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Résumé. Cet article montre comment on peut utiliser la �construction de Chu� afin
de simplifier la construction assez complexe de la catégorie ∗-autonome des boules qui
sont réflexives et ζ-ζ∗-complètes donnée par le premier auteur dans les articles [Barr,
1976, 1979].
Abstract. This paper shows how the use of the “Chu construction” can simplify
the rather complicated construction of the ∗-autonomous category of reflexive ζ-ζ∗-balls
set up by the first author in the original papers and lecture notes on ∗-autonomous
categories ([Barr, 1976, 1979]).

1. Introduction

By a (topological) ball, we mean the unit ball of a Banach space equipped with a second
locally convex Hausdorff topology, coarser than that of the norm, in which the norm is
lower semi-continuous. A morphism is a function, continuous in the second topology,
that preserves the absolutely convex structure of the unit balls. We denote by B the
category so defined. This category can also be viewed as (that is, it is equivalent to) the
full subcategory of complex Saks spaces in the sense of Cooper [1987] generated by those
Saks spaces whose underlying normed space is complete. For that reason, we often speak
of functions that preserve the absolutely convex combinations as linear, even if that is not
quite the correct word.

The first author constructed a full subcategory R of B which can be endowed with a
closed symmetric monoidal structure and where every object is reflexive, that is, R is a
∗-autonomous category. The objects of R are the reflexive ζ-ζ∗-balls introduced in [Barr,
1976]. For the time being we do not need to know the definition of those balls. What
is important, is that on the one hand the category R can be completed to a model of
full linear logic ([Kleisli, et al. 1996]) and also yields an interesting group algebra for
completely regular (for which T0 suffices) topological groups ([Schläpfer, 1998], [Dorfeev,
Kleisli, 1995]), and on the other hand, the construction of the category R suffers from
complications of topology and completeness which are hard to describe and even harder
to understand.

In a recent paper titled “∗-autonomous categories, revisited” ([Barr, 1996]), the first
author showed that a construction studied by P.-H. Chu in [Chu, 1979], now known as
the “Chu construction”, can basically replace complications such as those encountered in
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the original construction of the category R. In this paper, we show how this is actually
done. We will introduce an autonomous (that is, closed symmetric monoidal) category
A with pullbacks, an object K in A , and a factorization system E /M in A such that
the category R is equivalent to a full subcategory of the category Chuse(A , K) of M -
separated, M -extensional Chu spaces of A with respect to K. We will describe that
category in Section 4. Following a suggestion of V. Pratt, we will denote it by chu(A , K).
We will demonstrate that, under mild assumptions, this category is ∗-autonomous. Using
this, we find a description of the category R which avoids many of the complications of
the original construction and also gives a better insight into the topological considerations
involved.

2. Some generalities

A ball will be called discrete if the topology is exactly that of the norm (which is auto-
matically continuous with respect to itself). Notice that in a ball the norm is intrinsic,
since in a ball B, we have

‖x‖ = inf{λ > 0;x ∈ λB} (∗)
The full subcategory of discrete balls is denoted Bd. This category is a symmetric closed
monoidal, that is autonomous, category. The internal hom [A,B] is the set of all linear
(that is, absolutely convex) functions A // B. The tensor product is the completion
of the linear tensor product with respect to the least cross-norm (the projective tensor
product).

Let D denote the unit disk of the complex numbers. We will call a continuous linear
map B // D a functional on B. A ball will be said to have a weak topology if no coarser
topology allows the same set of functionals and will be said to have a strong or Mackey
topology if any finer topology allows strictly more functionals. One of the things we will
show is that given any ball, there is a both a coarsest and finest topology that has the
same set of functionals.

We begin with the following proposition. The first three conditions are shown to be
equivalent in [Cooper, 1987], I.3.1, and the fourth is a more categorical version.

2.1. Proposition. The following are equivalent for the unit ball B of a Banach space
equipped with a Hausdorff topology given by a family Φ of seminorms.

1. B is a ball, that is the norm function is lower semicontinuous on B;

2. 1
2
B is closed in B;

3. for any b ∈ B, ‖b‖ = supϕ∈Φ ϕ(b);

4. B is embedded isometrically and topologically in a product of discrete balls.
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Proof. Because of the already noted equivalence of the first three, it is sufficient to
show that 3⇒ 4⇒ 2.

3⇒ 4. For each ϕ ∈ Φ, let Bϕ = kerϕ. This is a closed subball and ϕ is a continuous
norm on B/Bϕ, and extends to a continuous norm on its completion Dϕ which is thereby
a discrete ball. The topology of the seminorms embeds B topologically into

∏
ϕ∈ΦDϕ and

3 implies that the embedding is also an isometry.

4⇒ 2. This is immediate from the discrete case.

From the equivalence of 1 and 2 above, we see:

2.2. Corollary. Suppose B is the unit ball of a Banach space equipped with a
compact Hausdorff topology given by a family of seminorms. Then B is a ball.

There is a notable omission from [Barr, 1976, 1979], which we now fill.

2.3. Proposition. For any balls A and B, the set of continuous linear maps A // B
is complete in the operator norm.

Proof. Suppose the sequence of continuous linear functions f1, f2, . . . is a Cauchy
sequence. Since B is complete, the sequence converges to a function f in the operator
norm. We want to show that f is continuous. We must show that for any seminorm ϕ
on B, the composite ϕ ◦ f is continuous on A. Suppose ε > 0 is given. Choose n so that
‖f − fn‖ < ε/2 and then choose an open neighborhood U ⊆ A of 0 so that a ∈ U implies
that ϕ ◦ fn(a) < ε/2. Then one sees immediately, using that ϕ ≤ ‖−‖, that a ∈ U implies
that ϕ ◦ f(a) < ε.

3. Weak balls and Mackey balls

3.1. Let B′ denote the set of all functionals on B. For the time being, we do not assign
it a topology, except in two cases. If B is compact, we give B′ the discrete topology and
if B is discrete we give B′ the topology of pointwise convergence, which is compact, since
it is a closed subspace of DB. It is well known that these spaces are reflexive in the sense
that the obvious evaluation maps B // B′′ are topological and algebraic isomorphisms.
See, for example, [Kleisli, Künzi], (2.12) and (4.2).

We want to demonstrate that given a ball B, there are both a weakest and a strongest
topology on B which has the same set of functionals. In [Barr, 1996] this is shown for
vector spaces over a discrete field and also for abelian groups, but the arguments depended
on particularities of those categories and so we need another argument here. In fact, this
argument is more general and would have worked for all three.

3.2. First we observe that there is a weakest topology with the same functionals.
Namely, retopologize B with the weakest topology for which all the functionals are con-
tinuous. This amounts to embedding B into DB′ . The retopologized ball clearly has the
same set of functionals as the original. On the other hand, any topology on B that has the
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same set of functionals must map continuously into DB′ with the same image and hence
into B. We call the weakest topology with the set B′ of functionals σ(B,B′) although
we often write σB for the ball B retopologized with σ(B,B′). If B already has the weak
topology, we say that B is weakly topologized.

Since every functional in B′ is continuous on B, the topology on σB is weaker than
that of B, that is B // σB is continuous. This suggests the following:

3.3. Theorem. The weakly topologized balls form a reflective subcategory S of B
with reflector σ. The weak topology on a ball is the topology of pointwise convergence on
its dual; a continuous seminorm is the absolute value of the evaluation on an element of
the dual.

Proof. Since σB has the same functionals as B, it is evident that σ is idempotent.
Thus, given B // A with A weakly topologized, then we have σB // σA = A. This
shows the adjunction. The remainder is implicit in the preceding discussion.

3.4. Sums. The next thing we have to do is investigate sums in the category of balls.
We observe that in any ball B, it makes sense to write

∑
bi for any collection, possibly

infinite, of elements, so long as
∑ ‖bi‖ ≤ 1. For suppose that b is a non-zero element of B.

From the formula (∗) for ‖b‖ at the beginning of Section 2, it follows that for any λ > ‖b‖
there is an element bλ with b = λbλ. If we restrict to a sequence of λ that converges
to ‖b‖, the resultant sequence of bλ is evidently a Cauchy sequence that converges in
the norm to an element we may as well denote b/‖b‖ such that b = ‖b‖(b/‖b‖). Then∑
bi =

∑ ‖bi‖(bi/‖bi‖) is a totally convex linear combination.

3.5. Proposition. Let {Bi} be a collection of balls. Let B be the set of all formal
sums

∑
bi such that

∑ ‖bi‖ ≤ 1 with the latter sum as norm. Topologize it by the finest
topology such that each inclusion Bi

// B is continuous. Then this is the sum in the
category B.

Proof. Suppose, for each i ∈ I there is given a morphism fi:Bi
// C. Define f :B

// C by f(
∑
bi) =

∑
fi(bi). This sum is well defined since

∑ ‖fi(bi)‖ ≤
∑ ‖bi‖ ≤ 1.

It is clear that f |Bi = fi and that f is unique with that property. If we give B the
weak topology for f , then the topology will restrict to a topology on each Bi that makes
fi continuous and is therefore coarser than the given topology on Bi. Thus the weak
topology defined on B by f is coarser than the strong topology defined by all the fi and
hence f is continuous in that latter topology.

3.6. Proposition. Let {Bi}, i ∈ I be a collection of balls. The natural map
∑
B′i

// (
∏
Bi)
′ is a bijection.

Proof. There is, for each i ∈ I, a product projection
∏
Bi

// Bi, that dualizes to
a map B′i // (

∏
Bi)
′ which gives a map

∑
B′i // (

∏
Bi)
′. It is easy to see, using

elements of the product that are 0 in every coordinate but one, that this map is injective.
Now let β be a continuous functional on

∏
Bi. Let βi be the restriction of β to Bi. We
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have to show that
∑ ‖βi‖ ≤ 1 (in particular that at most countably many are non-zero).

If not,
∑ ‖βi‖ > 1 + ε for some ε > 0 and then there is a finite set of indices, say 1, . . . , k

for which
∑k

i=1 ‖βi‖ > 1 + ε/2. Let bi ∈ Bi be an element for which βi(bi) > ‖βi‖ − ε/4k
for i = 1, . . . k and bi = 0 otherwise. Then for b = {bi},

β(b) =
k∑
i=1

βi(bi) >
k∑
i=1

(‖βi‖ − ε/4k) > 1 + ε/2− ε/4 = 1 + ε/4

which is impossible.

At this point, we must assign a topology to B′. Although there is some choice in
the matter, we will topologize it by uniform convergence on compact subballs. In other
words, we topologize the dual of a compact ball discretely and if {Ci} ranges over the
compact subballs of B, then B′ is topologized as a subspace of

∏
C ′i. This obviously

extends the already given topology on the duals of compact balls. It also extends the
one on discrete balls, which are topologized by pointwise convergence. The reason is the
well-known fact that a Banach space with compact unit ball is finite dimensional. Thus
the compact subballs are finite dimensional and pointwise convergence there is the same
as pointwise convergence on a finite basis.

3.7. Proposition. For any ball B, the natural evaluation map B // B′′ is an open,
but not necessarily continuous, bijection.

Proof. The fact that it is a bijection is found in [Barr, 1979], IV (3.18). The topology
on B is completely determined by maps B // D, with D discrete and any such map
gives a map B′′ // D′′ ∼= D.

Now say that a map B // A is weakly continuous if the composite B // A // σA
is continuous. We now define τB as the ball B retopologized with the weak topology for
all weakly continuous maps out of B.

As usual, one can readily show that B′ ∼= B′′′ so that B // B′′ is weakly continuous.

3.8. Proposition. The identity map τB // B is continuous, τB has the same
continuous functionals as B and τB has the largest topology for which this is true.

Proof. Every weakly continuous morphism out of B is, by definition, continuous on
τB. Since the identity map is weakly continuous, τB // B is continuous. For any ball
B1 with the same point set and a topology finer than that of τB, the identity B // B1 is
not even weakly continuous, which means there is some continuous functional on B1 that
is not continuous on B. Thus any topology finer than that of τB has more functionals
than B.

To finish, we have to show that every functional continuous on τB is continuous on
B. Since there is only a set of topologies on B, we can find a set of weakly continuous B

// Bi such that τB has the weak topology for that set of arrows. This evidently means
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that

σB
∏
σBi

//

τB

σB
��

τB
∏
Bi

//
∏
Bi

∏
σBi

��

is a pullback. Since one of the possibilities for Bi is the identity of B, one easily sees
that σB //

∏
σBi and hence τB //

∏
Bi are isometric embeddings. Now let ϕ

be a continuous functional on τB. The fact that D is an injective object ([Barr, 1979],
3.17) implies that ϕ extends to a continuous functional ψ on

∏
Bi. From the preceding

proposition, it follows that the dual space of
∏
Bi is

∑
B′i, which maps bijectively to∑

σB′i = (
∏
Bi)
′. Thus ψ remains continuous on

∏
σBi and then restricts to a continuous

functional ϕ on B.

By a Mackey ball, we mean a ball B for which the identity function τB // B is an
isomorphism of balls.

3.9. Remark. In [Barr, forthcoming], the same argument will be used to show
the existence of the Mackey topology—also the finest with a given set of continuous
functionals—for the case of locally convex topological vector spaces. This is, of course,
a classical result, but our categorical proof is much simpler than the one found in the
standard literature. In the locally convex case, Proposition 3.5 has to be replaced by the
theorem that identifies the dual space of a product with the ordinary algebraic direct sum
of the dual spaces, see [Schaeffer, 1971], IV.4.3.

3.10. Seminorms on τB. We wish to characterize the seminorms on τB. All

seminorms on B arise as composites B // D
‖−‖ // D where B // D is a continuous

arrow and D is discrete. We can, by replacing the map by the completion of its epimorphic
image, suppose the map is an epimorphism, which means that D′ // B′ is injective
(but not generally an isometry). Since D is discrete, D′ is compact. Seminorms on τB
arise in the same way from weakly continuous B // D followed by the norm on D.
Moreover, even a weakly continuous B // D induces D′ // B′ by the definition of
weak continuity.

3.11. Proposition. The composite B
f // D

‖−‖ // D is given by

p(b) = sup
ϕ∈D′
|f ′(ϕ)(b)|

Proof. The definition of f ′ is that f ′(ϕ)(b) = ϕ(f(b)). Given that for any Banach ball
A and a ∈ A, we have that

‖a‖ = sup
ϕ∈A′
|ϕ(a)|

and the conclusion follows.
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Thus every seminorm on τB is given as such a sup taken over some compact subball
of B′. Conversely, if C is a compact subball of B′, then we have B′′ // C ′ and C ′ is
discrete. Since B // B′′ is weakly continuous (they have the same elements and the

same functionals), it follows that the seminorm B // C ′
‖−‖ // D is a seminorm on τB.

Thus we have proved,

3.12. Proposition. Every seminorm on the ball τB has the form supϕ∈C |ϕb| for a
weakly compact subball C ⊆ B′.

In the case of topological vector spaces, the Mackey topology is described as that of
uniform convergence on subsets of the dual space that are compact in the weak topology.
To make the analogy stronger, the following result implies that the compact subballs are
the same for any compatible topology.

3.13. Corollary. If B is any ball, then any compact subball of σB is also compact
as a subball of B.

Proof. If C is a compact subball of σB, then the continuous inclusion gives an
embedding C = τC // τσB = τB and the topology of τB is weaker than that of B.

The results on Mackey balls can be summarized as follows.

3.14. Theorem. The Mackey balls form a coreflective subcategory T of B with
coreflector τ . The Mackey topology on a ball is the topology of uniform convergence on
compact subballs of its dual; equivalently, a continuous seminorm is the supremum of
absolute value of the evaluation on a compact subball of the dual.

4. The Chu category

4.1. Definition. We recall the definition of a Chu category Chu(A ,⊥) for an
autonomous category A and an object ⊥. An object of this category is a pair (A1, A2)
equipped with an arrow A1 ⊗ A2

// ⊥, called a pairing. A morphism (A1, A2) //

(B1, B2) is a pair f1:A1
// B1 and f2:B2

// A2 (note the direction of the second
arrow) such that the square

B1 ⊗B2 ⊥//

A1 ⊗B2

B1 ⊗B2

f1⊗B2

��

A1 ⊗B2 A1 ⊗ A2
A1⊗f2 // A1 ⊗ A2

⊥
��

commutes, the other two arrows being the respective pairings. This category is obviously
self dual; the duality reverses the components. What is interesting is that, provided A
has pullbacks, it is still autonomous, now ∗-autonomous ([Chu, 1979]).
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In the case at hand, we take for A the category Bd of discrete balls and for ⊥ the
unit ball D of the complex numbers. It is evident that Bd is a complete category and, in
particular, has pullbacks.

4.2. The factorization system on Bd. We let E denote the class of epimorphisms
in Bd and M the class of closed isometric embeddings. We claim that E and M constitute
a factorization system that satisfies the conditions of [Barr, 1998], 1.3. These conditions
are

FS–1. Every arrow in E is an epimorphism;

FS–2. if m ∈M , then for any object A of A , the induced A−◦m is in M .

First we have to show it is a factorization system. To do this, we factor each arrow A
f // B as A // A1

// A2
// A3

// B. Here A1 is the actual image of f ,

A2 = {b ∈ B;λb ∈ A1 for some λ ≤ 1}

and A3 is the closure of A2. It is clear that each of the three maps is an epimorphism
and that A3 has a closed isometric embedding into B. We claim that that embedding is a
regular, hence extremal, epimorphism and hence the diagonal fill-in condition is satisfied.
The reason is that A3 is a closed isometrically embedded subball and so we can form the
quotient B/A3, which will be Hausdorff and a ball. The kernel of B // B/A3 is A3.

Since E is exactly the epimorphisms, FS–1 is certainly satisfied. FS–2 is easy to check
since internal homs preserve kernels.

Using Theorem 3.3 of [Barr, 1998] we conclude that,

4.3. Theorem. The category chu(Bd,D) of M -separated and M -extensional Chu
spaces is ∗-autonomous.

4.4. Comparison between chu and B. Define F : B // chu(Bd,D)) by FB =
(|B|, |B′|) where |B| is the discrete space underlying B. This is clearly extensional since
|B′| is normed as the dual of B. It is also separated; it follows from [Barr, 1979], IV
(3.14), that for each b ∈ B, there is a continuous functional ϕ such that ϕ(b) is arbitrary
close to ‖b‖.

4.5. Theorem. The functor F has both a left adjoint L and a right adjoint R.
Moreover R induces an equivalence between chu(Bd,D) and S and L an equivalence
between chu(Bd,D) and T .

Proof. Define R(B1, B2) as the space B1 topologized by the weak topology from B2.
This means that R(B1, B2) is embedded topologically in DB2 . The embedding is also
isometric since both halves of B1

// // [B2,D] // DB2 are, the latter by the Hahn-
Banach theorem. Thus R(B1, B2) is a ball in our sense. We claim the functionals on
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R(B1, B2) are all represented by elements of B2. For a ball B, let B⊥ represent the weak
dual of B. From B1

// // B2
⊥, we get

B2
// B2

⊥⊥ // // B1
⊥

The first arrow is a bijection since weak balls are reflexive and the second is a surjection by
[Barr, 1979], IV (3.17). Since the composite is an injection it follows that it is a bijection.

Define L(B1, B2) = τR(B1, B2). Thus R(B1, B2) is B1 with the weakest topology for
which B2 is the dual space and L(B1, B2) is B1 with the strongest such topology. From
this observation, the conclusion is obvious. It is also obvious that both FR and FL are
equivalent to the identity, so that R and L are full and faithful and are distinct embeddings
of chu(Bd,D) into B. It is clear that S is the image of R and T is the image of L.

5. The autonomous category R

We now concentrate our attention on the category T of Mackey balls. It is a ∗-autonomous
category and we will denote the internal hom by −◦, the tensor product by ⊗ and the
dual of B by B′ = B−◦D. Recall that the topology on B is that of uniform convergence
on the compact subballs of B′ (3.12 of Section 3.) This leads to the question, when is
this the compact/open topology, that is the topology of uniform convergence on compact
subsets?

This will surely be so if every compact subset generates a compact subball. And there
is a natural class of objects for which this happens. It is known that a compact subset
always generates a totally bounded subball. This leads to the concept of ζ-completeness
introduced in [Barr, 1979], also in connection with ∗-autonomous categories. We say that
a ball is a ζ-complete ball, or simply a ζ-ball, if every closed totally bounded subball is
compact.

5.1. Theorem. If B is a ζ-complete ball, then the topology on B′ of uniform conver-
gence on compact subballs coincides with the compact/open topology.

Proof. The compact/open topology ω is the topology of uniform convergence on
compact subsets. Thus the Mackey topology τ is coarser than ω. To show the opposite
inequality we have to find, for each compact subset K ⊆ B, a compact subball C ⊆ B
containing K so that for all b ∈ B,

sup
β∈K

β(b) ≤ sup
β∈C

β(b)

Define C as the closure of the absolute convex hull of K. It is shown in [Bourbaki, 1953],
Proposition 2 of II.4 that C so defined is totally bounded and hence, in a ζ-complete ball,
compact. It follows from Corollary 2.2 that C is a subball of B.
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5.2. In [Barr, 1976], Proposition 2.1 we find he following characterization of ζ-balls:
B is a ζ-ball if and only if any morphism from a dense subball of a compact ball into B
can be extended to the whole compact ball. In particular, a complete ball is ζ-complete.
Let us denote by ζB the full subcategory of B consisting of the ζ-complete balls, then
the inclusion ζB // B has a left adjoint we denote ζ: B // ζB. Namely, embed
B ⊆ ∏Di. This product is complete, so let ζB be the intersection of all ζ-complete
subballs of the product that include B. This last is the object function of the ζ-completion.
See [Barr, 1979], III (1.4) (where the uniform completion is used instead of the product)
for details. Note that the characterization we have just given of ζ-balls makes it evident
that this intersection is still a ζ-ball. We have the following proposition.

5.3. Proposition. For any ball B

1. if B is a ζ-ball, then the associated Mackey ball τB is also a ζ-ball;

2. if B is a Mackey ball, then so is ζB.

Proof. Let B be a ζ-ball, C0 a dense subball of a compact ball C and ρ0:C0
// τB

a continuous morphism. Since B is a ζ-ball, there is a continuous morphism ρ:C // B
for which the diagram

τB B//

C0

τB

ρ0

��

C0 C// C

B

ρ

��

commutes. We have to show that f considered as a morphism C // τB is continuous.
By hypothesis, for every weakly compact subball K ⊆ (τB)′ there is a continuous semi-
norm ϕ on C0 and a positive constant c such that supy∈K |y(ρ0x)| ≤ cϕx for all x ∈ C0.
Let ψ be the unique continuous seminorm on C that extends the seminorm ϕ on C0. Since
C0 is dense in C, for every x ∈ C there is a Cauchy net (xα) in C0 that converges to x.
Hence ψx = limϕxα and, since f is weakly continuous, we have |y(fx)| = lim |y(ρ0xα)|
for all y ∈ B′. In other words, for every ε > 0, there are indices α0 and α(y) such that
|ϕxα − ψx| < ε for all α > α0 and |y(fx)| − |y(f0xα)| < ε for all α > α(y). Hence

|y(fx)| < |y(f0xα)|+ ε ≤ cϕ(xα) + ε ≤ cψx+ 2ε

for all α ≥ max(α0, α(y)). Therefore, |y(fx)| < cψx for all all y ∈ K and x ∈ C, so that
supy∈K |y(fx)| ≤ cψx. This means that f :C // τB is continuous.

It follows that the full subcategory ζT of T given by the ζ-complete Mackey balls
is also a reflective subcategory of T with the reflector given by the restriction of ζ. The
objects of ζT are the reflexive ζ-balls of [Barr, 1979]. The reason is that it is just the
Mackey balls that are reflexive for the strong topology on the dual ball. The dual category
ζ∗T is a full coreflective subcategory of T with coreflector given by ζ∗B = (ζB′)′. We
denote by R the category ζT ∩ ζ∗T of reflexive ζ-ζ∗ balls of [Barr, 1979].
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5.4. Theorem. The category R is ∗-autonomous with tensor product A × B =
ζ(A⊗B), internal hom A− B = ζ∗(A−◦B) and D as unit and dualizing object.

Proof. By Theorem 2.3 of [Barr, 1998] we have to verify

1. if B is in ζ∗T , then so is ζB;

2. if A is in ζ∗T and B is in ζT , then A−◦B is in ζT .

These are found in [Barr, 1976], Propositions 2.6 and 3.3.

Summing up, we have established that the category R of reflexive ζ-ζ∗ balls is ∗-
autonomous in a transparent way by using “Chu space techniques” made available in
[Barr, 1998].

6. Is Mackey always δ?

The original paper, as published contained at this point a section claiming a negative
answer to this question. The question is now open. Here is the first paragraph of the
original, which explains the significance of the question.

Originally, it seemed possible that the ∗-autonomous category of δ-balls
was the simply chu(Bd,D) (recall that Bd is the category of discrete balls).
The δ-balls are a full subcategory of the Mackey balls, which is equivalent
to chu(Bd,D) and what this claim really is is that it is the whole category.
The purpose of this section is to show that there is a Mackey ball that is not
ζ-complete. This leaves open the question of whether it is possible that the
category of δ-balls is a chu category.

References

M. Barr (1976), Closed categories and Banach spaces. Cahiers de Topologie et Géométrie
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