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Abstract. We study the monoid of primitive recursive functions and investigate a one-

step construction of a kind of exact completion, which resembles that of the familiar
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1. Introduction

One may think that mathematics originated with geometry and computer
science with arithmetic. In fact, both these subjects were preceded by the
algebra of relations. Though not a formal discipline, this was implicit in the
kinship descriptions propagated by the older women of a tribe and could
involve some rather sophisticated calculations.

Kinship relations were only analyzed formally by anthropological lin-
guists in the twentieth century, most spectacularly when Lounsbury [Loun65]
employed a system of binary relations with clever rewrite rules to make sense
of the bizarre kinship terminology of the Trobriand islanders uncovered by
Malinowski [Mal32].

Logicians had been looking at relations in the nineteenth century starting
with pioneering work of Pierce and Schroeder, while algebraists employed
them in the twentieth century to explain the constructions used for proving
the butterfly and snake lemmas in homological algebra [Lam96].

Many mathematicians fail to distinguish between binary relations and
their graphs. In doing so, they may miss an interesting observation already
in the category of sets. If θ is an equivalence relation on a set X, let [θ] denote
its graph, viewed as a subset of X ×X, hence equipped with a jointly monic
pair of mappings into X. Then the left fork

[θ]
�
� X � X/θ
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is exact, in the sense that

[θ]
�
� X

is the kernel of the surjection X → X/θ and the latter is the coequalizer of
the former.

We were drawn to take another look at binary relations from our study
of the free topos F , the Tarski-Lindenbaum category of pure intuitionistic
type theory [LS86]. Its objects are closed terms α of type PA, modulo
provable equality, where A is any type and PA is the type of all sets of
elements of type A. Its arrows ρ : α → β, where β is a closed term of type
PB, are provably functional relations, also modulo provable equality. In
our investigation of intuitionistic principles (via gluing, also known as the
Freyd cover of F), we needed the global sections functor Γ = Hom(1,−) :
F → S, where S is “the” category of sets, there being some doubt about
the definite article. While F may be acceptable as the category of sets
by moderate intuitionists ([LS86], pp. 124-128), all toposes in which the
terminal object is a generator are possible candidates for such a category for
classical mathematicians ([McL92], pp. 211-212).

Global sections a : 1 → α are essentially closed terms of type A such
that a ∈ α is provable, again modulo provable equality. We were wondering
why Γ(α) should live in S. After all, the mathematical category of sets
does not contain (say) sets of bananas, so why should it contain sets of
global sections of another category? One way to answer this question is to
borrow an idea of Gödel’s. The closed terms of pure intuitionistic type theory
can be numbered, never mind how. Now let Γ(α) be the set of all Gödel
numbers #a of closed terms a of type A for which a ∈ α is provable, modulo
the equivalence relation: #a ≡ #a′ iff the equation a = a′ is provable.
Furthermore, if ρ : α → β is an arrow of F , let Γ(ρ)(#a) = #Γ(ρa), where
b = ρa means (in the present notation) bρa, where a ∈ α and b ∈ β.

We have thus observed that the global sections functor Γ : F → S lands
in a small subcategory of S, whose objects may be viewed as equivalence
relations on subsets of N, hence partial equivalence relations on N. In fact
they turn out to be recursively enumerable partial equivalence relations and
the arrows are induced by recursively enumerable relations (or, equivalently,
partial recursive functions, as we shall see). A related small category is called
Per , also known as the category of modest sets [Ros91, BFSS90], in which
all partial equivalence relations on N are admitted as objects, not just the
recursively enumerable ones. (This was so because the category in question
was intended to be internally complete, which is not our concern here). To
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distinguish our category from the usual Per , we shall denote it by Ñ , N
being the monoid of primitive recursive functions.

Here we consider a more general situation. Let R be a partially ordered
category with involution (denoted ˘), and assume that the hom-sets are ∧-
semilattices. We think of R as a category of relations. Consider a non-full
subcategory C of functions, i.e. relations f : A → B such that ff˘ ≤ 1B

and 1A ≤ f˘f . Assume that every relation A
R−→ B has the form R = fg˘,

where f : C → B and g : C → A are functions from some object C. It follows
in particular that a composition (fg˘)(hk˘) should be a relation, which is so
if the equation g˘h = uv˘ holds, for some u and v. In this case the original
composite in question becomes (fu)(kv)˘. We are interested in two special
cases that have been studied in the literature.

(Case 1). C = N is the monoid of primitive recursive functions N → N

and R is the category of recursively enumerable (= r.e.) relations on N, that
is, binary relations whose graphs are r.e. subsets of N × N. The equation
g˘h = uv˘ then follows from the observation that every recursive set is r.e.

(Case 2). Let C be a regular category [Barr79] and R = Rel(C) be
the category of relations constructed from spans in C, as usual [Barr79,
Bor94]. In particular, C could be an algebraic category and R the category
of homomorphic relations, that is, binary relations A

R−→ B whose graphs
are subalgebras of B × A [Lam57].

Having noticed that the construction of the category Ñ in Case 1 is quite
similar to the construction of the exact completion of C in Case 2, we aim
to bring these two constructions under one hat. One difference between the
two cases is that Ñ is obtained from N by adjoining subobjects and quotient
objects, while a regular category C already has all the subobjects that are
needed, hence only total (reflexive) equivalence relations are required, not
partial ones.

One way of dealing with Case 1 would be to first make N regular (by em-
bedding it in its regular completion), and then apply the methods of Case 2.
This approach may be implicit already in Freyd and Scedrov [FS90]. How-
ever we prefer to handle Case 1 by a one-step construction, which resembles
that of the category Per in theoretical computer science and also the idem-
potent splitting construction (Karoubi envelope) we used for C-mononoids
in our book [LS86].

2. Recursively Enumerable Relations and the Category Ñ
Let us recall some basic definitions of the calculus of relations.
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Definition 2.1. A (binary) relation R on N is said to be single-valued if
RR˘ ⊆ I, total if I ⊆ R˘R, surjective if I ⊆ RR˘, and injective if R˘R ⊆ I,
where I is the identity relation on N.

If R = fg˘, where f and g are functions N → N, then the conditions in
the definition above easily translate into: g˘g ⊆ f˘f , I ⊆ g˘g, I ⊆ f˘f ,
f˘f ⊆ g˘g, respectively. Recall, if R = fg˘, where f, g ∈ N , we say R
is a recursively enumerable (= r.e.) relation. A partial recursive function
may then be defined simply as a recursively enumerable relation fg˘ which
is single-valued; that is, such that g˘g ⊆ f˘f . (This is surely a simpler
definition than the usual one involving the minimization scheme.)

Definition 2.2. A partial equivalence relation (per) on N is a symmetric,
transitive relation, i.e. a relation A satisfying A˘ ⊆ A and AA ⊆ A.

It follows that a per is a symmetric idempotent: A˘ = A and AA = A. For
example, for the latter, if a′Aa, then a′Aa ∧ aAa′ ∧ a′Aa, hence a′AAAa,
and thus A ⊆ A(AA) ⊆ AA.

Let R be an r.e. relation on N. We wish to consider r.e. relations R
between pers A and B. We write (B, R, A) for such a relation, which allows
us to keep in mind the source A and target B. The relation (B, R, A) should
satisfy

(0) RA = R = BR

equivalently, BRA = R.
A relation (B, R, A) satisfying (0) is
(1) Single-valued if RR˘ ⊆ B
(2) Total if A ⊆ R˘R
(3) Surjective if B ⊆ RR˘
(4) Injective if R˘R ⊆ A

The relation (B, R, A) is said to be a functional relation or a function from
A to B if it is single-valued and total. The following facts are an easy
calculation:

Proposition 2.3. Let (B, R, A) and (C, S, B) be functions in the sense
above. Then

(i) Their composite (C, SR, A) is a function;
(ii) If (B, R, A) and (C, S, B) are surjective or injective, then so is their

composite;
(iii) If (C, SR, A) and (B, R, A) are surjective, then so is (C, S, B).
(iv) If (C, SR, A) and (C, S, B) are injective, then so is (B, R, A).
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Definition 2.4. Ñ is the category whose objects are r.e. pers, and whose
arrows (B, R, A) are r.e. functional relations. Ñ is a full subcategory of the
category Per , whose objects are arbitrary pers, and whose arrows (B, R, A)
are r.e. functional relations.

It is sometimes convenient to forget about condition (0) and to say that
a relation R induces a function from A to B, denoted R : A → B, if

(1′) RAR˘ ⊆ B
(2′) A ⊆ R˘BR

Indeed, (1′) follows from (1) and RA ⊆ R, and (2′) follows from (2) and
R ⊆ BR. The conditions (1′) and (2′) are the induced versions of single-
valuedness and totality, respectively.

We can then prove a weaker version of (0):

(0′) RA ⊆ BR

since, using (1′) and (2′) and the fact that A and B are idempotents,

RA = RAA ⊆ RAR˘BR ⊆ BBR = BR.

Injectivity and surjectivity of R : A → B can now be written as

(3′) Surjective if B ⊆ BRAR˘B
(4′) Injective if AR˘BRA ⊆ A

When do two functional relations R and S between A and B induce the
same function?

Proposition 2.5. Let R and S be functions from A to B. The following
are equivalent (and assert that R and S induce the same function A → B):

(a) RAS˘ ⊆ B
(b) A ⊆ R˘BS
(c) BRA = BSA

In particular, if R ⊆ S or S ⊆ R then R and S induce the same function .

Proof. Assume (a). Then A ⊆ AAA ⊆ R˘BRAS˘BS ⊆ R˘BBBS =
R˘BS, hence (b). Now assuming (b), then BRA ⊆ BRAAA ⊆
BRAR˘BSA ⊆ BBBSA = BSA, and similarly for the converse inclusion,
hence (c). Finally, assume (c). Then RAS˘ = RAAAS˘ ⊆ BRAAS˘ =
BSAAS˘ ⊆ BSAS˘B ⊆ BBB = B, hence (a). (Note that AS˘ ⊆ SB˘
follows from SA ⊆ BS, which holds by (0′)). The last remark follows im-
mediately from (c).
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If it is not assumed that condition (0) is satisfied, we will write

[B, R, A] =def (B, BRA, A)

for the function induced by R. We note that the composition
[C, S, B][B, R, A] may be written as either [C, SBR, A] or [C, SR, A], since
by (0′) CSRA = CSRAA ⊆ CSBRA, and therefore SBR and SR induce
the same function A → C, by the last remark of Proposition 2.5.

Remark 2.6. Proposition 2.5 may be exploited to replace R by the partial
recursive function R#, as follows. Writing R = gf˘ for primitive recursive
f, g, let

R#a = g(µn(f(n) = a)),

where µn(· · ·) means “the smallest n such that · · · ” . Thus, if we forget
condition (0), we may replace r.e. relations by partial recursive functions,
as is the custom for describing Per in the literature.

Since functions induced by (numerical) partial functions need not obey
condition (0), from now on we only assume conditions (1′) and (2′) in the
definition of function, unless we state otherwise. In fact, (2′) suffices, since if
F is such a partial function and if A ⊆ F˘BF then FAF˘ ⊆ FF˘BFF˘ ⊆
IBI = B.

Thus, if F is a partial recursive function, [B, F, A] = (B, BFA, A) is a
function A → B if and only if A ⊆ F˘BF . In particular, letting F = I,
the identity function on N, [B, I, A] = (B, BA, A) is a function if and only
if A ⊆ B. The functions induced by the identity form a subcategory of Ñ
(cf. Section 4 below).

3. Per and C-monoids

It is well-known that Per is cartesian closed, locally cartesian closed, and
even has (internal) products [BFSS90, Ros91, LM91, Lam93], but this is
not quite the case for Ñ . The easiest way to see Per is cartesian closed is
to make use of the following partial recursive functions: I, O, P, Q, E and
the operations 〈F, G〉 and H∗ defined on given partial recursive functions
F, G, H as follows:

Ix = x, Ox = 0, P 〈x, y〉 = x, Q〈x, y〉 = y,

〈F, G〉z = 〈Fz, Gz〉, E〈x, y〉 = {x}y, {H∗x}y = H〈x, y〉.
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Here 〈−,−〉 : N × N → N is the standard Cantor (primitive recursive) bi-
jection, with projections P and Q, {n} is the usual Kleene notation for the
nth partial recursive function (i.e. the partial function calculated by the
nth program in some standard enumeration), and E and H∗ are functions
associated with Kleene’s Enumeration and Sm

n theorems [Kl52].
One easily establishes the following inclusions, which define what might

be called a partially ordered C-monoid. That is, following the nomenclature
of our book [LS86], we have a partially ordered monoid M, with extra
structure (P, Q, E,∗ , 〈−,−〉) satisfying:

P 〈F, G〉 ⊆ F
Q〈F, G〉 ⊆ G
H ⊆ 〈PH, QH〉
H ⊆ E〈H∗P, Q〉
K ⊆ (E〈KP, Q〉)∗

Here inclusion indicates that if the left hand side is defined, so is the right
hand side. In the last three inclusions, we could have replaced ⊆ by =, but
not in the first two. For example, the LHS of P 〈F, G〉z = P 〈Fz, Gz〉 = Fz
requires that both Fz and Gz are defined, which is more than necessary for
the RHS.

The cartesian closed structure of Per (with respect to the above-
mentioned notion of inclusion) may now be defined as follows:

1A = [A, I, A]
[C, G, B][B, F, A] = [C, GF, A]

x	y ⇔ x = 0 = y

x(A × B)y ⇔ (Px)A(Py) ∧ (Qx)B(Qy)
( i.e. A × B = P˘AP ∩ Q˘BQ )

uCBv ⇔ B ⊆ {u}˘C{v}
!A = [	, O, A]

πA,B = [A, P, A × B]
π′

A,B = [B, Q, A × B]

εC,B = [C, E, CB × B]
〈 [A, F, C], [B, G,C] 〉 = [A × B, 〈F, G〉, C]

[B, H, C × A]∗ = [BA, H∗, C]

All this works for Ñ as well, except the exponential structure. Note that
arbitrary products in Per may be defined as intersections, but this does not
work in Ñ , since arbitrary intersections of r.e. pers need not be r.e.
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Ñ is cartesian with respect to the product structure induced from Per ;
but unfortunately Ñ is not cartesian closed with respect to this induced
structure, since the per CB may fail to be r.e. even if C and B are, as
the next example shows. We have not checked if Ñ is cartesian closed by
another construction.

Example 3.1. In Ñ , the per CB, where B = C = N×N, is not r.e. Indeed,

mCBn ⇔ N × N ⊆ {m}˘(N × N){n}
⇔ ∀i, j ∈ N ∃k, l ∈ N ( {m}(i) = k ∧ {n}(j) = l )

In particular, if CB would be r.e., its diagonalization would be too. Thus
the set

{m ∈ N | {m} is a total function }
would be an r.e. set, which is well-known to be false (see e.g. [Cutl80],
Theorem 2.9).

4. Regularity and Exactness of Ñ
Following the discussion at the end of Section 2 and similar notions in Per,
in Ñ we may consider the subcategory of functions induced by the identity,
i.e. functions of the form [B, I, A], where A ⊆ B. Such a map is a canonical
surjection if BAB = B and a canonical injection if ABA = A.

Proposition 4.1. Any function in Ñ induced by a partial recursive function
may be factored as follows1:

A
F � B

C = AF˘BFA

I

� F� BFAF˘B = D

I

�

Thus
[B, F, A] = [B, I, D][D, F, C][C, I, A]

where

1A different factorization for arbitrary maps in Per is given in [BFSS90], Proposition
2.4.
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[B, I, D] is a canonical injection, the image of [B, F, A]
[C, I, A] is a canonical surjection, the coimage of [B, F, A]
[D, F, C] is an isomorphism with inverse [C, (AF˘B)#, D].

Proof. Note that by the remark at the end of Section 2, the bottom row of
the above square denotes a function, since C and D are partial equivalence
relations and

C = AF˘BFA ⊆ F˘BBFA = F˘BFAA ⊆ F˘BFA(F˘BF ) = F˘DF.

since FA ⊆ BF by (0′), hence AF˘ ⊆ F˘B.
To see that (AF˘B)# or, equivalently, R = AF˘B induces a function

D → C we note that

RDR˘ = AF˘BFAF˘BFA = CC = C ,

R˘CR = BFAF˘BFAF˘B = DD = D .

Moreover, [C, R, D] is the inverse of [D, F, C] since RF = AF˘BF ⊇ AA =
A and FR = FAF˘B ⊆ BB = B , hence the induced functions satisfy

[C, R, D][D, F, C] = [C, RF, C] = [C, A,C] = [C, I, C]

[D, F, C][C, R, D] = [D, FR, D] = [D, B, D] = [D, I, D]

Finally, to see that (AF˘B)# is a partial recursive function we invoke
the fact that the partial equivalence relations A and B are recursively enu-
merable. This argument works for Ñ but not for Per .

In what follows, we call surjective and injective functions surjections and
injections, respectively.

Corollary 4.2. In the situation above, F : A → B is a surjection iff
D = B. Similarly, F is an injection iff C = A. So a surjection factors as a
canonical surjection followed by an isomorphism and similarly an injection
factors as an isomorphism followed by a canonical injection. Moreover, F :
A → D is a surjection, F : C → B is an injection, and F : C → D is both
an injection and surjection.

Proof. For example, F : A → D is a surjection, since

(DFA)(DFA)˘ = DFAF˘D = DBFAF˘BD = DDD = D .

Since I : A → D is a surjection, so is F : C → D by Proposition 2.3 (iii).
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Remark 4.3. Proposition 4.1 applies equally to Per , except that the ar-
row F : C → D is a an injection and surjection, but not necessarily an
iso. As pointed out to us by P. Hofstra and P. Selinger, recursion-theoretic
arguments based on the Halting Problem may be used to give examples of
arrows which are injections and surjections but are not isos in Per .

Definition 4.4. A category is regular ([Barr79, Bor94]) if

(i) it is left exact,

(ii) every kernel pair has a coequalizer,

(iii) regular epis are stable under pullbacks.

A regular category is exact if in addition

(iv) every equivalence relation (in the sense of Barr) is a kernel pair.

Theorem 4.5. Ñ is an exact category.

Proof. (1) We already know it has a terminal object and binary cartesian
products. It remains to construct equalizers.

Given two parallel functions [B, F, A], [B, G,A] : A → B , we define their
equalizer to be [A, I, E] where E ⊆ A is given by E = A∩F˘BG (Recall that
the intersection of two r.e. sets is r.e. In our present formalism, this may be
shown as follows: fg˘∩hk˘ = (f×h)(g×k)˘, where (f×h)〈x, y〉 = 〈fx, hy〉).

First, we must check that E is an equivalence relation on the domain of
A. Suppose aEa′, that is aAa′ and (Fa)B(Ga′). Then a′Aa and

(Fa′)B(Fa)B(Ga′)B(Ga)

hence a′Ea and so E is symmetric. Transitivity is shown similarly. Reflex-
ivity holds because both F and G are defined on the domain of A.

Now suppose [A, H, D] equalizes [B, F, A] and [B, G,A]:

D
�

�
�

�

H

�
E

H
�

...........
⊂

I
� A

F �

G
� B

It suffices to show that [E, H, D] is a function. We have

D ⊆ (FH)˘B(GH) = H˘(F˘BG)H.
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Since we also have D ⊆ H˘EH, then in view of the Lemma 4.6 below, we
have

D ⊆ H˘(A ∩ F˘BG)H = H˘EH.

It follows that [E, H, D] is a function, since H is single-valued.

Lemma 4.6. If H is single-valued, then

UH ∩ V H ⊆ (U ∩ V )H and H˘U ∩ H˘V ⊆ H˘(U ∩ V )

Proof. For example, to show the former, suppose x(UH ∩ V H)y, that is
xUHy and xV Hy. Then there exist z and z′ such that xUz and zHy and
xV z′ and z′Hy. Since H is single-valued, z = z′, hence xUz and xV z, and
so x(U ∩ V )z, and therefore x(U ∩ V )Hy.

(2) Once we have equalizers, we also have pullbacks. To form the pullback
of A

F−→ C
G←− B, consider the equalizer

E ⊂ I� A × B
FP�

GQ
� C

Then A
P←− E

Q−→ B is the required pullback. In particular,

E ⊂ I� A × A
P �

Q
� A

is the kernel pair of A
F−→ C, where E = (A × A) ∩ P˘F˘CFQ ⊆ A × A.

Without loss of generality (by Proposition 4.1, Corollary 4.2, and Propo-
sition 2.3 ) we may assume A ⊆ C, where C = AF˘CFA is the coimage
of F , so that A

I−→ C is a canonical surjection. We claim that it is the

coequalizer of its kernel pair E
P �

Q
� A , thus rendering

E
P �

Q
� A

I � C

an exact left fork.
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Suppose [D, H, A] coequalizes [A, P, E] and [A, Q, E]:

E
P �

Q
� A

I � C

�
�

�
�

H
�

D

H
�

...........

We claim that [D, H, C] is a function; that is, that C ⊆ H˘DH.
By definition of E (which uses Cantor pairing, by definition of products

in Ñ )

〈a1, a2〉E〈a′1, a′2〉 iff (a1Aa′1 ∧ a2Aa′2 ∧ a1Ca′2)

It follows that

〈a1, a2〉E〈a1, a2〉 iff (a1Aa1 ∧ a2Aa2 ∧ a1Ca2)

That is, if |A| is the domain of A,

〈a1, a2〉 ∈ |E| iff (a1, a2 ∈ |A| ∧ a1Ca2)

This shows that |E| is the graph of C (and E is the equivalence relation on
|E| induced by that on |A| × |A| ) .

Since |C| = |A|, we may turn this around and say

a1Ca2 iff (a1, a2 ∈ |A| ∧ 〈a1, a2〉 ∈ |E|).
Now, returning to the main argument, we wish to show that C ⊆ H˘DH.
Suppose c1Cc2, that is c1, c2 ∈ |A| and 〈c1, c2〉 ∈ |E|. Hence 〈c1, c2〉E〈c1, c2〉,
and so (Hc1)D(Hc2). Therefore, C ⊆ H˘DH.
(3) We now return to our main argument to show that the regular epis
are stable under pullbacks. Anticipating Proposition 4.8 below (which es-
tablishes the equality between surjections and regular epis), we will in fact
show that surjections are stable under pullbacks.

Consider the pullback B
Q←− E

P−→ A of B
G−→ C

F←− A, where [C, F, A]
is a surjection, as in the diagram

E
P � A

B

Q

� G � C

F

�
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Thus C ⊆ CFAF˘C. We claim that [B, Q, E] is also a surjection, that is,
B ⊆ BQEQ˘B.

Suppose b1Bb2. We wish to show that b1BQEQ˘Bb2. Since [C, G,B] is
total, we have B ⊆ BG˘CGB, hence there exist b′1 and b′2 such that

b1Bb′1, G(b′1)CG(b′2), b
′
2Bb2 .

Since F is surjective, C ⊆ CFAF˘C. Hence there exist c1, a1, a2, c2 such
that

G(b′1)Cc1, c1 = F (a1), a1Aa2, F (a2) = c2, c2CG(b′2) .

Now b1BQ〈a1, b
′
1〉E〈a2, b

′
2〉. Recall that E = (A×B)∩P˘F˘CGQ and note

that 〈a1, b
′
1〉(AA × B)〈a2, b

′
2〉, since a1Aa1 and b′1Bb1Bb2Bb′2. It remans to

show 〈a1, b
′
1〉P˘F˘CGQ〈a2, b

′
2〉, that is, F (a1)CG(b′2). Now F (a1) = c1 and

c1CG(b′1), hence F (a1)CG(b′1)CG(b′2), since b′1Bb′2 and [C, G,B] is single-
valued.
(4) We have now completed the proof that Ñ is a regular category (assuming
Proposition 4.8) . We claim it is exact. Let

E ⊂ I� A × A

be an equivalence relation in Ñ in the sense of Barr2, that is the image of

Hom(B,E) ⊂I� Hom(B, A × A) ∼= Hom(B, A) × Hom(B, A)

is [the graph of] an equivalence relation on Hom(B, A), for each object B.
In particular, take B = 	, the terminal object of Ñ . Then Hom(	, A)
consists of all [A, F,	] for which 	 ⊆ F˘AF , i.e. (F0)A(F0), so F0 ∈ |A|,
the domain of A. Thus we may write F = â, where â0 = a, for some element
a ∈ |A|. Note that [A, â1,	] = [A, â2,	] if and only if a1Aa2. We write
[â] for arrows [A, â,	] if the meaning is clear.

Now Barr’s condition for B = 	 asserts that Hom(	, E) induces an
equivalence relation ≡ in the usual sense on the hom set Hom(	, A). Note
that [â] ≡ [â′] if and only if the Cantor pair 〈a, a′〉 ∈ |E|.

Define the relation C by

aCa′ if and only if 〈a, a′〉 ∈ |E| if and only if [â] ≡ [â′] : 	 → A.

2In Ñ every subobject is given by a canonical injection preceded by an iso (see Corollary
4.2). This need not be the case in Per .
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Observe that A ⊆ C, since ≡ is reflexive:

aAa′ ⇔ [â] = [â′] : 	 → A

⇒ [â] ≡ [â′] : 	 → A

⇔ aCa′.

It follows that C is an equivalence relation on |A|. Indeed, let a ∈ |A|. Then
[â] ≡ [â], hence aCa. If aCa′ then [â] ≡ [â′], hence [â′] ≡ [â]. and so a′Ca.
Transitivity of C follows similarly. Moreover, C is recursively enumerable,
because |E| is. Thus C is an object of Ñ .

We claim that

E ⊂ I� A × A
P �

Q
� A

is the kernel pair of A
I

↪→ C. As in (2) above (in the present proof of Theorem
4.5) this means that

〈a1, a2〉E〈a′1, a′2〉 iff a1Aa′1 ∧ a2Aa′2 ∧ a1Ca′2 .

Indeed the LHS holds iff

a1Aa′1 ∧ a2Aa′2 ∧ 〈a1, a2〉 ∈ |E| ∧ 〈a′1, a′2〉 ∈ |E| .

We may rewrite this as follows

[â1] = [â′1] ∧ [â2] = [â′2] ∧ [â1] ≡ [â2] ∧ [â′1] ≡ [â′2]

i.e.
[â1] = [â′1] ∧ [â2] = [â′2] ∧ [â1] ≡ [â′2] ,

which is equivalent to the RHS.

Proposition 4.7. In Ñ , injections are the same as monos.

Proof. Suppose (B, M, A) is an injection, that is, M˘M = A. Suppose
that (A, R, C) and (A, S, C) are such that (B, MR, C) = (B, MS, C). Then
(by (0) )

R = AR = M˘MR = M˘MS = AS = S.

Hence (B, M, A) is a mono.
Conversely, suppose (B, M, A) is a mono. Put M˘M = fg˘, where f

and g are primitive recursive. Then, since I ⊆ g˘g and MM˘ ⊆ B,

Mf ⊆ Mfg˘g ⊆ MM˘Mg ⊆ BMg = Mg
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Therefore [B, Mf, I] = [B, Mg, I], where I is the identity relation on N. It
follows that

(B, M, A)[A, f, I] = (B, M, A)[A, g, I],

hence [A, f, I] = [A, g, I], that is, AfI = AgI, so Af = Ag. Therefore,
M˘M = AM˘MA = Afg˘A = Agg˘A ⊆ A, since gg˘ ⊆ I. Thus (B, M, A)
is an injection.

How do we characterize surjections? On the one hand it is easy to verify
that F is a surjection in Ñ if and only if the corresponding mapping |A|/A →
|B|/B in S, which sends the equivalence class [a]A onto the equivalence class
[F (a)]B, is a surjection in the usual sense. In the next proposition, we give
a more intrinsic characterization.

Proposition 4.8. Regular epis in Ñ are the same as surjections.

Proof. Recall by Corollary 4.2 that every surjection is a canonical surjec-
tion followed by an isomorphism. Moreover, the proof for (2) in Theorem
4.5 showed that every canonical surjection is the coequalizer of its kernel
pair, hence a regular epi.

Conversely, every regular epi F : A → B is the coequalizer of its kernel
pair. Now by Proposition 4.1,

[B, F, A] = [B, I, D][D, F, C][C, I, A] = [B, F, C][C, I, A]

where the injection [B, I, D] and the isomorphism [D, F, C] are both in-
jections and monos (by Proposition 4.7), hence [B, F, C] is a mono. The
surjection [C, I, A] also coequalizes the kernel pair of F . Therefore there is
a unique arrow (C, R, B) such that (C, R, B)[B, F, A] = [C, I, A].

Now [B, F, C](C, R, B)[B, F, A] = [B, F, A] and since [B, F, A] is an epi,
we have [B, F, C](C, R, B) = [B, I, B]. Writing M = BFC, we infer that
MR = BFCR = B. Now [B, F, C] =def (B, BFC, C) = (B, M, C) is an
injection, hence M˘M = C, and therefore

M˘ = M˘B = M˘MR = CR = R

Thus MM˘ = MR = B, and so [B, F, C] is also a surjection. Therefore, so
is [B, F, A] = [B, F, C][C, I, A].

Observe that this argument depends on Proposition 4.1, which applies
to Ñ and not to Per .

Finally, we remark that by the last two propositions, in Ñ a map which
is injective and surjective is necessarily an iso (since in any category, a mor-
phism which is a monomorphism and a regular epi is automatically an iso).
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5. Conclusion

We have shown that the monoid N of primitive recursive functions can be
embedded into a Barr-exact category Ñ . Our argument also shows that Per
is regular, provided we change Definition 4.4 (iii) to say that surjections are
stable under pullbacks. This also seems to be a popular definition of regu-
larity, but it differs from the original definition in the absence of Proposition
4.8. Per is also regular in the original sense, but that does not follow from
our argument. At first sight it seems that we have also proved that Per
is exact. However in Barr’s original definition of exactness, an equivalence
relation on A was assumed to be an arbitrary subobject of A×A satisfying
certain conditions. Our argument works for canonical subobjects of A × A.
As we proved, in Ñ every subobject is given by a canonical injection pre-
ceded by an isomorphism. However this is not the case in Per . In fact,
Proposition 4.1 in Ñ says F : C → D is an isomorphism, whereas in Per , F
is only an injection and surjection but not an iso.

It seems clear that N → Ñ is, in some sense, the best approximation of
N by a Barr-exact category. More formally, we expect that N → Ñ has an
appropriate universal property. Exact completions of categories with finite
limits have been thoroughly discussed by many authors (e.g. [CV98, Hof03]).
Unfortunately, such works do not apply here, since the monoid N (as a
category with one object) does not have equalizers, although it does have
products in view of the Cantor isomorphism N×N ∼= N. On the other hand,
these authors do suggest that Ñ may be viewed as an exact completion of its
subcategory of regular projectives. Perhaps a comparison might be helpful
with the categories studied by Tsalenko et al (see [Cal84]; he has changed the
spelling of his name since moving to the U.S.) which admit the construction
of relations (see also [Lam93]).

While Ñ has the advantage over Per in having been shown to be exact,
Per has an advantage over Ñ in being a CCCP, a cartesian closed category
with arbitrary formal products, which can be used for modelling polymorphic
lambda calculus.
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