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1. Introduction

We shall prove two theorems on the “triple” cohomology of algebras [Beck 1967] using a
method of acyclic models suggested by H. Appelgate. Specifically, we show that the triple
cohomology coincides with slight modifications of the usual theories (the same modifica-
tions used in [Barr & Rinehart 1966] in the case of groups and associative algebras.) We
also prove a direct sum theorem for the cohomology of the coproduct of algeebras, subject
to a certain condition.

These theorems are proved by setting up cochain equivalences between standard
cochain complexes for the theories involved. Unfortunately, algebra cohomology can-
not in general be viewed as a derived functor, or equivalently, the standard complexes
from which it comes need not be resolutions. Thus the usual techniques for comparing
resolutions, using acyclicity, are inapplicable. However, it is usually possible to prove that
the standard complexes become acyclic when applied to free algebras. This suggests using
an acyclic models approach, with free algebras as models. Note that since the free functor
from the underlying cateogry to the category of algebras has an adjoint, the main theo-
rem on extension of maps and homotopies is simpler than normally appears in topology
[Eilenberg & Mac/,Lane 1953].

2. Triple cohomology

In this section we present a short discussion of the tripleable categories and cohomology.
For detailed accounts, see [Beck 1967, Eilenberg & Moore 1965]. Let A be a category.
T = (T, η, µ) is a triple on A if T : A // A is a functor, η : 1A // T and µ : TT // T
are morphisms of functors, called the unit and multiplication of T respectively, such that
the diagrams
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commute. (X, ξ) is a T-algebra if X is an object of A and ξ : XT //X is a morphism
of A such that

X XT
Xη //X

X

1X

��????????????? XT

X

ξ

��
XT X

ξ
//

XTT

XT

ξT

��

XTT XT
Xµ // XT

X

ξ

��

commute. ξ is called the T-structure of the algebra. f : (X, ξ) // (Y, θ) is a morphism of
T-algebras if

X Y
f

//

XT

X

ξ

��

XT Y T
fT // Y T

Y

θ

��

commutes. The category of T-algebras will be denoted by AT. Categories of the form AT

are called tripleable.
There is an adjoint pair of functors F a U where F : A // AT is the free T-algebra

functor given by XF = (XT,Xµ) and U : AT //A is the forgetful functor U(X, ξ) = X.
Clearly T = FU and η and µ are derivable from the adjointness morphisms 1 //FU and
UF // 1. Let G = UF : AT // AT. By adjointness G is a cotriple in AT. Explicitly,
(X, ξ)G = (XT,Xµ), the counit ε : G // 1AT is

(X, ξ)ε = ξ : (XT,Xµ) // (X, ξ)

and the comultiplication δ : G //GG is

(X, ξ)δ = XηT : (XT,Xµ) // (XTT,XTµ)

The cotriple G = (G, ε, δ) now gives rise to a cohomology theory in AT. The theory
will have coefficient in an X-module, for a T-algebra X (omitting the T-structure from
the notation, for brevity). To define X-modules, let (AT, X) whose objects are T-algebra
morphisms W //X and whose morphisms are commutative triangles

W

X
��?????????????W W ′//W ′

X
���������������

(AT, X) is called the category of T-algebras and morphisms over X. Y // X is an
X-module if it is an abelian group object in the category (AT, X), that is if the functor
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HomX(−, Y ) which a priori has values in the category of sets, factors through the category
of abelian groups (HomX stands for Hom in the category (AT, X)). If Y // X is an
X-module, there is a T-algebra homomorphism X // Y , the zero section, such that
X // Y //X is the identity. Y will thus be a “split extension” of X with some abelian
structure “fiberwise”. In effect, we confuse modules with split extensions.

Now we define cohomology groups Hn(W,Y )X where W //X is a T-algebra over X
and Y //X is an X-module. (The cohomology of X itself is retrievable as Hn(X, Y )X ,
regarding X //X as an algebra over X by the identity morphism.) The cotriple G acts

on (AT, X) by the rule (W
p //X)G = WG

pG.Xε // . Let Gn+1 be the (n+ 1)-st iterate
of G, and let εi = GiεGn−i : Gn+1 //Gn, 0 ≤ i ≤ n. Then we get a simplicial object

· · · WG3WG3
//
WG3//WG3//WG3
//WG3 WG2//
WG3 WG2//WG3 WG2//WG2 WG

ε0 //WG2 WG
ε1
//WG W

ε //

in the category (AT, X). That is, each WGn+1 is an algebra over X by the above, and
each face operator εi is a morphism over X. (Note that WGn+1 is in dimension n, and
that degeneracy operators could also be defined using δ : G // G2.) If Y // X is an
X-module, we can form the cochain complex of abelian groups

0 // HomX(WG,Y ) // · · · // HomX(WGn+1, Y ) // · · ·

with coboundary operators d =
∑

(−1)i HomX(Wεi). H(W,Y ) is the cohomology of this
complex.

3. Acyclic models

Let C be a category and let K, L be standard cochain complexes C ∗ //Ab . This means
that K = {Kn}n≥−1, there are morphisms d : Kn // Kn+1, dd = 0, and each Kn is
an ordinary functor C ∗ // Ab ; the same for L. In this paper we use only contravariant
functors, but the dual is obvious.

Let G : C // C be an endofunctor with a counit ε : G // 1C . The standard cochain
complex is G-acyclic if there is a functorial contracting homotopy s (of degree −1) in the
“composite” complex GK. L is G-representable1 if there are morphisms θn : GLn // Ln

such that εLn.θn = 1, for n ≥ 0. (The θ’s do not have to commute with coboundaries.)

3.1. Theorem. Let K be G-acyclic and L be G-representable. Then any morphism of
functos f−1 : K−1 // L−1 can be extended to to a natural cochain transformation f :
K // L. If f, g : K // L and f−1 = g−1, then there exists a natural cochain homotopy
Φ : f ' g.

1this was poor terminology; representability is a fundamental concept in category theory and we now
use the term presentable, which is even more descriptive since it recalls the notion of a presentation,
which indeed it is.
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Proof. fn is constructed inductively as the composite

GKn−1 GLn−1

Gfn−1
//

GKn

GKn−1

s

��

GKn GLnGLn

GLn−1

OO

Gd

Kn GKnεKn
// GLn Lnθn //

Φ−1 = Φ0 = 0 and Φn is the upper minus the lower composite in the diagram

GKn−1 GLn−1G(fn−1−gn−1) //

GKn

GKn−1

s

��

GKn

GLn−1

Kn GKnεKn
//

GKn−1

GLn−2

GΦn−1

''OOOOOOOOOOOOOOOOOOOO GLn−1

GLn−2

Gd

��

GLn−1 Ln−1θn−1
//

3.2. Corollary. If K, L are both G-acyclic and G-representable, and K−1 ∼= L−1, then
K ' L.

3.3. Corollary. If K, L are both G-acyclic and G-representable, f : K // L, and
f−1 : K−1 ∼= L−1, then f is a cochain equivalence.

3.4. Remark. In our applications, C is always a tripleable category, G is always the
“free” cotriple on C , and θ comes from the unit η of the triple. It should therefore be
possible to sharpen 3.1 in the cases we are interested.

4. Cohomology of groups and algebras

Let A be the category of sets and G the category of groups. There is an adjoint pair of
functors F a U where F : A //G is the free group functor and U : G //A is the forgetful
functor. Let T = FU : A // A . By adjointness there are morphisms η : 1A // T = FU
and µ = FεU : TT = F (UF )U //FU = T which make T = (T, η, µ) into a triple. If X is
a set, there is a 1-1 correspondence between group laws on X and T-structures XT //X.
Hence the category of T-algebras is isomorphic to the category groups G .

If π is a group, let Y // π be a π-module as defined in Section 2. Using the zero
section π // Y , one shows that that Y // π is isomorphic to the split extension of π by
the ordinary π-module M = kerY //π. Thus Y ∼= M ×π as a set and the multiplication
in Y is

(m1, x1)(m2, x2) = (m1 + x1m2, x1x2)
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in terms of the left π-operators on M . It follows that if W // π is a group over π, there
is a natural isomorphism Homπ(W,Y ) ∼= Der(W,M), where a derivation f : W //M
satisfies (w1w2)f = w1f +w1(w2f). Here W acts on M via the given morphism W // π.

4.1. Theorem. There is a natural isomorphism

Hn(W,Y )π //

{
Der(W,M), n = 0
Hn+1(W,M), n > 0

where Hn+1(W,M) is the Eilenberg-MacLane cohomology group.

Proof. Let K : (G , π)∗ // Ab be the cochain complex

WKn = Homπ(WGn+1, Y ), n ≥ −1

as in Section 2. Here G : G // G is the cotriple WG = WUF , the free group generated
by the underlying set of W , with the natural group epimorphism ε : WG //W as its
counit, and if W is a group over π, so is WG. (Note that Gn+1 is the iterate of the functor
G, not its (n+ 1)-fold cartesian power.)

The form of the bar construction we use is L : (G , π)∗ //Ab where WLn is the abelian
group of functions from the cartesian power W n+1 //M , n ≥ 0, and WL−1 = Der(W,M).
The coboundary d : WLn //WLn+1 is

(w0, . . . , wn+1)(fd) = w0p.(w1, . . . , wn+1)f

+
n+1∑
i=1

(w0, . . . , wn−1wn, . . . , wn+1)f

+ (−1)n+2(w0, . . . , wn)f

where n ≥ 0, p is the morphism W // π and d : WL−1 //WL0 is the obvious inclusion.
Then H(L) is the cohomology on the right in 4.1. In effect, we have just cut off the
bottom complex given in [Eilenberg & Mac/,Lane 1947].

It follows from what was said leading up to 4.1 that K−1 ∼= L−1. We shall apply 3.2
to prove that there is a natural cochain equivalence K ' L. The functor with counit used
to compare K and L will be the free group cotriple itself, acting in (G , π).

G-acyclicity. A contracting homotopy s : GKn // GKn−1 is induced by WδGn :
WGGn //WGGn+1.

As to the homotopy in in GL, note that there is a natural cochain equivalence L ' N
where WNn consists of those functions W n+1 //M vanishing when any argument equals
1 (“normalized” cochains [Mac Lane 1963]). A natural contracting homotopy in GN has
essentially been constructed in [Lyndon 1949]. Therefore there exists a natural contracting
homotopy in GL. An explicit homotopy (probably different) is as follows. Let f ∈ WGLn.
Then (g0, . . . , gn−1)(fs) is defined by induction on the length of the word g0 ∈ WG. Spell
the words in WG in letters (w), where w ∈ W . Then:
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1. If g0 = (w)g where g ∈ WG, let

(g0, . . . , gn−1)(fs) = wp.(g, . . . , gn−1)(fs)− ((w), g, . . . , gn−1)f

2. If g0 = (w)−1g where g ∈ WG, let

(g0, . . . , gn−1)(fs) = w−1p.(g, . . . , gn−1) + w−1p.((w), g0 . . . , gn−1)f

3. If g0 = 1, let

(1, g1, . . . , gn−1)(fs) = (1, 1, g1, . . . , gn−1)f

Note that this homotopy is natural with respect to morphisms W //W ′ in (G , π).

G-representability. θn : GKn //Kn is also induced by

WδGn : WGn+1 //WGn+2, n ≥ 0

θn : WLn // Ln is given by

(w0, . . . , wn)(fθ) = ((w0), . . . , (wn))f

This completes the proof of 4.1
As another application, the category of associative K-algebras with unit is tripleable

over the category A of K-modules, using the tensor algebra as the triple. A similar
argument shows:

4.2. Theorem. There is a natural isomorphism

Hn(Γ, Y )Λ =

{
Der(Γ,M), n = 0
Hn+1(Γ,M), n > 0

where Γ // Λ is an algebra over Λ, Y // Λ is a Λ-module, that is a split K-algebra
extension by a kernel M with M2 = 0, Λ operates on both sides of M , hence also Γ, and
Hn+1(Γ,M) is the Hochschild (K-relative) cohomology group.

5. Cohomology of a coproduct

We return to the general situation outlined in Section 2, and assume:

1. A has pullbacks (which implies that AT has pullbacks).

2. AT has coproducts (denoted X1 ∗X2).

3. A natural morphism u : X1 ∗X2
//X1G ∗X2G exists such that u(X1ε ∗X2ε) = 1.
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The validity of these assumptions will be discussed below.
Let Y // X1 ∗ X2 be an X1 ∗ X2-module and let ij : Xj

// X1 ∗ X2 be the natural
morphisms in the coproduct, j = 1, 2. There are pullback diagrams

Xj X1 ∗X2
//

Yj

Xj

���
�
�
�
�
Yj Y//______ Y

X1 ∗X2

��

One easily sees that Yj is an Xj-module. Hence if Wj
// Xj is in (AT, Xj), there is a

cohomology morphism, still denoted by ij:

ij : H(W1 ∗W2, Y )X1∗X2
//H(Wj, Yj)Xj

5.1. Theorem. (i1, i2) : H(W1 ∗W2)X1∗X2
//H(W1, Y1)X1 ⊕H(W2, Y2)X2 is an isomor-

phism.

Proof. Define complexes L, S : (AT, X1)∗ × (AT, X2)∗ // Ab by

(W1,W2)Ln = HomX1∗X2((W1 ∗W2)Gn+1, Y )

(W1 ∗W2)Sn = HomX1(W1G
n+1, Y1)⊕ HomX2(W2G

n+1, Y2)

with coboundary operators as in the triple complex in Section 2. The inclusions into
the coproduct induce a cochain morphism (i1, i2) : L // S, hence in cohomology, induce
the morphism in the statement. It remains to show that (i1, i2) : L // S is a cochain
equivalence. First (i1, i2)−1 is an isomorphism since

HomX1∗X2(W1 ∗W2, Y ) ∼= HomX1∗X2(W1, Y )⊕ HomX1∗X2(W2, Y )

∼= HomX1(W1, Y1)⊕ HomX2(W2, Y2)

To extend (i1, i2)−1 to a homotopy inverse for (i1, i2) we apply 3.3 using the cotriple G×G
which acts in the category (AT, X1) × (AT, X2) in the obvious way. L and S are acyclic
on models by taking coproducts and sums of the contracting homotopy used for the triple
complex in Section 4. S us also representable, in a similar manner. The representation
morphism for L is the map

(W1G,W2G)Ln = Hom((W1G∗W2G)Gn+1, Y ) //Hom((W1∗W2)Gn+1, Y ) = (W1∗W2)Ln

where we use condition 3 above and all the Hom’s are in the category (AT, X1 ∗X2). This
completes the proof of the theorem.

As to the assumptions used in proving 5.1, conditions 1 and 2 are routine and hold in
all the usual algebraic categories. Assumption 3 is more delicate. Here are some cases in
which it is known to hold:
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1. A = sets, T = the free group triple, AT = the category of groups (Section 4). Thus
the coproduct theorem holds for group cohomology (see also [Barr & Rinehart 1966]
for a proof of this fact).

2. A = K-modules, T = the tensor algebra triple, AT = the category of associative
K-algebras with unit (Section 4), and the coproduct theorem holds for Hochschild
cohomology.

3. A = K-modules, T = the symmetric algebra cotriple, AT = the category of commu-
tative K-algebras (associative with unit). The cohomology is probably Harrison’s
when K is a field.2

Assumption 3 fails in the case A = sets, XT = the commutative polynomial algebra
generated by the elements of the set X. AT is again the category of commutative K-
algebras but the cohomology is different. Take K = Z, W1 = W2 = X1 = X2 = Z2

(integers mod 2), Y = Z2 ⊕ Z2
//X1 ∗X2 = Z2 ⊗ Z2

∼= Z2, by the projection, Z2 acting
on itself as kernel in the usual way. Then in dimension 1, all three groups in 5.1 have
the value Z2, which is a contradiction. It would be interesting to conditions on A and T
guaranteeing the validity of Condition 3.
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