is a map s : P // PG such that s · Pε = P . A useful fact, holding in any category,
is that the coproduct P ∗Q of G-projectives is again G-projective.

P ∗Q PG ∗QGs∗t //P ∗Q

P ∗Q

=

$$HHHHHHHHHHHHHHH
PG ∗QG (P ∗Q)G//PG ∗QG

P ∗Q

ε∗ε

²²

(P ∗Q)G

P ∗Q

ε

zzvvvvvvvvvvvvvvv

In an additive category the coproduct is P ⊕ Q. We assume from now on that C is
additive.

Definition 4.1.

X ′ i // X
j // X ′′

is G-exact (G-acyclic) if ij = 0 and (AG,X ′) // (AG,X) // (AG,X ′′) is an exact
sequence of abelian groups for all A ∈ C, or equivalently, if ij = 0 and

(P, X ′) // (P, X) // (P,X ′′)

is an exact sequence of abelian groups for every G-projective P . A G-resolution of X is
a sequence 0 oo X oo X0

oo X1
oo · · · which is G-acyclic and in which X0, X1,. . . are

G-projective.

The usual facts about G-resolutions can be proved:

4.2 Existence and comparison theorem. G-resolutions always exist. If

0 oo X oo X0
oo X1

oo · · ·

is a G-projective complex and 0 oo Y oo Y0
oo Y1

oo · · · is a G-acyclic complex then
any f : X // Y can be extended to a map of complexes

Y Y0
oo Y0 Y1

oo

X X0
ooX

Y

f

²²

X0 X1
ooX0

Y0

f0

²²

X1

Y1

f1

²²

0 Xoo

0 Yoo

X1 · · ·oo

Y1 · · ·oo

Any two such extensions are chain homotopic.
In fact,

0 oo X oo ∂0 XG oo ∂1 XG2 oo · · ·
is a G-resolution of X if we let ∂n =

∑
(−1)iXεi. It is a G-projective complex, and if

AG is hommed into the underlying augmented simplicial object XG∗, XG∗? the resulting
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simplicial set has a contraction (AG,X)
h−1 //(AG,XG)

h0 //(AG,XG2)
h1 // · · · defined

by x · hn = Aδ · xG for x : AG // XGn+1. Thus the simplicial group (AG,XG∗) has no
homotopy, or homology, with respect to the boundary operators (AG, ∂n).

The rest of the comparison theorem is proved just as in homological algebra.
Now we characterize the homology theory Hn( , E)G : C // A by axioms on the C

variable. In doing this we use finite projective limits in C, although we still refrain from
assuming G additive. We do assume that the coefficient functor E : C // A is additive,
which forces additivity of the homology functors. The axioms we get are:

4.3. G-acyclicity. If P is G-projective, then

H0(P, E)G
∼=
λ

// PE,

Hn(P,E)G = 0, n > 0.

4.4. G-connectedness. If 0 // X ′ // X // X ′′ // 0 is a G-exact sequence in C, then
there is a long exact sequence in homology:

· · · Hn(X ′, E)G// Hn(X ′, E)G Hn(X, E)G// Hn(X, E)G Hn(X ′′, E)G// Hn(X ′′, E)G

Hn−1(X
′, E)G

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(X
′, E)G · · ·// · · · H0(X

′′, E)G// H0(X
′′, E)G 0//

The connecting maps are natural with respect to maps of G-exact sequences

0 Y ′// Y ′ Y// Y Y ′′// Y ′′ 0//

0 X ′// X ′ X//X ′

Y ′
²²

X X ′′//X

Y
²²

X ′′

Y ′′
²²

X ′′ 0//

It follows from 4.4 that if X = X ′ ⊕X ′′, then the canonical map

Hn(X ′, E)G ⊕Hn(X ′′, E)G // Hn(X ′ ⊕X ′′, E)G

is an isomorphism, n ≥ 0. Thus the Hn( , E)G are additive functors.
We are able to prove the following characterization:

4.5 Uniqueness. If E0
λ //E is a natural transformation, and E1, E2,. . . , ∂ is a sequence

of functors together with a family of connecting homomorphisms satisfying 4.3 and 4.4,

then there is a unique isomorphism of connected sequences σn : En

∼= //Hn( , E)G, n ≥ 0,
which commutes with the augmentations E0

// E and H0( , E)G // E.
For the proofs of the above, 4.3 = 2.1. For 4.4, we assume that C has splitting

idempotents. This causes no difficulty as G can clearly be extended to the idempotent
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completion of C and any abelian category valued functor can be likewise extended [Freyd
(1964)]. Moreover, it is clear that this process does not affect the derived functors. (Or
assume that C has kernels.)

Now if 0 // X ′ // X // X ′′ // 0 is G-exact it follows from exactness of

(X ′′G,X) // (X ′′G,X ′′) // 0

that there is a map X ′′G // X whose composite with X // X ′′ is X ′′ε. Applying G to

it we have X ′′G X′′δ // X ′′G2 // XG which splits XG // X ′′G. By our assumption we
can find X0 so that

0 // X0
// XG // X ′′G // 0

is split exact. X0 being presented as a retract of a free is G-projective. Also, the composite

X0 XG// XG

X
²²

X X ′′//

is zero and we can find X0
// X ′ so that

X ′ X//

X0

X ′
²²

X0 XG// XG

X
²²

commutes. Continuing in this fashion we have a weakly split exact sequence of complexes

Xn0 // Xn XGn+1// XGn+1 X ′′Gn+1// X ′′Gn+1 0//

...
...

...

Xn

²²

...
...

...

XGn+1
²²

...

X ′′Gn+1
²²

...
...
...

...

Xn

...

²²

XGn+1

...

²²

X ′′Gn+1

...

²²

X00 // X0 XG// XG X ′′G// X ′′G 0//

...
...

...

X0

²²

...
...

...

XG
²²

...

X ′′G
²²

X ′0 // X ′

0
²²

X ′ X// X X ′′//X

0
²²

X ′′ 0//X ′′

0
²²

X0

X ′
²²

XG

X
²²

X ′′G

X ′′
²²
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Homming a Y G into it produces a weakly split exact sequence of abelian group complexes,
two of which are exact, and so, by the exactness of the homology triangle, is the third.
But then the first column is a G-projective resolution of X ′ and the result easily follows.

For uniqueness, 4.5, C must have kernels, and the argument follows the classical
prescription (Section 3). This i s reasonable, for otherwise there wouldn’t be enough exact
sequences for 4.4 to be much of a restriction. First, XG2E0

// XGE0
// XE0

// 0 is
exact in A . Using λ : E0

// E one gets a unique σ0 : E0
// H0( , E) which is compatible

with the augmentations:

E0

E

λ

ÂÂ?
??

??
??

??
??

?
E0 H0( , E)// H0( , E)

E

λ

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Letting N = ker(XG // X), the sequence 0 // N // XG // X // 0 is G-exact.
σ1 : E1

// H1( , E) is uniquely determined by

0 H1(X,E)// H1(X,E) H0(N,E)// H0(N,E) H0(XG, E)//

XE1 NE0
//XE1

H1(X,E)

σ1

²²

NE0 XGE0
//NE0

H0(N,E)

σ0

²²

XGE0

H0(XG, E)

σ0

²²

σn similarly. Now the argument of the uniqueness part of 3.3 goes through and shows
that the σ’s commute with all connecting maps. Finally, if the En are G-acyclic (4.3), the
σn are isomorphisms.

As examples we cite TorR
n (A,M) and Extn

R(M,A) obtained as G-derived functors, or
G-homology, of the coefficient functors

R-Mod
A⊗R // Ab

R-Mod
op HomR( ,A) // Ab

relative to the free R-module cotriple (1.1). Proved in this section are additivity of these
functors and their usual axiomatic characterizations.

Similarly one gets axioms for the K-relative Tor and Ext (1.1), and for the pure Tor
and Ext defined in Section 10.

4.6 Application to Section 3. Let C be arbitrary, G a cotriple in C. Let G operate
in the functor category (C,A ) by composition. The resulting cotriple is called (G,A ):

(E)(G,A ) = GE
(E)(ε,A )=εE // E,

(E)(G,A ) = GE
(E)(δ,A )=δE // G2E = (E)(G,A )2.
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Iterating this cotriple in the usual way, we build up a simplicial functor

E(G,A )E
(ε,A )0oo E(G,A ) E(G,A )2(δ,A )0

// E(G,A )2E(G,A )
(ε,A )0oo

E(G,A )2E(G,A )
(ε,A )1

oo · · ·E(G,A )2
oo · · ·E(G,A )2 oo · · ·E(G,A )2
oo

E(G,A )2 · · ·//
E(G,A )2 · · ·// E(G,A )n+1· · · oo

E(G,A )n+1· · · oo· · · E(G,A )n+1... // · · ·E(G,A )n+1
oo · · ·E(G,A )n+1
ooE(G,A )n+1 · · ·... //

from C // A . Rewritten, this is

GEE oo GE G2E// G2EGE
oo

G2EGE oo · · ·G2E oo · · ·G2E oo · · ·G2E
oo

G2E · · ·//G2E · · ·// Gn+1E· · · oo
Gn+1E· · · oo· · · Gn+1E... // · · ·Gn+1E

oo · · ·Gn+1E ooGn+1E · · ·... //

Note that the i-th operator (ε, A )i : (E)(G, A )n+1 // (E)(G,A )n is actually εn−iE us-
ing the notation of the Introduction (dual spaces cause transposition). But reversing
the numbering of face and degeneracy operators in a simplicial object does not change
homotopy or homology. Therefore

Hn(E, id)(G,A ) = Hn( , E)G, n ≥ 0;

on the left coefficients are in the identity functor (C,A ) // (C, A ).
Thus the homology theory H( , E)G can always be obtained from a cotriple on an

additive (even abelian) category, and the cotriple can be assumed additive. How can the
axioms of this section be translated into axioms for the Hn( , E)G in general?

The (G,A )-projective functors are just the retracts of functors of the form GE. Thus
the acyclicity axiom 4.3 becomes:

H0( , E)G
∼=
λ

// E,

Hn( , E)G = 0, n > 0,

if E is (G,A )-projective; this is equivalent to 3.1.
For the homology sequence, 0 // E ′ // E // E ′′ // 0 will be (G,A )-exact if and

only if 0 // GE ′ // GE // GE ′′ // 0 is split exact in the functor category. (Prove this
considering the picture

0 E ′// E ′ E// E E ′′//

GE ′′

E

s

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
GE ′′

E ′′
²²

E ′′ 0//

GE ′′ δE′′ // G2E ′′ Gs // GE splits the sequence.) (G,A )-exactness +3 G-exactness
as defined in 3.2. The homology sequence axiom of this section is weaker than that of
Section 3: it requires the exact homology sequence to be produced for a smaller class of
short exact sequences.

Concepts equivalent to (G, A )-projectivity and -exactness have recently been em-
ployed by Mac Lane to give a projective complex // acyclic complex form to the cotriple
acyclic-models comparison theorem 11.1 (unpublished). In particular, G-representability
in the acyclic-models sense (existence of ϑ : E // GE splitting the counit εE : GE // E)
is the same thing as (G, A )-projectivity, G-contractibility is the same as (G,A )-acyclicity.
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4.7 Application to extensions. Let an n-dimensional G-extension of X by Y be
a G-exact sequence

0 // Y // Xn−1
// · · · // X0

// X // 0, n > 0.

Under the usual Yoneda equivalence these form a set En(X, Y )G. E0(X, Y )G = (X,Y ),
the hom set in C (which is independent of G). Using the comparison theorem 4.2, an
extension gives rise to a map of complexes

0 Y// Y Xn−1
// Xn−1 · · ·//

XGn+1 XGn//XGn+1

Y

a

²²

XGn · · ·//XGn

Xn−1

²²

· · ·

· · ·

· · · XGn+1//

· · · X0
// X0 X// X 0//

· · · XG//· · ·

· · ·

XG X//XG

X0

²²

X

X

=

²²

X 0//

The map a is an n-cocycle of X with values in the representable functor ( , Y ) : C
op // Ab.

We get in this way a map

En(X, Y )G // Hn(X, Y )G, n ≥ 0

(in dimension 0, any X // Y determines a 0-cocycle XG // X // Y ).
In practice cotriples often have the property that XG2 //// XG // X is always a

coequalizer diagram. In this case,

En(X, Y )G // Hn(X, Y )G

is an isomorphism for n = 0, and a monomorphism for n > 0. If G is the free cotriple in
a tripleable adjoint pair C // A // C this coequalizer condition holds; in fact, in that
case

En(X, Y )G
∼= // Hn(X, Y )G, n ≥ 0,

as is proved in [Beck (1967)].
In categories of modules or abelian categories with projective generators [Huber

(1962)], this gives the usual cohomological classification of extensions.

5. General notion of a G-resolution and the fact that the homology depends
on the G-projectives alone

There is no shortage of resolutions from which the G-homology can in principle be com-
puted, as the standard one always exists. But it would be nice to be able to choose more
convenient resolutions in particular problems, and have available something like the addi-
tive comparison theorem (Section 4) in order to relate them to the standard resolutions.
In fact a simplicial comparison theorem does exist [Kleisli (1967)], but we can get by with
something much easier. Any category can be made freely to generate an additive category



Michael Barr and Jon Beck 28

by a well known construction and we find the solution to our problem by transferring it
to this additive context. This is the same technique as is used by André [André (1967),
Section 4].

The free additive category on C, ZC, has formal sums and differences of maps in
C as its maps. Exact definitions and properties connected with ZC are given after the
following definitions.

5.1 Definitions. A G-resolution of X is a complex

X oo ∂0 X0
oo ∂1 X1

oo · · · oo ∂n Xn
oo · · ·

in ZC in which all Xn for n ≥ 0 are G-projective and which is G-acyclic in the sense that

0 oo (AG,X)ZC
oo (AG,X0)ZC

oo · · · oo (AG,Xn)ZC
oo · · ·

has zero homology in all dimensions for all values AG of the cotriple G.
A simplicial G-resolution of X is an augmented simplicial object in C

X0X
ε0oo X0 X1

δ0 // X1X0

ε0oo
X1X0

ε1

oo · · ·X1 oo · · ·X1
oo · · ·X1

oo
X1 · · ·//
X1 · · ·// Xn· · · oo

Xn· · · oo· · · Xn
... // · · ·Xn

oo · · ·Xn ooXn · · ·... //

X oo ∂0=(ε0)
X0

oo ∂1=(ε0)−(ε1)
X1

oo · · · oo ∂n Xn
oo · · ·

is a G-resolution as defined above (as usual, ∂n =
∑

(−1)i(εi)). In particular, the standard
complex

XGX
Xε0oo XG XG2Xδ0 // XG2XG

Xε0oo
XG2XG

Xε1

oo · · ·XG2
oo · · ·XG2 oo · · ·XG2
oo

XG2 · · ·//
XG2 · · ·// XGn+1· · · oo

XGn+1· · · oo· · · XGn+1... // · · ·XGn+1
oo · · ·XGn+1
ooXGn+1 · · ·... //

is a G-resolution of X, since the simplicial set (AG,XGn+1)n≥−1 has the contraction given
in the proof of 4.2.

To be precise about ZC, its objects are the same as those of C, while a map X //Y in
ZC is a formal linear combination of such maps in C, i.e., if ni ∈ Z and fi : X // Y ∈ C,
we get a map

X
∑

ni(fi) // Y

in ZC. (We enclose the free generators in parentheses for clarity in case C is already addi-
tive.) Composition is defined like multiplication in a group ring, (

∑
mi(fi))(

∑
nj(gj)) =∑∑

minj(figj).
The natural inclusion of the basis C // ZC can be used to express the following

universal mapping property. If E : C // A is a functor into an additive category, there
is a unique additive functor E : ZC // A such that

ZC A
E

//

C

ZC
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä
C

A

E

ÂÂ?
??

??
??

??
??

??
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commutes. Explicitly, XE = XE and (
∑

ni(fi))E =
∑

nifiE.
Let G = (G, ε, δ) be a cotriple in C. Thinking of G as taking values in ZC we get an

additive extension

ZC ZC
ZG

//

C

ZC
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä
C

ZC

G

ÂÂ?
??

??
??

??
??

??

which is a cotriple ZG = (ZG, Zε, Zδ) in ZC. Explicitly, X · ZG = XG, and the counit
and comultiplication are

XG
(Xε) // X,

XG
(Xδ) // XG2.

Although there are more maps in ZC, the notion of object does not change, and neither
does the notion of projective object. For P ∈ C is G-projective ⇔ P regarded as an
object in ZC is ZG-projective. The forward implication is evident, and if

P

P

∑
ni(fi·Pε)=(P )

ÂÂ?
??

??
??

??
??

??
P PG = P · ZG

∑
ni(fi) // PG = P · ZG

P

(Pε)

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

then fi · Pε = P for some i, as (P, P )ZC is a free abelian group on a basis of which both
fi · Pε and P are members; this proves the other implication.

Thus the G-resolutions of 5.1 are exactly the ZG-resolutions relative to the cotriple in
the additive category ZC, in the sense of 4.1. Invoking the comparison theorem 4.2, we
see that if (Xn) and (Yn) are G- or equivalently ZG-resolutions of X−1 = Y−1 = X, then
there is a chain equivalence

(Xn)
∼= // (Yn)

in ZC.
Finally, let E : C //A be a coefficient functor and E : ZC //A its additive extension

constructed above. As the following complexes are identical:

X(ZG)E oo ∂1
X(ZG)2E oo · · · oo

∂n=(
∑n

0 (−1)i(Xεi))E
X(ZG)n+1E oo · · ·

XGE oo ∂1
XG2E oo · · · oo

∂n=
∑n

0 (−1)iXεiE
XGn+1E oo · · ·

we conclude that
Hn(X,E)G = Hn(X, E)ZG, n ≥ 0,
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another reduction of the general homology theory to the additive theory of Section 4. The
last equation states that the diagram

ZC A
Hn( ,E)ZG

//

C

ZC
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä
C

A

Hn( ,E)G

ÂÂ?
??

??
??

??
??

??

commutes, that is, the Hn( , E)ZG are the additive extensions of the Hn( , E)G.
Parenthetically, an additive structure on C is equivalent to a unitary, associative

functor ϑ : ZC // C, that is, Z( ) is a triple in the universe, and its algebras are the
additive categories; if C is additive, ϑ is (

∑
ni(fi))ϑ =

∑
nifi.

ZC

C

ϑ

ÂÂ?
??

??
??

??
??

??
ZC A

Hn( ,E)ZG // A

C

Hn( ,E)G

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

also commutes. In fact, this commutativity relation is equivalent to additivity of the
homology functors, which in turn is equivalent to the homology functors’ being Z( )-
algebra maps.

In the general case—C arbitrary—the above gives the result that G-homology depends
only on the G-projectives:

Theorem (5.2). Let G and K be cotriples in C such that the classes of G-projectives and
K-projectives coincide. Then G and K determine the same homology theory, that is, there
is an isomorphism

Hn(X, E)G
∼= // Hn(X, E)K, n ≥ 0,

which is natural in both variables X ∈ C, E ∈ (C,A ).

The same isomorphism holds for homology groups of a map X // Y (see Section 2).
If (G, X) and (K, X) are G and K lifted to the category of objects over X, (C, X), then

the (G, X)- and (K, X)-projectives also coincide. Thus if E : (C, X) // A is a coefficient
functor, there is an isomorphism

Hn(W,E)(G,X)

∼= // Hn(W,E)(K,X), n ≥ 0,

natural with respect to the variables W // X ∈ (C, X) and E : (C, X) // A .
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Proof. P ∈ C is ZG-projective ⇔ P is ZK-projective. The augmented complexes

X oo XG oo XG2 oo · · ·
X oo XK oo XK2 oo · · ·

in ZC are thus projective and acyclic with respect to the same projective class in ZC.
The comparison theorem yields a chain equivalence

(XGn+1)
∼= // (XKn+1)n≥−1

As to naturality in X, if X // X1 in C, the comparison theorem also says that

(X1G
n+1) (X1K

n+1)∼=
//

(XGn+1)

(X1G
n+1)

²²

(XGn+1) (XKn+1)
∼= // (XKn+1)

(X1K
n+1)

²²

commutes up to chain homotopy. The comment about homology of a map follows from
homotopy-invariance of mapping cones. W // X being (G, X)-projective ⇔ W is G-
projective is a trivial calculation.

5.2 can also be proved through the intermediary of homology in categories with models
([Appelgate (1965)], [André (1967), Section 12], and Section 10 below), as well as by a
derived-functors argument (Ulmer).

To conclude this section we state the criteria for G-resolutions and (G, X)-resolutions
which will be used in Sections 6–9.

Proposition (5.3).

X0X oo X0 X1
// X1X0

oo
X1X0 oo · · ·X1 oo · · ·X1

oo · · ·X1

oo
X1 · · ·//
X1 · · ·// Xn· · · oo

Xn· · · oo· · · Xn
... // · · ·Xn

oo · · ·Xn ooXn · · ·... //

is a simplicial G-resolution of X = X−1 if the Xn are G-projective for n ≥ 0 and the
following condition, which implies G-acyclicity, holds: the cotriple G factors through an
adjoint pair

C

A

U

ÂÂ?
??

??
??

??
??

??
C CG // C

A

F

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

and the simplicial object (XnU)n≥−1 in the underlying category A has a contraction

XU
h−1 // X0U

h0 // X1U
h1 // · · · // XnU

hn // · · ·
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(satisfying hn · εiU = εiU · hn−1 for 0 ≤ i ≤ n and hn · εn+1U = XnU). In particular, the
standard G-resolution (XGn+1)n≥−1 then has such a contraction:

XU
h−1 // XGU

h0 // · · · // XGn+1U
hn // · · ·

to wit, hn = XGnUη where η is the adjointness unit η : A // FU .

Complement. Let

A0A−1

ε0oo A0 A1
δ0 // A1A0

ε0oo
A1A0

ε1

oo · · ·A1 oo · · ·A1
oo · · ·A1

oo
A1 · · ·//A1 · · ·// An· · · oo

An· · · oo· · · An
... // · · ·An

oo · · ·An ooAn · · ·... //A−1

B
''OOOOOOOOOOOOOOOOOOOOOO A0

B
ÂÂ?

??
??

??
??

??
?

A1

B
²²

An

B
wwooooooooooooooooooooooo

be a simplicial object in a category of objects over B, (A, B). If

A−1

h−1 // A0

h0 // A1

h1 // · · ·
is a contraction of the simplicial object sans B, then it is also a contraction of the simplicial
object in (A, B), that is, the hn commute with the structural maps into B:

A−1 A0

h−1 // A0 A1

h0 // A1 · · ·h1 // · · · An
//A−1

B
''OOOOOOOOOOOOOOOOOOOOOO A0

B
ÂÂ?

??
??

??
??

??
?

A1

B
²²

An

B
wwooooooooooooooooooooooo

Thus when searching for contractions in categories of objects over a fixed object, the base
object can be ignored.

Proof. If the stated condition holds, the simplicial set

(AG,Xn)n≥−1

has a contraction, so the free abelian group complex (AG,Xn)ZC has homology zero in
all dimensions ≥ −1. Indeed,

(AG,Xn)
kn // (AG,Xn+1), n ≥ 1,

is defined by

AG AG2 = AGUF
Aδ // AG2 = AGUF XnUF

xUF // XnUF Xn+1UF = Xn+1G
hnF //AG

Xn+1

xkn

))SSSSSSSSSSSSSSSSSSSSSSSSSSS Xn+1UF = Xn+1G

Xn+1

Xn+1ε

uukkkkkkkkkkkkkkkkkkkkkkkk
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if x : AG // Xn.
As to the Complement, if the maps into B are pn : An

// B then

hn · pn+1 = hnεn+1pn = Anpn = pn

so in view of hn’s satisfying the identity hn · εn+1 = An, it is a map over B.

6. Acyclicity and coproducts

Given a G-resolution

X = X−1
oo X0

oooo X1
oooooo · · ·

is its term-by-term coproduct with a fixed object Y ,

X ∗ Y oo X0 ∗ Y oooo X1 ∗ Y oooooo · · ·

still a G-resolution? (The new face operators are of the form εi ∗Y .) If Y is G-projective,
so are all the Xn ∗ Y , n ≥ 0. The problem is, is G-acyclicity preserved? In this section
we consider the examples of groups, commutative algebras and (associative) algebras,
and prove that acyclicity is preserved, sometimes using supplementary hypotheses. The
cotriples involved come from adjoint functors

C

A

U

ÂÂ?
??

??
??

??
??

??
C CG // C

A

??

F
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ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

The general idea is to assume that (Xn) has a contraction in A and then show that this
contraction somehow induces one in (Xn ∗Y ), even though the coproduct ∗ is not usually
a functor on the underlying category level.

6.1. Groups. Let (Πn)n≥−1 be an augmented simplicial group and U : G // S the usual
underlying set functor where G is the category of groups.

From simplicial topology we know that the underlying simplicial set (ΠnU) has a
contraction if and only if the natural map into the constant simplicial set

(ΠnU)n≥0
// (Π−1U)

is a homotopy equivalence if and only if the set of components of Π∗U is Π−1U , and
Hn(Π∗U) = 0 for n > 0 (Π∗ = (Πn)n≥0). (This is because simplicial groups satisfy the
Kan extension condition, hence Whitehead’s Theorem; π1 = H1 by the group property,
so the fundamental group is zero, above).



Michael Barr and Jon Beck 34

Now suppose that (ΠnU)n≥−1 is acyclic, or has a contraction, and Π is another group.
We shall prove that ((Πn ∗ Π)U)n≥−1 also has a contraction;

We do this by considering the group ring functor Z( ): G // Rings. The simplicial
ring ZΠ∗ obtained by applying the group ring functor in dimensionwise fashion has a
contraction, namely the additive extension of the given set contraction in Π∗. In (6.3)
below we shall show that the coproduct of this simplicial ring with ZΠ in the category of
rings, (ZΠ∗)∗ZΠ, where the n-dimensional component is ZΠn∗ZΠ, also has a contraction.
But as the group ring functor is a left adjoint,

(ZΠ∗) ∗ ZΠ ∼ // Z(Π∗ ∗ Π)

Thus the set of components of the complex on the right is just Z(Π−1 ∗ Π) and its n-
th homotopy is zero for n > 0. This implies that Π∗ ∗ Π has Π−1 ∗ Π as its set of
components and has no higher homotopy. (This is equivalent to the curiosity that Z( )
as an endofunctor on sets satisfies the hypotheses of the “precise” tripleableness theorem
([Beck (1967), Theorem 1] or [Linton (1969a)].)

6.2. Commutative algebras. First let GA be the cotriple relative to A-modules:

(A,Comm)

A-Mod

U

ÂÂ?
??

??
??

??
??

?
(A,Comm) (A,Comm)

GA // (A,Comm)

A-Mod

??

F
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GA-resolutions behave very well with respect to coproducts of commutative A-algebras,
B ⊗A C. Indeed, as the standard resolution

B oo BGA
oooo BG2

A
oooooo · · ·

has an A-linear contraction (5.3), so has

B ⊗A C oo BGA ⊗A C oooo BG2
A ⊗A C oo oooo · · · .

On the other hand, let G be the absolute cotriple

K-Alg

K-Mod

U

ÂÂ?
??

??
??

??
??

?
K-Alg K-AlgG // K-Alg

K-Mod

??

F
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The standard G-resolution has a contraction on the underlying set level (5.3). Thus the
chain complex of A-modules associated to

B oo BG oooo BG2 oooooo · · ·
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is an A-free resolution of B as an A-module in the usual homological sense. Thus the
nonnegative-dimensional part of

B ⊗A C oo BG⊗A C oooo BG2 ⊗A C oooooo · · ·

has Hn = TorA
n (B,C), n ≥ 0. Since it is also a group complex, this simplicial object will

have a contraction as a simplicial set ks +3 TorA
n (B, C) = 0, n > 0.

6.3. Resolutions and coproducts of associative algebras. Let K-Alg be the
category of associative K-algebras with identity. We are interested in resolutions relative
to the adjoint pair

K-Alg

K-Mod

U

ÂÂ?
??

??
??

??
??

?
K-Alg K-AlgG // K-Alg

K-Mod

??

F
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These will give rise to Hochschild homology. Here F is the K-tensor algebra MF =
K + M + M ⊗M + M ⊗M ⊗M + · · · . If Λ, Γ are K-algebras, their coproduct

Λ ∗ Γ = (Λ + Γ)F/I

where I is the 2-sided ideal generated by the elements

λ1 ⊗ λ2 − λ1λ2, γ1 ⊗ γ2 − γ1γ2, 1K − 1Λ, 1K − 1Γ

(1K is in the summand of degree 0, 1Λ and 1Γ are in the summand of degree 1). The
K-linear maps Λ, Γ // (Λ ⊕ Γ)F become algebra maps when I is divided out and these
two maps are the coproduct injections Λ, Γ //Λ∗Γ. (In fact, I is the smallest ideal which
makes these maps of unitary K-algebras.)

Let (Λn)n≥−1 be an augmented simplicial algebra which is U -contractible, i.e., there
exists a K-linear contraction

Λ−1U
h−1 // Λ0U

h0 // Λ1U
// · · ·

We want to know that such a contraction continues to exist in the simplicial algebra
(Λn ∗ Γ)n≥−1. But we can only prove this in a special case.

An algebra Λ is called K-supplemented if there is a K-linear map Λ // K such that
K // Λ // K is the identity of K. (The first map sends 1K

// 1Λ). An algebra map
Λ // Λ1 is called K-supplemented if Λ, Λ1 are K-supplemented and

Λ

K
ÂÂ?

??
??

?Λ Λ1
// Λ1

K
ÄÄÄÄ

ÄÄ
ÄÄ
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commutes.
We will show that if Λ, Γ are K-supplemented, then the coproduct of the canonical

resolution of Λ with Γ,

Λ ∗ Γ oo ΛG ∗ Γ oooo ΛG2 ∗ Γ oooooo · · ·
possesses a K-contraction. We refer to (5.3) for the fact that (ΛGn+1)n≥1 always has a
K-linear contraction, and we prove that this contraction survives into the coproduct of
the resolution with Γ.

The cotriple G operates in a natural way in the category of K-supplemented algebras.
For if Λ is K-supplemented, the composition ΛG //Λ //K defines a K-supplementation
of ΛG. If Λ // Λ1 is K-supplemented, so is the induced ΛG // Λ1G,

Λ Λ1
//

ΛG

Λ
²²

ΛG Λ1G
// Λ1G

Λ1

²²
Λ

K
ÂÂ?

??
??

?Λ Λ1
// Λ1

K
ÄÄÄÄ

ÄÄ
ÄÄ

and if Λ is K-supplemented, the counit and comultiplication maps ΛG // Λ, ΛG // ΛG2

are also K-supplemented.
When Λ is K-supplemented let Λ = ker(Λ // K). If f : Λ // Λ1 is K-supplemented,

then f = K ⊕ f where f : Λ // Λ1 is induced in the obvious way. This means that if we
write f : K ⊕ Λ // K ⊕ Γ in the form of 2× 2 matrix, the matrix is diagonal:

(
K 0

0 f

)

Using the above supplementation and writing ΛGn+1 = K ⊕ ΛGn+1, all of the face oper-
ators in the standard resolution (ΛGn+1)n≥−1 will be diagonal:

K ⊕ ΛGn


K 0

0 εi




oo −−−−− K ⊕ ΛGn+1, 0 ≤ i ≤ n .

The K-linear contraction hn: ΛGn+1 // ΛGn+2 is given by a 2× 2 matrix

K ⊕ ΛGn+1


h11 h12

h21 h22




// K ⊕ ΛGn+2

The relation hnεn+1 = ΛGn+1 is equivalent to

h11 = K, h21 = 0, h12εn+1 = 0, h22εn+1 = ΛGn+1
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(the matrix acts on row vectors from the right). The relation hnεi = εihn, 0 ≤ i ≤ n, is
equivalent to h22εi = εih22 as another matrix calculation shows. Thus the contraction
matrix has the form (

K h12

0 h22

)

where entry h22 satisfies the contraction identities with respect to the restrictions of the
face operators εi to the supplementation kernels, i.e. with respect to the maps εi. Thus,
we can switch to

h′n =

(
K 0
0 h22

)

which is also a matrix representation of a K-linear contraction

ΛGn+1
h′n // ΛGn+2

K ⊕ ΛGn+1
K⊕hn// K ⊕ ΛGn+2

where we have written hn in place of h22. This change can be made for all n ≥ −1, so we
get a K-contraction which is in diagonal form.

The next step is to find that the coproduct of two K-supplemented algebras can be
written in a special form. Consider the direct sum

W = K + Λ + Γ + Λ⊗ Γ + Γ⊗ Λ + Λ⊗ Γ⊗ Λ + · · ·

of all words formed by tensoring Λ and Γ together with no repetitions allowed. There is
an evident K-linear map

W // Λ ∗ Γ

given on the fifth summand above, for example, by

Λ⊗ Γ⊗ Λ // Λ⊗ Γ⊗ Λ // (Λ⊕ Γ)F // Λ ∗ Γ

The map W // Λ ∗ Γ is one-one because its image in F does not intersect the ideal I
((Λ + Γ)F/I = Λ ∗ Γ) and it is onto, clearly. Thus viewing Λ ∗Γ as a K-module, we have

Λ ∗ Γ = K + Λ + Γ + Λ⊗ Γ + · · ·

Now let Λ
f // Λ1, Γ

g // Γ1, be K-linear maps which respect both units and supplemen-
tations, that is, writing Λ = K ⊕ Λ, and Λ1, Γ, Γ1 similarly,

K ⊕ Λ
f=K⊕f // K ⊕ Λ1

K ⊕ Γ
g=K⊕g // K ⊕ Γ1
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Then a K-linear map Λ ∗ Γ // Λ1 ∗ Γ1, which we take the liberty of denoting by f ∗ g, is
induced:

K + Λ + Γ + Λ⊗ Γ + · · ·
f

²²
g

²²
f⊗g

²²

K + Λ1 + Γ1 + Λ1 ⊗ Γ1 + · · ·
If we are also given f1: Λ1

// Λ2, g1: Γ1
// Γ2, then f1 ∗ g1: Λ1 ∗ Γ1

// Λ2 ∗ Γ2 and
functoriality holds: (f ∗ g)(f1 ∗ g1) = (ff1 ∗ gg1) (because ff1 = ff 1, and similarly for g,
g1).

To complete the argument, let

Λ
K⊕h−1 // ΛG

K⊕h0 // ΛG2 // · · · // ΛGn+1 K⊕hn // · · ·

be the K-contraction with diagonal matrix constructed above. The K⊕hn preserve both
units and supplementations, so

Λ ∗ Γ
(K⊕h−1)∗Γ

// ΛG ∗ Γ // · · · // ΛGn+1 ∗ Γ
(K⊕hn)∗Γ // · · ·

is a sequence of well defined K-linear maps which satisfies the contraction identities by
virtue of the above functoriality.

Alternative argument. The commutative diagram of adjoint pairs

K-Alg0 (K, K-Mod)

K-Alg

K-Alg0

K-Alg

(K, K-Mod)

??
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ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ
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??
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ÂÂ?
??
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?

K-Alg0

K-Mod

K-Alg0 (K, K-Mod)(K, K-Mod)

K-Mod

__

??
??

??
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??
?? ??
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arises from a distributive law TS // ST in K-Mod; T is the triple M // K ⊕M , whose
algebras are unitary K-modules (objects of the comma category (K,K-Mod)) and S is
the triple M //M +M⊗M +· · · , whose algebras are associative K-algebras without unit;
this is the category denoted KAlg0. Let G be the cotriple in K-Alg relative to K-Mod,
and G1 that relative to unitary K-modules (K, K-Mod). By an easy extrapolation of
[Barr (1969), 5.2], the cotriples G, G1 operate in the full subcategory K-Alg′ consisting
of those Λ ∈ K-Alg whose underlying unitary K-modules are projective relative to K-
modules, and G, G1 restricted to this subcategory have the same projective objects. Now
Λ, as a unitary K-module, is projective relative to K-modules ks +3 there is a commutative
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diagram of K-linear maps

Λ K ⊕ Λ// K ⊕ Λ Λ//

K

Λ
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ
K

K ⊕ Λ
²²

K

Λ
ÂÂ?

??
??

??
??

?

ks +3 Λ has a K-linear supplementation. Thus if Λ is such an algebra, the standard
resolutions

(ΛGn+1), (ΛGn+1
1 )n≥−1

are chain equivalent in Z(K-Alg). ( )∗Γ extends to an additive endofunctor of Z(K-Alg).

(ΛGn+1 ∗ Γ), (ΛGn+1
1 ∗ Γ)n≥−1

are therefore also chain equivalent in Z(K-Alg). Finally, (ΛGn+1
1 ∗Γ)n≥−1 has a K-linear

contraction. This implies that

Hp(ΛG, (ΛGn+1 ∗ Γ)n≥−1) = 0, p ≥ 0,

so (ΛGn+1 ∗ Γ) is G-acyclic.
As to the last K-contraction, if Λ is any K-algebra for a moment, and Γ is K-linearly

supplemented, then as a K-module Λ ∗ Γ can be viewed as a direct sum

Λ + Γ + Λ⊗ Γ + Γ⊗ Λ + · · ·
modulo the relations γ ⊗ 1Λ = 1Λ ⊗ γ = γ, and the ideal generated by them, such as
λ⊗γ⊗1Λ = λ⊗γ, . . . . Thus if f : Λ //Λ1 is a unitary K-linear map, “f∗Γ”: Λ∗Γ //Λ1∗Γ is
induced, and functoriality holds: ff1∗Γ = (f ∗Γ)(f1∗Γ). Now the resolution (ΛGn+1

1 )n≥−1

has a unitary K-linear contraction (5.3). This contraction goes over into (ΛGn+1
1 ∗Γ)n≥−1

provided Γ is K-linearly supplemented.

7. Homology coproduct theorems

Let G be a cotriple in C and let E be a coefficient functor C //A . E preserves coproducts
if the map induced by the coproduct injections X,Y // X ∗ Y is an isomorphism for all
X,Y ∈ C:

XE ⊕ Y E
∼= // (X ∗ Y )E

(In this section we assume C has coproducts). Particularly if E preserves coproducts, it
is plausible that the similarly-defined natural map in homology is an isomorphism; if it is
indeed the case that

Hn(X, E)G ⊕Hn(Y,E)G // Hn(X ∗ Y, E)G

is an isomorphism, we say that the homology coproduct theorem holds (strictly speaking,
for the objects X, Y , in dimension n; it is characteristic of the theory to be developed
that the coproduct theorem often holds only for objects X, Y with special properties).
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In this section we show that the homology coproduct theorem holds for the various cat-
egories and various cotriples considered in Section 6. As one gathers from the arguments
resorted to in that section, there must be something the matter with the slick method of
proving coproduct theorems sketched in [Barr & Beck (1966), §5]. First, to correct a slip,
(5.4) in [Barr & Beck (1966)] should read u: (X1 ∗X2)GU // (X1G ∗X2G)U , that is, it is
in the underlying category that u should be sought. However, even with that correction,
such a natural u does not exist so far as we know, in group theory (relative to sets) or in
Hochschild theory, contrary to our earlier claims. The morphisms u which we had in mind
in these cases turned out on closer inspection not to be natural, because of misbehavior of
neutral elements of one kind or another in coproducts viewed at the underlying-category
level. Only in “case 3” of [Barr & Beck (1966), §5], namely that of commutative algebras
relative to K-modules, does the method of that paper work. However, we are able to
retrieve most of the results claimed there although in the case of Hochschild theory we
are forced to impose an additional linear-supplementation hypothesis.

Such tests as we possess for the coproduct theorem are contained in the next two
propositions.

Proposition (7.1). If X and Y possess G-resolutions

X = X−1
oo X0

oooo X1
oooooo · · ·

Y = Y−1
oo Y0

oo oo Y1
oooooo · · ·

such that the coproduct

X ∗ Y oo X0 ∗ Y0
oooo X1 ∗ Y1

oooooo · · ·
is a G-resolution, then the coproduct theorem holds for X, Y and any coproduct-preserving
coefficient functor. (The issue is G-acyclicity.)

In particular, if each row and column of the double augmented simplicial object

(Xm ∗ Yn)m,n≥−1

is a G-resolution, then the above diagonal object (Xn ∗ Yn)n≥−1 is a G-resolution.

Proposition (7.2). Suppose that the cotriple G factors through an adjoint pair

C

A

U

ÂÂ?
??

??
??

??
??

??
C CG // C

A

??

F
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and that (X ∗ Y )U is naturally equivalent to XU ∗A Y U where ∗A:A×A // A is some
bifunctor; in other words, the coproduct is definable at the underlying-category level. Then
the homology coproduct theorem holds for any coproduct-preserving coefficient functor.
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As to (7.1), coproducts of projectives being projective, we are left to consider the
augmented double simplicial set

(AG,Xm ∗ Yn)m,n≥−1

As the rows and columns lack homology, so does the diagonal, by the Eilenberg-Zilber
theorem [Eilenberg & Zilber (1953)]. For (7.2), identify

((XGn+1 ∗ Y Gn+1)U)n≥−1 with (XGn+1U ∗A Y Gn+1U),

of which

XU ∗A
h−1∗Ak−1 // XGU ∗A Y GU // · · ·

is a contraction (see (5.3)).
In the following examples we use the fact that the coproduct in the category of objects

over X, (C, X), is “the same” as the coproduct in C:

(X1

P1 // X) ∗ (X2

P1 // X) = (X1 ∗X2

(P1,P2) // X)

7.3. Groups.
Hn(Π1, E)⊕Hn(Π2, E) ∼ // Hn(Π1 ∗ Π2, E)

for any coproduct-preserving functor E: G // A , such as ⊗M or Hom( ,M) where M is
a fixed abelian group.

To deduce the usual coproduct theorems for homology and cohomology with coef-
ficients in a module, we apply the complement to (5.3) to see that (Π1G

n+1)n≥−1 is a
(G, Π1 ∗ Π2)-resolution of Π1 as a group over Π1 ∗ Π2 (using the coproduct injection
Π1

// Π1 ∗ Π2). By (6.1) and the complement to (5.3) again, (Π1G
n+1 ∗ Π2G

n+1)n≥−1 is
a (G, Π1 ∗Π2)-resolution of Π1 ∗Π2

// Π1 ∗Π2. If M is a Π1 ∗Π2-module, then M can be
regarded both as a Π1-module and as a Π2-module by means of Π1, Π2

// Π1 ∗Π2. Thus
in homology we have a chain equivalence between the complexes

(DiffΠ1∗Π2
(Π1G

n+1)⊗M ⊕DiffΠ1∗Π2
(Π2G

n+1)⊗M),

(DiffΠ1∗Π2
(Π1G

n+1 ∗ Π2G
n+1)⊗M), n ≥ 0,

⊗ being over Π1 ∗ Π2. As a result,

Hn(Π1,M)⊕Hn(Π2,M) s // imHn(Π1 ∗ Π2, M).

In cohomology, taking coefficients in HomΠ1∗Π2
( ,M),

Hn(Π1 ∗ Π2,M) ∼ // Hn(Π1,M)⊕Hn(Π2,M).

These isomorphisms, apparently known for some time, appear to have been first proved
(correctly) in print in [Barr & Rinehart (1966)]. Similar isomorphisms hold for (co-)homol-
ogy of W1∗W2 where W1

//Π1, W2
//Π2 are groups over Π1, Π2. (Earlier proof: [Trotter

(1962)].)
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7.4. Commutative Algebras. Let B, C be A-algebras over D, that is, B,C // D,
and M a D-module.

If H is homology relative to the “absolute” cotriple G coming from (A,Comm) //Sets,
we have

Hn(B,M)⊕Hn(C, M) ∼ // Hn(B ⊗A C,M),

Hn(B ⊗A C, M) ∼ // Hn(B,M)⊕Hn(C,M)

provided TorA
p (B, C) = 0 for p > 0; this is because the coproduct of the standard resolu-

tions,
(BGn+1 ⊗A CGn+1)n≥−1,

has Tor(B, C) as its homology (use the Eilenberg-Zilber theorem), which is the obstruction
to a contraction in the underlying category of sets. The result is also proved in [André
(1967), Quillen (1967), Lichtenbaum & Schlessinger (1967), Harrison (1962)].

If H is the theory relative to A-modules, the isomorphisms hold without any condition
(6.2).

7.5. Associative K-algebras. If Λ1, Λ2
//Γ are K-algebra maps and M is a two-sided

Γ-module, and Λ1, Λ2 possess K-linear supplementations, then

Hn(Λ1,M)⊕Hn(Λ2,M) ∼ // Hn(Λ1 ∗ Λ2,M),

n ≥ 0; the same cohomology with coefficients in M , or for any coproduct-preserving
coefficient functor. The cotriple employed is that relative to K-modules; the proofs are
from (6.3), (7.1).

8. On the homology of a map

In Section 2 we defined homology groups of a map so as to obtain an exact sequence

· · · // Hn(X, E) // Hn(Y, E) // Hn(X // Y,E) ∂ // Hn−1(X, E) // · · ·
In fact, although we had to use a mapping cone instead of a quotient complex, the
definition is the same as in algebraic topology. In this section we show (with a proviso)
that these groups are the same as the cotriple groups

Hn(X // Y, (X,E))(X,G), n ≥ 0,

where X // Y is considered as an object under X, (X, E) is the extension to a functor
(X,C) // A of a given coefficient functor E:C // A and (X,G) is G lifted into the
comma category as described before (1.2); the proviso is that a homology coproduct
theorem should hold for the coproduct of any object with a free object.

The coefficient functor we use,

(X,C)
(X,E) // A ,
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is defined by (X // Y )(X,E) = coker XE // Y E. Recalling the formulas for (X,G), we
have that the Hn(X // Y, (X,E))X,G are the homology groups of the standard complex
which in dimensions 0 and 1 reads:

0 oo coker (XE // (X ∗ Y G)E)
∂1oo − coker (XE // (X ∗ (X ∗ Y G)G)E)

∂2oo − · · · .
Theorem (8.1). There is a sequence of homology maps

Hn(X // Y, E)G
Hn(ϕ) // Hn(X // Y, (X, E))(X,G), n ≥ 0,

resulting from a natural chain transformation

C(X // Y )n

ϕn // (X // Y )(X,G)n+1(X, E).

(C(X // Y ) is the mapping defined in Section 2 and functoriality is respect to maps of
objects under X). The Hn(ϕ) are isomorphisms if the following theorem holds: for all
X,Y ∈ C, the coproduct injections induce isomorphisms

Hn(X ∗ Y G, E)G
∼oo −

{
H0(X, E)G ⊕ Y GE, n = 0,

Hn(X, E)G, n > 0,

that is, if E satisfies the homology coproduct theorem when one summand is G-free.

Proof. We augment both complexes by attaching H0 as (−1)-dimensional term. We
first define ϕ0, ϕ1 so as to obtain the commutative square ϕ1∂1 = ∂1ϕ0, which induces a
natural map ϕ−1 on the augmentation terms.

Y GE (X ∗ Y G)Eϕ0

// (X ∗ Y G)E (X // Y )(X, G)(X, E)
coker

//

Y G2E ⊕XGE (X ∗ (X ∗ Y G)G)E
ϕ1 //Y G2E ⊕XGE

Y GE

∂1

²²

(X ∗ (X ∗ Y G)G)E (X // Y )(X,G)2(X, E)coker //(X ∗ (X ∗ Y G)G)E

(X ∗ Y G)E

∂1

²²

(X // Y )(X,G)2(X, E)

(X // Y )(X, G)(X, E)

∂1

²²
Y GE

H0(X // Y,E)G
²²

(X // Y )(X, G)(X, E)

H0(X // Y, (X, E))(X,G)

²²
H0(X // Y,E)G H0(X // Y, (X, E))(X,G)ϕ−1

//

If we write i: X // Y ∗ Y G, j: Y G // X ∗ Y G for coproduct injections, then ϕ0 = jE,
and ϕ1 is determined by

(X ∗ Y G)GE

Y G2E

99

jGErrrrrrr

XGE

(X ∗ Y G)GE

iGE

%%LLLLLLLLXGE

Y G2E

(X ∗ Y G)GE (X ∗ (X ∗ Y G)G)E
j1E //
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where j1 is also a coproduct injection. That ϕ0, ϕ1 commute with ∂1 is readily checked.
The higher ϕn could be written down similarly but we don’t bother with that as

they automatically fall out of the acyclic-models argument which we need for the iso-
morphism anyway. We use (X,G) as the comparison cotriple. The cotriple complex
(X // Y )(X, G)n+1(X, E) is representable and contractible with respect to this cotriple,
as always. Furthermore, C(X // Y ) is (X,G)-representable via

ϑn: C(X // Y )n
// C(X // X ∗ Y G)n

Y Gn+1E ⊕XGnE
(Y δ.jG)GnE⊕id. // (X ∗ Y G)Gn+1E ⊕XGnE,

if n > 0, and ϑ0 = jE. This proves ϕ−1 can be extended to a chain transformation defined
in all dimensions. It happens that the extension produced by (11.1) agrees with the above
ϕ0, ϕ1 in the lowest dimensions.

To conclude, if the homology coproduct assumption in (8.1) holds, then

Hn(X // X ∗ Y G, E)G '
{

Y GE, n = 0,

0, n > 0,

since this homology group Hn fits into the exact sequence

· · · Hn(X, E)// Hn(X, E) Hn(X ∗ Y G,E)// Hn(X ∗ Y G,E) Hn
// Hn

ttjjjjjjjjjjjjj

∂

··········
··········

H0(X, E)
ttjjjjjjjjj

H0(X, E) H0(X ∗ Y G, E)// H0(X ∗ Y G, E) H0
// H0 0//

Thus the ϕn induce homology isomorphisms between the two theories (11.3).

8.2. Groups. If

Π0

Π
ÂÂ?

??
??

?
Π0 Π1

f // Π1

Π
ÄÄÄÄ

ÄÄ
ÄÄ

is a map in (G , Π) and M is a Π-module we get an exact sequence

· · · // Hn(Π0,M) // Hn(Π1,M) // Hn(f, M) // Hn−1(Π0,M) // · · ·
and a similar one in cohomology. The relative term arises either as in Section 2 or by
viewing f as an object in the double comma category (Π0,G , Π1) and using this section.
The equivalence results from the fact that the homology coproduct theorem holds for
groups.

This sequence can be obtained topologically by considering the map of Eilenberg-Mac
Lane spaces K(Π0, 1) // K(Π1, 1). It is also obtained in [Takasu (1959/60)].
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As a special case, if

Π

1
ÂÂ?

??
??

??
Π Π/N

f // Π/N

1
ÄÄÄÄ

ÄÄ
ÄÄ

is division by a normal subgroup and we take coefficients in Z as a 1-module, then H0(f) =
0 and H1(f) ' N/[Π, N ]. Thus the Stallings-Stammbach sequence ([Stallings (1965),
Stammbach (1966)]) falls out:

H1(Π) // H1(Π/N) // N/[Π, N ] // H0(Π) // H0(Π/N) // 0

(our dimensional indices). Doubtless many of the other sequences of this type given in
[Eckmann & Stammbach (1967)] can be got similarly.

8.3. Commutative rings and algebras. Given maps of commutative rings

A B//A

D
ÂÂ?

??
??

? B C//B

D
²²

C

D
ÄÄÄÄ

ÄÄ
ÄÄ

we obtain exact sequences

· · · // Hn(A,M) // Hn(B, M) // Hn(A // B,M) ∂ // Hn−1(A,M) // · · ·

· · · //Hn(A //B, M) //Hn(A //C, M) //Hn(B //C,M) ∂ //Hn−1(A //B,M) // · · ·
for a D-module M ; similar sequences are obtainable in cohomology. Taking B = C = D,
and homology with respect to the cotriple G arising from

Comm

Sets
ÂÂ?

??
??

??
??

??
??

Comm CommG // Comm

Sets

??

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

these sequences coincide with those of [Lichtenbaum & Schlessinger (1967), André (1967),
Quillen (1967)], as a result of the following facts:

(a) (A,G) is the cotriple arising from

(A,Comm)

Sets

U

ÂÂ?
??

??
??

??
??

?
(A,Comm) (A,Comm)// (A,Comm)

Sets

??

F

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

where (A // B)U = B.
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(b) If E: (Comm, D) // D-Mod is AE = DiffD(A) ⊗D M , then (A // B)(A,E) =
Ω1

B/A ⊗B M . If E: (Comm, D)∗ // D-Mod is AE = Der(A,M)D, then

(A // B)(A,E) = A-Der(B, M)D

(c)

Hn(A // B,E)G
∼ // Hn(A // B, (A,E))A,G

for any coproduct preserving coefficient functor E: (Comm, D) // A (writing A
for A // D).

(a) has been noted in Section 1. For (b),

(A // B)(A,E) = coker(DiffD(A)⊗D M // DiffD(B)⊗D M)

= coker(DiffD(A) // DiffD(B))⊗D M

= (Ω1
B/A ⊗B D)⊗D M

= Ω1
B/A ⊗B M .

In the dual theory, it is appropriate to lift a functor E:C∗ // A to a functor

(E, A): (C∗, A) // A

by defining (B // A)(E, A) = ker(BE // AE). For E the contravariant functor in (b),
we have then

(A // B)(A,E) = ker(Der(B, M)D
// Der(A,M))

= A-Der(B,M)D.

Alternatively and of course equivalently, dualize the coefficient category of D-modules.
Finally (c) follows from the fact that the coproduct theorem holds for homology in this
category when one factor is free. Indeed, C.(A,G) is the polynomial A-algebra A[C] and
is A-flat; thus the coproduct ( )⊗A C.(A,G) preserves (A,G)-resolutions.

For the A-relative theory (1.2), the same exact sequences are available.

8.4. Associative Algebras. Let G denote the cotriple on K-Alg arising out of the
adjoint pair

K-Alg

K-Mod
ÂÂ?

??
??

??
??

??
?

K-Alg K-AlgG // K-Alg

K-Mod

??

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

If Λ ∈ K-Alg, Γ // Λ ∈ (K-Alg, Λ) and M is a Λ-bimodule, we let Hn(Γ,M)G
and Hn(Γ, M)G denote the derived functors with respect to G of DiffΛ( ) ⊗Λ eM and
DerΛ( ,M) respectively. Let us drop Λ from the notation from now on. Hence Γ // Γ1

below really refers to Γ // Γ1
// Λ etc.
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Theorem (8.5).

Hn(Γ // Γ1,M)G ' Hn(Γ1,M)(Γ,G),

Hn(Γ // Γ1,M)G ' Hn(Γ1,M)(Γ,G).

Proof. According to (8.1) this requires showing that for any Γ′,

Hn(Γ ∗ Γ′G,M)G '
{

H0(Γ,M)G ⊕Der(Γ′G,M), n = 0

Hn(Γ,M)G, n > 0,

and similarly for cohomology. Before doing this we require

Proposition. Let G1 be the cotriple described in (6.3) above. Then

Hn(Γ, M)G ' Hn(Γ,M)G1
,

Hn(Γ, M)G ' Hn(Γ,M)G1
.

The proof will be given at the end of this section.
Now observe that any G-projective is G1-projective and also is supplemented. Now

(ΓGn+1
1 )n≥0 is a G1-resolution of Γ, which means it has a unitary K-linear contraction.

As observed in (6.3) above, (ΓGn+1
1 ∗Γ′G)n≥0 also has a unitary K-linear contraction and

it clearly consists of G1-projectives. Thus it is a G1-resolution of Γ ∗ Γ′G. But then

DiffΛ(ΓGn+1
1 ∗ Γ′G)n≥0 ' DiffΛ(ΓGn+1

1 )n≥0 ⊕DiffΛΓ′G

the second summand being a constant simplicial object, and the result follows easily.
To prove (8.6) we use acyclic models in form (11.3) below with G1 as the comparison

cotriple. First observe that there is a natural transformation ϕ: G // G1 which actually
induces a morphism of cotriples (meaning it commutes with both comultiplication and
counit). Actually G1 is presented as a quotient of G and ϕ is the natural projection.
Now we prove the theorem for cohomology. The proof for homology is similar. For
any Γ′ // Γ and any Γ-bimodule M , let Γ′E = Der(Γ′,M), Γ′En = Der(Γ′Gn+1,M).
Let ϕ: Der(Γ′,M) // Γ′E be the identity and ϕn: Der(Γ′Gn+1

1 ,M) // Γ′En be the map
Der(Γ′ϕn+1,M). Define ϑn: Γ′G1E

n // Γ′En to be the composite

Der(Γ′G1G
n+1,M)

Der(Γ′ϕGn+1,M) // Der(Γ′Gn+2,M)
Der(Γ′δGn,M) // Der(Γ′Gn+1,M)

Then it is easily seen that Der(Γ′ε1G
n+1,M).ϑn is the identity. (Of course, everything is

dualised for cohomology.) Thus the proof is finished by showing that the complex

· · · // Γ′G1E
n // Γ′G1E

n−1 // · · · // Γ′G1E
1 // Γ′G1E

// 0

is exact. But the homology of that complex is simply the Hochschild homology of Γ′G,
(with the usual degree shift), which in turn is Ext(Γe,K)(DiffΓΓ′G1,M). Hence we complete
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the proof by showing that DiffΓΓ′G is a K-relative Γe-projective. But Der(Γ′G1,M)
consists of those derivations of Γ′G // M which vanish on the ideal of Γ′G generated by
1Γ′−1K or, since all derivations vanish on 1K , it simply consists of those derivations which
vanish on 1Γ′ . But Der(Γ′G,M) ' HomK(Γ′,M) and it is easily seen that Der(Γ′G1, M) '
HomK(Γ′/K, M) where Γ′/K denotes coker(K // Γ). This in turn is ' HomΛe(Λe ⊗
Γ′/K,M) and so DiffΓΓ′G1 ' Λe⊗Γ′/K which is clearly a K-relative Λe-projective. This
completes the proof.

9. Mayer-Vietoris theorems

Using assumptions about the homology of coproducts, we shall deduce some theorems
of Mayer-Vietoris type. We learned of such theorems from André’s work [André (1967)].
In the case of commutative algebras we obtain slightly more comprehensive results (9.5).
Mostly, however, we concentrate on the case of groups (9.4).

Let E:C // A be a coefficient functor.

Theorem (9.1). Let

X2 Y//

X

X2

²²

X X1
// X1

Y
²²

be a pushout diagram in C and suppose that the homology coproduct theorem holds for Y
viewed as a coproduct in (X,C):

Hn(X // X1, E)⊕Hn(X // X2, E) ∼ // Hn(X // Y, E), n ≥ 0.

Then there is an exact sequence,

· · · Hn(X, E)// Hn(X, E) Hn(X1, E)⊕Hn(X2, E)// Hn(X1, E)⊕Hn(X2, E) Hn(Y, E)// Hn(Y, E)

Hn−1(X, E)

∂

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Hn−1(X, E) // ··················· H0(Y, E)// H0(Y, E) 0//

(The maps in the sequence are the usual Mayer-Vietoris maps (β,−γ), (β1, γ1) trans-
pose, if we momentarily write

β: H(X) // H(X1), β1: H(X1) // H(Y ),

γ: H(X) // H(X2), γ1: H(X2) // H(Y ).)
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Theorem (9.2). Suppose that the natural map is an isomorphism

Hn(X,E)⊕Hn(Y,E) ∼ // Hn(X ∗ Y, E), n ≥ 0

for any map X ∗ Y // Z there is an exact sequence

· · · Hn(Z, E)// Hn(Z, E) Hn(X // Z,E)⊕Hn(Y // Z, E)// Hn(X // Z,E)⊕Hn(Y // Z, E) Hn(X ∗ Y // Z,E)// Hn(X ∗ Y // Z,E)

Hn−1(Z, E)

∂

ssfffffffffffffffffffffffffffffffffffffff

Hn−1(Z, E) // ·········· H0(X ∗ Y // Z, E)// H0(X ∗ Y // Z, E) 0//

For the proof of (9.1), write down the diagram

H(Y, E) H(X // X1, E)⊕H(X // X2, E)// H(X // X1, E)⊕H(X // X2, E) H(X, E)∂ //

H(X1, E) H(X // X1, E)//H(X1, E)

H(Y, E)
²²

H(X // X1, E) H(X, E)∂ //H(X // X1, E)

H(X // X1, E)⊕H(X // X2, E)
²²

H(X, E)

H(X, E)

=

²²

H(X2, E) H(X // X2, E)// H(X // X2, E) H(X, E)
∂

//

H(Y, E)

H(X2, E)

OO
H(X // X1, E)⊕H(X // X2, E)

H(X // X2, E)

OO
H(X, E)

H(X, E)

OO

=

H(X, E) H(X1, E)//

H(X, E) H(Y, E)//

H(X, E) H(X2, E)//

H(X, E)

H(X, E)

=

²²

H(X, E)

H(X, E)

=

OO

All three triangles are exact, the middle one by the coproduct theorem in (X,C). Lemma
(9.3) below then yields that

H(X, E) // H(X1, E)⊕H(X2, E) // H(Y,E) // H(X, E)

is an exact triangle. For (9.2), write

H(X ∗ Y // Z, E) H(X,E)⊕H(Y,E)∂ // H(X,E)⊕H(Y,E) H(Z,E)//

H(X // Z, E) H(X, E)∂ //H(X // Z, E)

H(X ∗ Y // Z, E)
²²

H(X, E) H(Z,E)//H(X, E)

H(X,E)⊕H(Y,E)
²²

H(Z,E)

H(Z,E)

=

²²

H(Y // Z, E) H(Y,E)
∂

// H(Y,E) H(Z,E)//

H(X ∗ Y // Z, E)

H(Y // Z, E)

OO
H(X,E)⊕H(Y,E)

H(Y,E)

OO
H(Z,E)

H(Z,E)

OO

=

H(Z, E) H(X // Z, E)//

H(Z, E) H(X ∗ Y // Z, E)//

H(Z, E) H(Y // Z, E)//

H(Z, E)

H(Z, E)

=

²²

H(Z, E)

H(Z, E)

=

OO

and again apply
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Lemma (9.3). In an abelian category

A1 B′ ⊕ C ′(β′1,−γ′1)
// B′ ⊕ C ′ A


β′

γ′




//

B B′β1β′1 //B

A1

β1

²²

B′ A
β′ //B′

B′ ⊕ C ′

(B′,0)

²²

A

A

=

²²

C C ′
−γ1γ′1

// C ′ A
γ′

//

A1

C

OO

γ1

B′ ⊕ C ′

C ′

OO

(0,C′)

A

A

OO

=

A B
β //

A A1
//

A C
γ //

A

A

=

²²

A

A

=

OO

is commutative with exact triangles for rows ks +3

B ⊕ C A1


 β1

−γ1




// A1 A//

B B′β1β′1 //B

B ⊕ C


B

0




²²

B′ A
β′ //B′

A1

β′1

²²

A

A

=

²²

C C ′
−γ1γ′1

// C ′ A
γ′

//

B ⊕ C

C

OO

0

C




A1

C ′

OO

γ′1

A

A

OO

=

A B
β //

A B ⊕ C
(β,γ) //

A C
γ //

A

A

=

²²

A

A

=

OO

is commutative and has exact triangles for rows.

This lemma is dual to its converse and needn’t be proved.

9.4 Groups. Theorem (9.2) holds without restriction. Because of the validity of the
homology coproduct theorem (7.3), if Π0 ∗ Π1

// Π we get an exact sequence

· · · // Hn(Π,M) // Hn(Π0
// Π,M)⊕Hn(Π1

// Π,M)
// Hn(Π0 ∗ Π1

// Π,M) // Hn−1(Π,M) // · · ·
if M is a Π-module; similar sequences hold in cohomology, or in homology with coefficients
in any coproduct-preserving functor.

As to (9.1), its applicability is a little more restricted. Suppose that Π0 is a subgroup
of Π1 and Π2 and that Π is the pushout or amalgamated coproduct:

Π2 Π//

Π0

Π2

²²

Π0 Π1
// Π1

Π
²²
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It will be shown that if M is a Π-module, then the Π0-coproduct theorem holds for
homology:

Hn(Π0
// Π1,M)⊕Hn(Π0

// Π2,M) ∼ // Hn(Π0
// Π,M).

Then the Mayer-Vietoris sequence

· · · // Hn(Π0,M) // Hn(Π1,M)⊕Hn(Π2,M) // Hn(Π,M)

// Hn−1(Π0,M) // Hn−1(Π1,M)⊕Hn−1(Π2, M) // Hn−1(Π,M) // · · ·
is exact. There is a similar exact sequence for cohomology with coefficients in M . While
our argument will involve DiffΠ, we cannot claim this for arbitrary coefficient functors but
only for those that are a composition of DiffΠ: (G , Π) // Π-Mod and an additive functor
E: Π-Mod // A . This theorem also has a topological proof using Eilenberg-Mac Lane
spaces. Similar results have been obtained by [Ribes (1967)]. We now launch into the
algebraic details:

The free group cotriple preserves monomorphisms: let Yn be the pushout or amalga-
mated coproduct

Π2G
n+1 Yn

//

Π0G
n+1

Π2G
n+1

²²

Π0G
n+1 Π1G

n+1// Π1G
n+1

Yn

²²

(n ≥ −1)

Thus (Yn) is an augmented simplicial group, with Y−1 = Π. Moreover Yn is a free group
when n ≥ 0 as Yn = SF where S is the set-theoretic pushout

Π2G
nU S//

Π0G
nU

Π2G
nU

²²

Π0G
nU Π1G

nU// Π1G
nU

S
²²

and F is the free group functor S // G , which as a left adjoint preserves pushouts.
Applying DiffΠ, we get a square

(a)

DiffΠ(Π2G
n+1) DiffΠ(Yn)//

DiffΠ(Π0G
n+1)

DiffΠ(Π2G
n+1)

²²

DiffΠ(Π0G
n+1) DiffΠ(Π1G

n+1)// DiffΠ(Π1G
n+1)

DiffΠ(Yn)
²²

which is exact, i.e., simultaneously a pushout and a pullback. We will prove this later, as
also fact (b) arrayed below. For the rest of this section we write

Diff = DiffΠ.
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Now using the usual Mayer-Vietoris maps we get an exact sequence of chain complexes

0 // (Diff(Π0G
n+1)) // (Diff(Π1G

n+1)⊕Diff(Π2G
n+1)) // (Diff(Yn)) // 0

for n ≥ 0, whence the homology sequence

(b)

· · · 0// 0 0// 0 Hp(Diff(Y∗))// Hp(Diff(Y∗))

0 ssggggggggggggggggggggg

0 · · ·// · · · H1(Diff(Y∗))// H1(Diff(Y∗))

Diff(Π0)

∂

rrffffffffffffffffffffff

Diff(Π0) Diff(Π1)⊕Diff(Π2)// Diff(Π1)⊕Diff(Π2) H0(Diff(Y∗))// H0(Diff(Y∗)) 0//

(The p illustrated is ≥ 2); in addition, the map ∂ is zero. This yields the conclusion that
(Diff(Yn)), n ≥ −1, is a Π-free resolution of Diff(Π) = IΠ in the category of Π-modules.

Let E be any additive functor Π-Mod // A . The first two columns of the following
commutative diagram are exact, hence the third column which consists of the mapping
cones of the horizontal maps is also exact.

Diff(Π0G
n+1)E ⊕Diff(Π0G

n+1)E Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E// Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E C//

Diff(Π0G
n+1)E

0

²²
Diff(Π0G

n+1)E Diff(Π0G
n+1)E//Diff(Π0G

n+1)E

Diff(Π0G
n+1)E ⊕Diff(Π0G

n+1)E
²²

Diff(Π0G
n+1)E C ′//Diff(Π0G
n+1)E

Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E
²²

Diff(Π0G
n+1)E

0

²²
C ′

C
²²

C ′

0

²²

Diff(Π0G
n+1)E

0
²²

Diff(Π0G
n+1)E Diff(Y∗)E// Diff(Y∗)E C ′′//Diff(Y∗)E

0
²²

C ′′

0
²²

Diff(Π0G
n+1)E ⊕Diff(Π0G

n+1)E

Diff(Π0G
n+1)E

²²

Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E

Diff(Y∗)E
²²

C

C ′′
²²

for n ≥ 0. C ′ is acyclic as it is the mapping cone of an identity. Clearly,

Hn(C) = Hn(Π0
// Π1, E)⊕Hn(Π0

// Π2, E) and

Hn(C ′′) = Hn(Π0
// Π, E).

The homology sequence of 0 // C ′ // C // C ′′ // 0 then proves the coproduct
theorem for groups under Π0. This completes the proof that (9.1) applies to amalgamated
coproduct diagrams in G , modulo going back and proving (a), (b).

Square (a) is obviously a pushout since DiffΠ: (G , Π) // Π-Mod is a left adjoint and
preserves pushouts. The hard part is proving that it is a pullback. For that it is enough
to show that the top map DiffΠ(Π0G

n+1) // DiffΠ(Π1G
n+1) is a monomorphism, in view

of:
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Lemma. In an abelian category,

A2 A3β2

//

A0

A2

α2

²²

A0 A1

α1 // A1

A3

β1

²²

is a pushout ks +3

A0

(α1,α2) // A1 ⊕ A2

( β1
−β2

)
// A3

// 0

is exact, and dually, is a pullback ks +3

0 // A0

(α1,α2) // A1 ⊕ A2

( β1
−β2

)
// A3

is exact.

This is standard. Thus, we are reduced to:

Lemma. If Π0
// Π is a subgroup, then DiffΠ(Π0) // DiffΠ(Π) is a monomorphism of

Π-modules. If
Π0

Π
ÂÂ?

??
??

??
??

Π0 Π1
// Π1

Π
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

is a diagram of subgroups, then

DiffΠ(Π0)

DiffΠ(Π)
$$JJJJJJJJJJJ

DiffΠ(Π0) DiffΠ(Π1)// DiffΠ(Π1)

DiffΠ(Π)
zzttttttttttt

commutes, hence DiffΠ(Π0) // DiffΠ(Π1) is a monomorphism of Π-modules.

Proof. 1 We write x ∈ Π0, y ∈ Π and present an isomorphism

DiffΠ(Π0) = ZΠ⊗Π0
IΠ0

IΠ
ÂÂ?

??
??

??
??

??
?

DiffΠ(Π0) = ZΠ⊗Π0
IΠ0 D

f // D

IΠ
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

1There is a simple exact-sequences argument.
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where D is the Π-submodule generated by all x − 1. f and f−1 are the Π-linear maps
determined by the correspondence 1 ⊗ (x − 1) ks +3 x − 1. f is more-or-less obviously
well-defined. As for f−1, it is deduced from the exact sequence of Π-modules

R F
∂1 // F D

∂0 //F

ZΠ⊗Π0
IΠ0

f0

²²

D

ZΠ⊗Π0
IΠ0

f−1

ÄÄÄ
Ä

Ä
Ä

Ä
Ä

Ä
D 0//

where F is the free Π-module on generators [x], [x]∂0 = x − 1, and ∂1 is the sub-module
generated by all elements of the form

y[x] + y1[x1]− y1[y
−1
1 yx]

where y = y1x1. f0 is defined by [x]f0 = 1⊗ (x− 1) and annihilates ∂1.
For the proof of the statements around (b), we know that

Hp(DiffΠ0
(Π0G

n+1)n≥0) =

{
DiffΠ0

(Π0) p = 0

0 p > 0

by (1.2). After tensoring over Π0 with ZΠ, which is Π0-projective since Π0
// Π is a sub-

group, we find that the homology becomes DiffΠ(Π0) in dimension 0 and 0 in dimensions
> 0. This accounts for the two columns of 0’s in (b). The fact that ∂ = 0 results from
exactness and the above Lemma, which implies that DiffΠ(Π0) // DiffΠ(Π1)⊕DiffΠ(Π2)
is monomorphic. This completes the proof.

(9.5) Commutative algebras. If

C B ⊗A C//

A

C
²²

A B// B

B ⊗A C
²²

is a pushout in the category of commutative K-algebras, where K is a commutative ring
and M is a B ⊗A C-module, then

Hn(A // B, M)⊕Hn(A // C,M) ∼ // Hn(A // B ⊗A C, M)

for n ≥ 0 if TorA
p (B, C) = 0 for p > 0 (homology with respect to the absolute cotriple

in the category of commutative K-algebras (cf. (7.4)). In this case (9.1) gives an exact
sequence

· · · // Hn(A,M) // Hn(B,M)⊕Hn(C,M) // Hn(B ⊗A C, M) // Hn−1(A,M) // · · ·
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A similar sequence holds in cohomology under the same Tor assumption. If K = A, this
coincides with the homology coproduct theorem.

If A⊗K B //C is a K-algebra map and TorK
p (A,B) = 0 for p > 0, then the homology

assumption in (9.2) is satisfied and we get the sequence

· · · // Hn(C,M) // Hn(A // C,M)⊕Hn(B // C, M)
// Hn(A⊗K B // C,M) // Hn−1(C,M) // · · ·

if M is a C-module; similarly in cohomology. This is the same sequence as in [André
(1967)], Section 5, but the assumption TorK

p (C, C) = 0, p > 0 employed there is seen to
be superfluous.

10. Cotriples and models

For our purposes it is sufficient to consider a category with models to be a functor
M //C where M is discrete. The objects of M are known as the models. Many cotriples
can be constructed in the following manner.

(10.1) Model-induced cotriple. If X ∈ C let

XG = FM // X
M∈M

M

the coproduct indexed by all maps of model objects M // X.
We assume that such coproducts exist in C, and write M // X instead of MI // X

in order to avoid having to name I:M // C
Let 〈x〉: M // XG denote the canonical map of the cofactor indexed by a map

x: M // X. Then
XG

Xε // X

is the map such that 〈x〉Xε = x for all x: M // X, M ∈ M.

XG
Xδ // XGG

is the map such that 〈x〉Xδ = 〈〈x〉〉 for all such x. (Since 〈x〉: M //XG, 〈〈x〉〉: M //(XG)G.)
Both ε and δ are natural transformations, and as

〈x〉Xδ.XGδ = 〈〈〈x〉〉〉 = 〈x〉Xδ.XδG and

〈x〉Xδ.XGε = 〈〈x〉〉XGε = 〈x〉 = 〈〈x〉〉XεG = 〈x〉Xδ.XεG

we have that G = (G, ε, δ) is a cotriple in C, which we call model-induced. (This special
case is dual to the “triple structure” which Linton discusses in [Linton (1969)]; see also
[Appelgate & Tierney (1969)].)

If M is a model, then M viewed as an object in C is G-projective (even a G-coalgebra):

M
〈M〉 // MG Mε // M.
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Some other relations between model concepts and cotriple concepts are: A simplicial
object X∗, has zero homotopy relative to G (every (AG,X∗) has zero homotopy) ks +3 every
simplicial set (M, X∗) has zero homotopy. In the additive case, G-acyclicity is equivalent
to acyclicity relative to all of the objects M ∈ M.

(10.2) Examples of model-induced cotriples. (a) Let 1 //R-Mod be the functor
whose value is R. Then AG = ⊕R, over all elements R // A, is the free R-module
cotriple (1.1). More generally, if C is tripleable over sets and 1 // C has value 1F , the
free object on 1 generator, then the model-induced cotriple G is the free cotriple in C,
e.g., C = K-Alg, 1F = K[x],C = Groups, 1F = Z.

(b) Let 1 // Ab have value Q/Z (rationals mod one). Let T be the model-induced
triple in Ab

AT =
∏

A // Q/Z
Q/Z.

(AT n+1)n≥−1 is an injective resolution of A. The composition

R-Mod // Ab T // Ab
HomZ(R, ) // R-Mod

is the Eckmann-Schopf triple TR in R-Mod. (AT n+1)n≥−1 is an R-injective resolution
of an R-module A.

(c) Let M // R-Mod be the subset of cyclic R-modules. The model-induced cotriple
is the pure cotriple

CG =
⊕

R/I // C
I⊂R
I 6=0

R/I.

The G-homology and cohomology of C ∈ R-Mod with coefficients in A ⊗R ( ), resp.
HomR( , A), are Harrison’s PtorR

n (A,C), Pextn
R(C, A); Pext classifies pure extensions of

R-modules [Harrison (1959)]. This example is one of the original motivations for relative
homological algebra.

(d) Let ∆ //Top be the discrete subcategory whose objects are the standard Euclidian
simplices ∆p, p ≥ 0. Then

XG =
⋃

∆p
// X

p≥0

∆p

If Top E // A is H0( ,M)sing, the 0-th singular homology group of X with coefficients in
M , then

Hn(X,H0( ,M)sing)G ' Hn(X, M)sing.

This is proved by a simple acyclic-models argument (11.2) or equivalently by collapsing
of a spectral sequence like that in (10.5) . Singular cohomology is similarly captured.

(e) Let ∆ // Simp be the discrete subcategory of all ∆p, p ≥ 0, where Simp is the
category of simplicial spaces. The model-induced cotriple is XG = ∪∆p over all simplicial
maps ∆p

// X, p ≥ 0. The G-homology is simplicial homology.
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(10.3) Homology of a category. In [Roos (1961)], [André (1965)] Roos and André
defined a homology theory Hn(X, E) of a category X with coefficients in a functor
E:X // A . The homology theory arises from a complex

Cn(X, E) =
∑

M0

α0 // M1
// ···

αn−1 // Mn

M0E, n ≥ 0.

Using the 〈〉 notation for the coproduct injections M0E
// Cn(X, E), the face operators

εi: Cn
// Cn−1, 0 ≤ i ≤ n, are

〈α0, . . . , αn−1〉εi =





α0E.〈α1, . . . , αn−1〉, i = 0

〈α0, . . . , αi−1αi, . . . , αn−1〉, 0 < i < n

〈α0, . . . , αn−2〉, i = n;

it is understood that 〈α0〉ε0 = α0E.〈M1〉, 〈α0〉ε1 = 〈M0〉 and C0(X, E) =
∑

ME over all
M ∈ X. The homology groups of this complex, with respect to the boundary operator
∂ =

∑
(−1)iεi, are denoted by Hn(X, E).

Clearly, H0(X, E) = lim// E, and Roos proves that if A has exact direct sums (AB4),

then Hn(X, E) = (Ln lim// )(E), the left satellite of the direct limit functor (X,A ) // A ,

for n > 0.
If there is a terminal object 1 ∈ X, then Hn(X, E) = 0 for n > 0. This follows from

the existence of homotopy operators

C0

h0 // C1
// · · · // Cn

hn // · · ·

defined by 〈α0, . . . , αn〉hn = 〈α0, . . . , αn, ( )〉 where ( ) is the unique map of the appropri-
ate object into 1. This is also obvious from the fact that lim// E = 1E, that lim// is an exact

functor (assuming A is AB4).
More generally, if X is directed and A is AB5, then Hn(X, E) = 0 for n > 0. “Di-

rected” means that if X0, X1 ∈ X, then there exist an object X ∈ X, maps X0
//X oo X1,

and if x, y: X1
// X0, then there exists a map z: X0

// X, such that xz = yz. AB5 is
equivalent to exactness of direct limits over directed index categories.

(10.4) André-Appelgate homology. In a models situation, let ImM be the full
subcategory of C generated by the image of M // C. If X ∈ C, (ImM, X) is the
category whose objects are maps of models M // X and whose maps are triangles
X oo M0

// M1
// X. If E0: ImM // A is a coefficient functor, E0 can be construed

as a functor (ImM, X) // A by (M // X)E0 = ME0.
The André-Appelgate homology of X with coefficients in E0 (relative to the models

M // C) is
An(X,E0) = Hn[(ImM, X), E0]
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where on the right we have the Roos-André homology of the comma category. Explicitly,
the chain complex which gives rise to this homology theory has

Cn(X, E0) =
∑

M0

α0 // M1
// ··· // Mn

x // X

M0E

with boundary operator as in [André (1967)], Section 1. We note that H. Appelgate
[Appelgate (1965)] developed this homology theory in a different way. He viewed the
above complex as being generated by its 0-chains acting as a cotriple in the functor
category (C,A ).

A basic property of this theory is that if M is a model, then

An(M,E0) '
{

ME0, n = 0

0, n > 0,

for any functor E0: ImM // A . The category (ImM,M) has M as final object and the
contracting homotopy in (10.3) in available [André (1967)], Sub-section 1.1.

In general,
A0(X,E0) = X.EJ(E0)

where EJ : (ImM,A ) // (C,A ), the Kan extension, is left adjoint to the restric-
tion functor (ImM, A ) oo (C,A ). As the Kan extension can also be written as
lim// (E0: (ImM, X) // A ), Roos’s result implies that

An(X,E0) = X.(LnEJ)(E0), n > 0.

provided that A is AB4. (For further information about Kan extension, see Ulmer’s
paper in this volume.)

The theory An(X, E) is also defined when E:C // A by restricting E to ImM. It
can always be assumed that the coefficient functor is defined on all of C. If not, take
the Kan extension. The restriction of EJ(E0) to ImM is equivalent to the given E0 since
J : ImM // C is full.

Now suppose we have both a models situation M // C and a cotriple G in C. To
compare the homology theories An(X, E) and Hn(X, E) = Hn(X,E)G, we use:

(10.5) Spectral sequence. Suppose that all models M ∈ M are G-projective. Then
there is a spectral sequence

Hp(X, Aq( , E)) // // Ap+q(X, E)

where the total homology is filtered by levels ≤ p.

Proof. For each M ∈ M choose a map Mσ: M // MG such that Mσ.Mε = M . Define
ϑq: Cq(X,E) // Cq(XG, E) by the identity map from the 〈α0, . . . , αq−1, x〉-th summand
to the 〈α0, . . . , αq−1.Mqσ, xG〉-th. This makes C∗(X, E) G-representable, and the result
follows from (11.3).
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Proposition (10.6). If each category (ImM, XG) is directed and the coefficient category
A is AB5, then the above spectral sequence collapses and gives edge isomorphisms

Hn(X, A0( , E)) ∼ // An(X,E), n > 0.

The André-Appelgate theory has a natural augmentation A0( , E) // E, which is
induced by the following cokernel diagram and map e such that 〈x〉e = xE:

C1(X, E) C0(X, E)// C0(X, E) A0(X,E)//C0(X, E)

XE

e

²²

A0(X,E)

XE
zzv

v
v

v
v

v
v

v
A0(X,E) 0//

We obtain isomorphisms Hn ' An from (10.6) when the augmentation is an isomorphism.

Proposition (10.7). Equivalent are:

(1) A0(-, E) // E is an isomorphism,

(2) E = EJ(E0), where E0: ImM // A

(3) E = EJ(E), the Kan extension of E restricted to ImM.

Finally, (1) (2) (3) are implied by:
(4) E commutes with direct limits and ImM // C is adequate [Isbell (1964)]

/dense [Ulmer (1968)].

The equivalences are trivial in view of fullness of J : ImM //C. As to (4), this results
from the fact that J is adequate/dense ks +3 lim// [(ImM, X) // C] = X for all X ∈ C

(10.8) Examples in which the models are G-projective. (a) Let the models be
the values of the cotriple, that is, all XG,X ∈ C. The comma category (ImM, XG) has
XG as terminal object, hence is directed. Thus Aq(XG, E) = 0 for q > 0 and any E, and
(10.6) gives an isomorphism

Hn(XA0( , E)) ∼ // An(X,E), n ≥ 0.

(10.7) is inapplicable in general.
A stronger result follows directly from acyclic models (11.2). The complex C∗(X, E)

is G-representable (10.5) and is G-acyclic since each XG is a model. Thus

Hn(X, E) ∼ // An(X,E)

(b) Another convenient set of models with the same properties is that of all G-
projectives.

Here and above, existence of the André-Appelgate complex raises some difficulties.
The sets of models are too large. However, for coefficient functors with values in AB5
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categories with generators, the problem can be avoided. Such categories are Ab-topos
[Roos (1961)], realizable as categories of abelian sheaves on suitable sites, and it suffices
to pass to models or abelian groups in a larger universe. (See the discussion of this point
in [André (1967)] as well.)

(c) Let G be the free R-module cotriple and let M // R-Mod be the set of finitely
generated free R-modules. The categories (ImM, XG) are directed, since any M // XG
can be factored

M

SF
ÂÂ?

??
??

??
??

??
??

M XG = XUF// XG = XUF

SF

iF

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

where i: S //XU is a finite subset of the free basis XU , (U is the underlying set functor.)
Moreover, ImM //R-Mod is adequate. Thus if E is any cocontinuous coefficient functor
with values in an AB5 category, then Hn(X, E) ' An(X,E) for all R-modules X.

(d) More generally, if C is tripleable over sets, ℵ is a rank of the triple [Linton (1966a)]
and M is the set of free algebras on fewer than ℵ generators, then (ImM, XG) can be
proved directed in the same way, Thus homology relative to the models agrees with the
cotriple homology (for cocontinuous AB5–category-valued coefficient functors; G is the
free algebra cotriple relative to sets).

In these examples, adequacy/denseness of ImM is well known or easily verified. In
the following case adequacy fails. Let 1 // R-Mod have R as value. A0(X, id.) // X
is non-isomorphic (coefficients are in the identity functor R-Mod // R-Mod). In fact
A0(X, id.) = R(X)/I, the free R-module on X modulo the submodule generated by all
r(x)− (rx). Of course, H0(X, id.) ' X (homology with respect to the absolute cotriple,
which is induced by the above model).

(e) Cohomology. Let E:C // A ∗ be a “contravariant” coefficient functor. Isomor-

phisms An(X,E) ∼ // Hn(X, E) follow purely formally in cases (a), (b) above. Cases (c),
(d) offer the difficulty that the coefficient category A ∗ cannot be assumed to be AB5,
since in practice it is usually dual to a category of modules and therefore AB 5∗. Assume
that the rank ℵ of the triple T is ℵ0, however, one can proceed as follows.

If X is a T-algebra, the category of X-modules is abelian, AB5, has a projec-
tive generator and is complete and cocomplete. Thus injective resolutions can be
constructed, in the abelian category sense. Moreover, the free abelian group functor
DiffX : (C, X) // X-Mod exists. Consider the André-Appelgate complex with values
in X-Mod: (Cp(X)) = (Cp(X, DiffX)p≥0). Its homology, written Ap(X), measures the
failure of the André-Appelgate theory to be a derived functor on the category X-Mod.
If Y // X is an X-module, (HomX(CpX,Y )p≥0) has AP (X,Y ) as its cohomology. Let
(Y q)q≥0 be an injective resolution of Y . We get a double complex (HomX(CpX,Y q)p,q≥0),
hence a universal-coefficients spectral sequence

Extq
X(Ap(X), Y ) // // Ap+q(X, Y ),
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where the total cohomology is filtered by q. (Use the fact that the complex Cp(X) consists
of projective X-modules.)

For example, in the case of commutative A-algebras over B, one obtains

Extq
B(Hp(A, B, B),M) // Hp+q(A,B,M)

in the notation of [André (1967)], Section 16.
Similarly, in the cotriple theory, there is a spectral sequence

Extq
X(Hp(X), Y ) // Hp+q(X, Y )

Now, by the assumption that the rank of the triple is ℵ0, the free T-algebra XG //X is
a filtered direct limit of free T-algebras of finite type, that is, of models. Since the homol-
ogy Ap( ) commutes with filtered limits, Ap(XG) = 0 for p > 0, A0(XG) = DiffX(XG).
Thus the above spectral sequence yields An(XG, Y ) = 0 for n > o, A0(XG, Y ) =
HomX(XG, Y ). Acyclic models (11.2) now yields isomorphisms

An(X,Y ) ∼ // Hn(X, Y ).

A case in which this comparison technique runs into difficulty is the following. Let
M // K-Alg be the set of tensor algebras of finitely generated K-modules, and let G be
the cotriple in K-Alg relative to K-modules. Homology isomorphisms Hn

∼ // An are
easily obtained, as in (d). But the above derivation of the universal-coefficients spectral
sequence does not work, because one seems to need to resolve the module variable both
S -relatively and K-relatively at the same time.

11. Appendix on acyclic models

Let 0 oo C−1
oo C0

oo C1
oo · · · be a chain complex of functors C // A . (Cn)

is G−representable, where G is a cotriple in C, if there are natural transformations
ϑn: Cn

// GCn such that ϑn.εCn = Cn for all n ≥ 0. (Cn) is G-contractible if the
complex (GCn)n≥−1 has a contracting homotopy (by natural transformations).

Proposition [(11.1)]. [Barr & Beck (1966)] Suppose that (Cn) is G-representabie, (Kn)
is G-contractible, and ϕ−1: C−1

// K−1 is a given natural transformation, then ϕ−1 can
be extended to a natural chain transformation (ϕn): (Cn) // (Kn)n≥−1 by the inductive
formula

Cn GCn

ϑn // GCn

GCn−1

G∂

²²
GCn−1 GKn−1Gϕn−1

// GKn−1

GKn

h

OO
GKn Kn

εKn //

Any two extensions of ϕ−1 are naturally chain homotopic (we omit the formula).
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In particular, if C−1 = K−1, then there are natural chain equivalences (Cn)
∼ //oo (Kn).

If E:C //A is a functor with values in an additive category, then the standard chain
complex

0 oo E oo GE oo G2E oo · · ·
is G-representable and G-contractible by virtue of ∂GnE: Gn+1E // Gn+2E. Thus if

0 oo E oo E0
oo E1

oo · · ·
is any G-representable chain complex of functors C // A , there exists a unique natural
chain transformation (ϕn): (En) // (Gn+1E) such that ϕ−1 = E (up to homotopy).

The proof is more of less contained in the statement. The term “G-contractible” was
not used in [Barr & Beck (1966)], the term “G-acyclic” used there is reintroduced below
with a different meaning.

The conclusions of (11.1) in practice are often too hard to establish and too strong
to be relevant, At present all we need is homology isomorphism - a conclusion which is
much weaker than chain equivalence. Thus it is convenient and reasonably satisfying to
have the following weaker result available (as M. André has pointed out to us—see also
[André (1967)]), that one can conclude a homology isomorphism H(XE∗) // H(X, E)G
from the information that the complex E∗ is G-representable as above and G-acyclic
merely in the sense that Hn(XGE∗) = 0 if n > 0, and = XGE if n = 0. This observation
greatly simplifies proofs of agreement between homology theories arising from standard
complexes, such as those of [Barr & Beck (1966)].

Proposition (11.2). Let

0 oo E oo E0
oo E1

oo · · ·
be a complex of functors C // A such that

Hn(XGE∗) =

{
XGE, n = 0

0 n > 0,

and the G-homology groups

Hp(X, Eq)G =

{
XEq, p = 0

0, p > 0,

for all X ∈ C, q ≥ 0. Then the spectral sequences obtained from the double complex

(XGp+1Eq)p,q≥0

by filtering by levels ≤ p and ≤ q both collapse, giving edge isomorphisms

Hn(XE∗)
∼ // total Hn (p filtration)

Hn(X, E)G
∼ // total Hn (q filtration)
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for all n ≥ 0, hence natural isomorphisms Hn(XE∗)
∼ // Hn(X,E)G.

In particular, G-representability of the complex (En) guarantees the second acyclicity
condition, since the Eq are then retracts of the G-acyclic functors GEq, q ≥ 0.

There is an obvious overlap between these two propositions which we encountered in
Theorem (8.1):

Proposition (11.3). Let 0 oo E oo E0
oo · · · be a G-representable chain complex of

functors C // A and (ϕn): (En) // (Gn+1E), n ≥ −1, a chain transformation such that
ϕ−1 = E (see (11.1)). By G-representability, the acyclicity hypothesis

Hp(X,Eq) =

{
XEq, p = 0

0, p > 0,

is satisfied and the rows of the double complex XGp+1Eq have homology zero. We obtain
a spectral sequence

Hp(X,Hq( , E∗))G
//// Hp+q(XE∗),

where the total homology is filtered by levels ≤ p. The edge homomorphisms are

H0(X,Hn( , E∗))G
λG // Hn(XE∗)

and the top map in the commutative diagram

Hn(XE∗) Hn(X, H0( , E∗))G//Hn(XE∗)

Hn(X,E)G

Hn(Xϕ∗)
&&MMMMMMMMMMMMMMMMM

Hn(X, H0( , E∗))G

Hn(X,E)G
²²

Finally suppose that

Hn(XGE∗) =

{
XGE, n = 0

0 n > 0.

The spectral sequence collapses, as Hp(X,Hq( , E∗))G = 0 if q > 0. The edge homomor-
phism λG is zero. The second edge homomorphism and the vertical map in the above
triangle both become isomorphisms. Thus the homology isomorphism produced by (11.2)
is actually induced by the chain map ϕ∗: E∗ // (Gn+1E)n≥0.

The proof is left to the reader.
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