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Before one can attach a meaning to a sentence, one must distinguish different ways of

parsing it. When analysing a language with pregroup grammars, we are thus led to replace

the free pregroup by a free compact strict monoidal category. Since a strict monoidal

category is a 2-category with one 0-cell, we investigate the free compact 2-category generated

by a given category, and describe its 2-cells as labelled transition systems. In particular, we

obtain a decision procedure for the equality of 2-cells in the free compact 2-category.

1. Introduction

An algebraic notion that has recently been applied in mathematical and computational

linguistics is that of a pregroup (Lambek 1999), a partially ordered monoid in which each

element a has both a left adjoint a� and a right adjoint ar , such that

a�a �� 1 �� a�a, aar �� 1 �� ara,

where the arrow denotes the partial order.

As a first approximation, one has recourse to the free pregroup generated by a partially

ordered set of basic types. For example, consider the following English phrases:

men and women

p pr pp� p
�� p

women whom I liked

p prpo��s� π1π
rs2o

�

p pr p o�� s�π1π
r s2o

�
�� p.

Here we have employed the following basic types:

π1 first person subject

π subject when the person does not matter

s2 sentence in the past tense
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s sentence when tense does not matter

p plural noun phrase.

We also postulate

s2
�� s, π1

�� π

to determine the partial order among basic types, so that, for example,

π1π
r �� ππr �� 1, s�s2

�� s�s �� 1.

Note that we have assigned to each English word a type, namely a string of simple types

of the form · · · a��, a�, a, ar, arr · · · where a is any basic type. In the above example, men

and women have been assigned basic types whereas

liked : πrs2o
�

and : prpp�

whom : prpo��s�.

Then

men and (women whom I liked)

ppr p p�pprp o��s�π1π
r s2 o� �� p

(men and women) whom I liked

ppr p p�pprp o��s�π1π
r s2 o� �� p.

These two derivations have evidently different meanings. This suggests that we should

take the arrow to denote not just derivability, but the actual derivation. In other words,

we should adopt the categorical imperative: replace partially ordered sets by categories.

There are two distinct derivations

p pr p p� p pr p �� p,

which might be thought of as morphisms in a certain category, or even, as we shall see,

as 2-cells in a 2-category. Adjoints are usually defined in the 2-category of all (small)

categories, but the same definition works in any 2-category. A 2-category is said to be

compact if every 1-cell has both a left and a right adjoint.

Our interest thus shifts to compact 2-categories (originally with one 0-cell) generated

by a given partially ordered set. We may as well replace this partially ordered set by a

category, and we will ultimately abandon the assumption that there is only one 0-cell.

Thus, we aim to study the free compact 2-category generated by a given category (or a

given 2-graph).

A 2-category with one 0-cell is usually called a strict monoidal category. To start

with, we will construct a compact one, the category of transitions, and show that it is

equivalent to the freely generated compact strict monoidal category. The 2-cells of the
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category of transitions are described as what is known in computer science as labelled

transition systems. Horizontal composition models parallelism; vertical composition

models temporal composition of transition systems (Eilenberg 1972). Our transitions

systems are given in normal form, that is, they have initial and final, but no intermediary

states. Putting this another way, the 2-cells can be generated without vertical composition.

The fact that every 2-cell is equal to a 2-cell in normal form is the categorical version

of what logicians call ‘cut-elimination’. Our proof of this fact also provides a decision

procedure for the equational theory of compact 2-categories.

2. 2-categories recalled

As a reminder of the concept of a 2-category, recall the notion of a natural transformation

t : F �� G between functors F : M �� Q, G : M �� Q. Here the categories M and

Q are the 0-cells, F and G the 1-cells and t is a 2-cell. The usual definition of natural

transformations requires the commutativity of the following diagram, where f : A �� B
is a given arrow in the category M:

FA FB
Ff ��FA

GA

tA

��

FB

GA

tf

����
��

��
��

��
�

GA GB
Gf

��

FB

GA
����

��
��

��
��

�
FB

GB

tB

��

That is, the equality

tB ◦ Ff = Gf ◦ tA = tf, for f : A �� B, t : F �� G, (2.1)

where ◦ denotes the composition of 2-cells. It is reasonable to denote the diagonal by tf.

Now, this equality remains valid if A and B are themselves 1-cells, say functors

N �� M, and then tf denotes horizontal composition tf : FA �� GB as illustrated by

the diagram

MQ ��

MQ ��

N��

N��

�� ��

t f

F A

G B

This horizontal composition is to be distinguished from the vertical composition

s ◦ t : F
t−→ G

s−→H,

which is the usual composition of 2-cells. The two compositions are related by the equation

(s ◦ t)(g ◦ f) = sg ◦ tf, (2.2)
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which is Mac Lane’s so-called interchange law (Mac Lane 1971).

MQ ��

MQ ��

N��

N��

�� ��

t f

F A

G B

MQ �� �� N�� ��
H C

s g

If we identify B with 1B and F with 1F , we see that (2.1) is a special case of (2.2). But

(2.2) can also be deduced from (2.1) and the distributive laws

(s ◦ t)C = sC ◦ tC, F(g ◦ f) = Fg ◦ Ff, (2.3)

as may be verified by diagram chasing.

As a consequence of (2.1), note that

1FA = 1F1A = 1FA ◦ F1A = F1A ◦ 1FA. (2.4)

Identifying (the 2-cell) 1F with (the 1-cell) F , (2.4) becomes

FA ◦ FA = FA, (2.5)

and, in the case where A is an identity for horizontal composition, F ◦ F = F . In the

particular case where f is the identity of the 1-cell A, (2.2) becomes

(s ◦ t)g = (s ◦ t)(g ◦ 1A) = sg ◦ t1A = sg ◦ tA. (2.6)

Finally, for F : M �� M, G : M �� M, u : F �� 1M and o : 1M �� G

uo = ou. (2.7)

Indeed, letting 1 stand for 11M
and 1 for 1M, we have

ou = (o ◦ 1)(1 ◦ u) = o1 ◦ 1u = o ◦ u

MM 1��

MM 1��

1
��

MM 1��

MM F��

u

��

MM G��

o

��
MM ��

1
��

and, similarly,

uo = (1 ◦ u)(o ◦ 1) = 1o ◦ u1 = o ◦ u
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MM 1��

MM 1��

1
��

MM 1��

MM F��

u

��

MM G��

o

��
MM 1��

1
��

using (2.2) and 1f = f = f1.

3. Adjoints in 2-categories

A 1-cell G is said to be a right adjoint of a 1-cell F , or F a left adjoint of G, if there are

2-cells ε : FG �� 1 and η : 1 �� GF such that

Gε ◦ ηG = 1G, εF ◦ FηG = 1F

G← GFG← G, F ← FGF ← F,

or, identifying 1G with G,

GεG ◦ ηG = G, εF ◦ Fη = F.

As in linguistic applications, it may be useful to call the co-unit of the adjunction ε a

contraction and the unit η an expansion, and paraphrase the equations above by saying

that an expansion is cancelled by a contraction immediately following it.

All the usual properties of adjoints familiar from the category of (small) categories

remain valid in any 2-category. For example, adjoints are unique up to isomorphism (see,

for example, (Lambek 2004)). This implies, in particular, that one can choose canonical

representatives

G� = F, εG : G�G �� 1, ηG : 1 �� GG�

such that

GεG ◦ ηGG = 1G, εGG
� ◦ G�ηG = 1G�

G← GG�G← G, G� ← G�GG� ← G�.

(3.1)

Then G�r ∼= G ∼= Gr�, and in the category T(C) described in Section 4, these isomorphisms

are replaced by the equalities

G�r = G = Gr�. (3.2)

Note that if H has a left adjoint H� with counit εH and unit ηH , then GH has a left

adjoint H�G� with counit εGH and unit ηGH given by

εGH = εH ◦H�εGH, ηGH = GηHG
� ◦ ηG. (3.3)
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Indeed, by (2.1), the diagram

HH�G�G HH�

HH�εG

��

G�G

HH�G�G

ηHG
�G

��

G�G 1
εG �� 1

HH�

ηH

��

commutes, so

GHεGH ◦ ηGHGH = GHεH ◦ GHH�εGH ◦ GηHG�GH ◦ ηGGH
= GHεH ◦ G(HH�εG ◦ GηHG�G)H ◦ ηGGH
= GHεH ◦ G(ηH ◦ εG)H ◦ ηGGH
= G(HεH ◦ ηHH) ◦ (GεG ◦ ηGG)H

= GH ◦ GH
= GH, by (2.5).

Similarly, εGHH
�G� ◦H�G�ηGH = H�G�.

In particular, it follows that we may take

(GH)� = H�G� and (GH)r = HrGr. (3.4)

For any 2-cell f : F �� G, one can define a 2-cell f� : G� �� F� as follows:

f� = εGF
� ◦ G�fF� ◦ G�ηF (3.5)

where on the right-hand side, read from right to left, the arrows are

F� ← G�GF� ← G�FF� ← G�.

We note that f� : G� �� F� is the unique 2-cell that makes the following square

commute:

G�F G�G
G�f ��G�F

1

εf

���
��

��
��

��
��

� G�G

1

εG

��
F�F 1

εF
��

G�F

F�F
��

G�F

1
���

��
��

��
��

��
�

Indeed, introducing the name generalised contraction for the diagonal εf , we show

εf = εG ◦ G�f = εF ◦ f�F (3.6)

as follows:

εF ◦ f�F = εF ◦ (εGF
� ◦ G�fF� ◦ G�ηF )F

= εF ◦ (εG ◦ G�f)F�F ◦ G�ηFF

= (εG ◦ G�f) ◦ G�FεF ◦ G�ηFF, by (2.1)

= εG ◦ G�f ◦ G�(FεF ◦ ηFF)
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= εG ◦ G�f ◦ G�F

= εG ◦ G�f.

To show uniqueness, that is,

If g : G� �� F� satisfies εG ◦ G�f = εF ◦ gF, then g = f�, (3.7)

assume that g satisfies the hypothesis. Then

f� = (εG ◦ G�f)F� ◦ G�ηF

= (εF ◦ gF)F� ◦ G�ηF

= εFF
� ◦ gFF� ◦ G�ηF

= εFF
� ◦ F�ηF ◦ g, by (2.1)

= g.

Similarly, we may define fr : Gr �� Fr by

fr = FrεGr ◦ FrfGr ◦ ηFrGr (3.8)

and, on the way to showing uniqueness, check that it satisfies

frG ◦ ηGr = Frf ◦ ηFr . (3.9)

It follows that

fr� = f = f�r (3.10)

and

fF� ◦ ηF = Gf� ◦ ηG = ηf, (3.11)

where the generalised expansion ηf is introduced as an abbreviation.

(g ◦ f)� = f� ◦ g�, (g ◦ f)r = fr ◦ gr. (3.12)

For example, to prove f = fr� : Fr� �� Gr�, it suffices to show that εFr ◦Fr�fr = εGr ◦fGr ,

using (3.7) with fr : Gr �� Fr instead of f. This can be verified as follows:

εFr ◦ Fr�fr = εFr ◦ F(FrεGr ◦ FrfGr ◦ ηFrGr)

= (εFr ◦ FFrεGr ) ◦ (FFrf ◦ FηFr )Gr, by (2.3)

= (εGr ◦ εFrGGr) ◦ (FFrf ◦ FηFr )Gr, by (2.1)

= εGr ◦ (εFrG ◦ FFrf ◦ FηFr )Gr, by (2.3)

= εGr ◦ (f ◦ εFrF ◦ FηFr )Gr, by (2.1)

= εGr ◦ fGr, by (3.1).

To see (3.11), we use (3.9) with f� : G� �� F� instead of f : F �� G. Finally, we derive

(3.12) by a similar argument.

Equalities (3.1) generalise to

Hεf ◦ ηgF = g ◦ f and εgF
� ◦H�ηf = (g ◦ f)�. (3.13)
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For example,

Hεf ◦ ηgF = H(εG ◦ G�) ◦ (gG� ◦ ηG)F

= HεG ◦HG�f ◦ gG�F ◦ ηGF
= HεG ◦ gG�G ◦ GG�f ◦ ηGF
= g ◦ εGG ◦ GηG ◦ f
= g ◦ f.

Note that εF = ε1F , so (3.1) is a particular case of (3.13).

4. Transitions

A 2-category is said to be compact, if every 1-cell has both a left and a right adjoint.

A 2-category with only one 0-cell is also called a strict monoidal category. For a given

category C, we will introduce a category T(C) in which the 2-cells are labelled graphs,

called transitions, and show that it is the compact strict monoidal category freely generated

by C. As C is to be embedded in the free category, the objects A,B, .. of C are identified

with 1-cells, and the arrows of C with 2-cells such that composition in C becomes vertical

composition in T(C). As there is only one 0-cell, horizontal composition is defined for

arbitrary 1-cells and, in view of (2.1), horizontal composition is also defined for arbitrary

2-cells. Hence, let

· · · , A(−2), A(−1), A(0), A(1), A(2) · · ·
stand for

· · · , A
��

, A�, A Ar, Arr · · · .
The 1-cells of T(C) are strings

Γ = A(z1)
1 · · ·A(zn)

n , zi ∈, Ai ∈ |C| ,

where the empty string represents the unit 1. Following pregroup terminology, 1-cells of

the form A(z) are called simple types and strings of simple types are called types. Using

letters A and B for simple types, we refer to the integer z such that A = A(z) as the iterator

of A, and to A as the base of A. We define

(A(z1)
1 . . .A(zn)

n )� = A(zn−1)
n . . .A(z1−1)

1

(A(z1)
1 . . .A(zn)

n )r = A(zn+1)
n . . .A(z1+1)

1 .

In particular,

(A(z))� = A(z−1), (A(z))r = A(z+1).

It is customary in pregroup grammars to represent contractions of simple types as under-

links:

εA : A�A �� 1 A� A .

By analogy, following the practice of linear logicians, we introduce over-links for expan-

sions of simple types:

ηA : 1 �� AA� AA� .
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Representing an arrow s : A �� B of C as a vertical link

A

B

s

we generalise this to vertical links

A(2z)

B(2z)

s(2z)

B(2z+1)

A(2z+1)

s(2z+1)

Again, . . . , s(−2), s(−1), s(0), s(1), s(2), . . . stands for . . . , s
��

, s�, s sr, srr, . . . . It is convenient to

declare s(z) : A(z) �� B(z) if either s : A �� B and z is even or s : B �� A and z

is odd. We use s : A �� B for s(z) : A(z) �� B(z) and call arrows of this form simple

arrows. Again, we call the integer z in s = s(z) the iterator of s and the arrow s of C the

base of s. If s = s(z) : A �� B, t = t(z) : B �� C , we define

t ◦ s = (t ◦ s)(z), if z is even

= (s ◦ t)(z), if z is odd.

Other convenient meta-notations concerning simple arrows are

s� = (s(z))� = s(z−1)

sr = (s(z))r = s(z+1)

1A(z) = (1A)(z).

It follows from these definitions that (t ◦ s)� = s� ◦ t� and (t ◦ s)r = sr ◦ tr .
The idea is to extend this graphical representation of contractions, expansions and

simple arrows to all 2-cells of the free category, using links labelled by simple arrows.

Horizontal composition can be represented by the juxtaposition of sets of links. For

example,

A�

A� A A�

represents A�ηA : A� �� A�AA�A

and

A� A

A�

A�

represents εAA
� : A�AA�A �� A�.

Vertical composition can be represented by connecting graphs vertically and identifying

a composite path with the corresponding link through its endpoints. For example, for
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AεA ◦ ηAA = A, we must identify

A�

A�

A�

A�

A�

AA� =

For s : B �� A, we represent

εs = εA ◦ A�s = εB ◦ s�A : A�B �� 1

by

A� B
s

and then must define vertical composition such that

A�

A�

A

B

s =

A�

B�

s�

B

B

= A� B
s

.

Similarly,

ηs = sB� ◦ ηB = As� ◦ ηA : 1 �� AB�

is represented by
s

A B�

In the case where the label is 1A : A �� A, we omit it in the graphical representation.

Prompted by the motivation above, we introduce the formal notion of a transition

between strings of simple types as a special kind of graph. For the category theorist, a

graph consists of two sets, the set of nodes N and the set of arrows A, and two functions,

called the domain and codomain, from A to N. Graph theorists usually consider a special

case of this, the so-called directed graph, where for each pair of nodes (m, n) there is at

most one arrow of domain m and codomain n, that is, the set of arrows is identified

with a binary relation on the set of nodes. Graph theorists also consider non-directed

graphs, that is to say, symmetric relations, where (m, n) and (n, m) are identified as the

edge between m and n, denoted {m, n}. It is the latter version we use in the following. In

fact, we will consider labelled non-directed graphs where a map assigns a label to each

node and each edge.

Definition 1. Given strings of simple types Γ = C1 · · ·Cm, ∆ = D1 · · ·Dn, a transition

f : Γ �� ∆ is a labelled finite non-directed graph. The nodes of f have the form (0, i)

or (1, k) where Ci is the label of (0, i) and Dk is the label of (1, k), 1 � i � m, 1 � k � n.
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We will refer to (0, i) as the ‘position i in the domain’ of the transition and to (1, k)

as the ‘position k in the codomain’. If i and k are positions that are either both in the

domain or both in the codomain, i < k refers to the order of natural numbers. The edges,

called links here, are divided into vertical and horizontal links, the latter being divided

into over-links and under-links. The words ‘vertical’, ‘horizontal’, and so on, anticipate the

graphical representation. The following must hold:

(1) A vertical link consists of a position i in the domain and a position k in the codomain.

Its label is a simple arrow s : Ci
�� Dk .

(2) An under-link consists of two positions i and k in the domain. If i < k, its label is a

simple arrow s : Ck
�� Cr

i .

(3) An over-link consists of two positions i and k in the codomain. If i < k, its label is a

simple arrow s : Dr
k

�� Di.

Moreover:

(4) Each node is an endpoint of exactly one link and every link has two distinct endpoints,

(5) If {(0, i), (1, k)} and {(0, j), (1, l)} are vertical links and i < j in the domain, then k < l

in the codomain.

(6) If {(0, i), (0, k)} is an under-link and j is a position in the domain such that i < j < k,

then j belongs to an under-link {(0, j), (0, l)} such that i < l < k. The same holds if

we replace ‘under-link’ by ‘over-link’ and ‘domain’ by ‘codomain’.

We will represent the transition f : Γ �� ∆ geometrically by a planar graph, with the

domain Γ = C1 . . . Cm on the top and the codomain ∆ = D1 . . . Dn at the bottom, letting

the simple types stand for their occurrences, and drawing the three kinds of links as their

names indicate:

D1 . . . Dk . . . Dn

C1 . . . Ci . . . Cm

s C1 . . . Ci . . . Ck

s

. . . Cm D1 . . .

s

Di . . . Dk . . . Dm.

Conditions (5) and (6) then ensure that links do not cross. If the label of a link is an

identity 1A, we may replace it by A or omit it altogether in the graphical representation.

Examples of transitions are:

— The empty graph, denoted 1 : 1 �� 1, with empty domain and empty codomain.

— For s : A �� B
B� A

s

with domain A� B and empty codomain, which will ultimately be denoted by

εs : B�A �� 1.

— For t : C �� D
t

D C�
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with empty domain and codomain D C�, which will ultimately be denoted by

ηt : 1 �� DC�.

This denotation anticipates the fact that

A� B
s

will represent a generalised contraction and

t

D C�

will represent a generalised expansion in the compact 2-category of transitions, as shown

below. Similarly, a single vertical link

A

B

s

is a transition with domain A and codomain B.

To simplify the notation, we use s : A �� B to indicate both the simple arrow and

the simple transition with domain A and codomain B, consisting of a unique vertical link

labelled s. A somewhat more involved example is

A

D

t

��
��

��
��

�

s

B C�

C� C��B�

s�

A�B
r

C A�

B�

r�

��
��
��
��

where s : C �� B, r : B �� A, t : A �� D and the missing labels are identities. Note

that according to our notation, s : C �� B implies s� : B� �� C� = C��r , so s� is a

correct label for a link under positions 5 and 6 in the domain above.

There is an alternative description of the labels in a transition. By definition, the label

s = s(z) of a vertical link between position i in the domain and position k in the codomain

is a simple arrow s : Ci
�� Dk and, therefore, the iterator of both Ci and Dk is z. This

says that the basic arrow s points downward, that is, from the domain to the codomain,

if z is even, and upward if z is odd. The label s = s(z) of an under-link ‘points’ from right

to left, that is, s : Ck
�� Cr

i if i < k in the domain. Hence, z is also the iterator of Ck

and z − 1 the iterator of Ci, that is, Ci = B(z−1) and Ck = A(z) and either s : A �� B if

z is even, or s : B �� A if z is odd. This means that in under-links, the base arrow s is

directed from the position with the even iterator to the position with the odd iterator.

Similarly, the label s of an over-link between positions k and i in the codomain ‘points’

again from right to left, that is, s : Dr
k

�� Di for i < k. This time the iterator z of

s coincides with that of Di, whereas the iterator of Dk is z − 1, that is, Di = B(z) and
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Dk = A(z−1) and either s : A �� B if z is even, or s : B �� A if z is odd. Hence, in

over-links, the base arrow s is directed from the base with the odd iterator to the base

with the even iterator.

Consider, for example, the transitions and their base graphs

s

B�C��

E��

A��

r

A�

D�

q

��
��

��
��

� E+

A+

r

��
D−

A−

q

�������������

B−

s

C+
��

C�� D�

t

A��

A��

B�

C�

u

A+

A+
��

C−

B−

u

�� C+

t

D−��

where

r : E�� �� A��, r = r��, r : E �� A

q : A� �� D�, q = q�, q : D �� A

s : C� �� B�, s = s�, s : B �� C

and

u : B� �� C�, u = u�, u : C �� B

t : D� �� C�, t = t�, t : C �� D.

In the right-hand graph we have replaced the links by the basic arrows, the even iterators

by + and the odd iterators by −.

We define horizontal composition of transitions as juxtaposition. For example, if s :

C �� B and t : A �� D

B� B D� A
t

D� A
t

B� B B� B

εBεt = εtεB = εBηs =
s

B C�

or

ηstεB =
s

BC�

B�BA

D

t

��
��

��
��

tηsεB =

A

D

t

s

BC�

B�B

.

The examples above are constructed from one-link transitions by horizontal composition,
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but not all transitions can be obtained in this way. Counter-examples are

B� B� B D� A
t

C

s

s

B

t

D A� C� .

In fact, they are obtained by what we call nesting. We can perform nesting on transitions

consisting of either under-links only or over-links only:

Let s : A �� B be a simple arrow.

• εs(g) : B�ΓA �� 1 is obtained from g : Γ �� 1 by adding a new under-link from

B� to A labelled s

• ηs(h) : 1 �� B∆A� is obtained from h : 1 �� ∆ by adding a new over-link from B

to A� labelled s.

With this definition, the examples above can be written as

ηs(1) =

s

B C� = ηs εt(1) = D� A
t

= εt

and

εs(εBεt) = B� B� B D� A
t

A

s

ηs(ηt(1)) =

s

B

t

D A� A�,

for s : C �� B, t : A �� D.

There is an obvious candidate for vertical composition, as we have seen in the examples

at the beginning of the section, namely vertical connection of transitions where every

maximal path† is replaced by the link through its endpoints. These paths can get quite

involved as shown by the following example. Connect

f =

A� A�� A�� A��� A� A��A�� A���A� A��A A� A

A

to

g =

A�� A� A��� A�� A��� A�� A�� A�A�� A�A� AA

A

.

† That is, a path that has no proper extension.
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The connected graph

g; f = A� A�� A�� A��� A� A��A�� A���A� A��A A� A

A

A�� A� A��� A�� A��� A�� A�� A�A�� A�A� AA

A

has a unique maximal path with both endpoints labelled A, one in the domain and the

other in the codomain

g ◦ f =

A

A

.

Note that the labels of successive links in a connected graph cannot be composed in

general: starting from the right-hand upper corner, the labels of the first successive links

are 1A for the vertical link of f, 1A for the longest under-link of g, 1A� = (1A)�, over-link

of f starting in the second position of the string, 1A�� = (1A)��, and so on. However, the

base arrows of these links can be composed. Here, and below, when we say the ‘iterator

of a position’ or ‘the base of a position’, we mean the iterator or the base of the simple

type that is the label of the position, and similarly for links.

We form the connection g; f of f : Γ �� ∆ with g : ∆ �� Λ at ∆ as the union of g

with f after renaming the nodes in the codomain of g from (1, k) to (2, k) and those in

the domain of g from (0, i) to (1, i). Note that a maximal path in g; f has its endpoints

necessarily in the domain of f or the codomain of g. We orient a maximal path as follows.

A vertical path, that is, one with one endpoint in the domain of f and the other in the

codomain of g, is directed from the top (the domain of f) to the bottom (the codomain

of g) if the iterator of the endpoint in the domain of f is even, otherwise it is directed

from the bottom to the top. If both end-points are in the domain of f, the path starts

at the endpoint with the even iterator. If both end-points are in the codomain of g, it

starts at the endpoint with the odd iterator. We assign a label to each path in g; f as the

simple arrow whose base is obtained by composing the base arrows of the successive links

beginning at the starting point of the path. The iterator of the label of a vertical path is

that of the starting position. If a path has both endpoints in the domain of f, the iterator

of its label is that of its rightmost endpoint. If it has both endpoints in the codomain of

g, the iterator of its label is that of its leftmost endpoint.

To define the vertical composition g ◦ f : Γ �� Λ of f : Γ �� ∆ and g : ∆ �� Λ, we

connect f with g at ∆ to obtain g; f. The links of g ◦ f are obtained by replacing each

maximal path of g; f by a single link through its endpoints. The label of the link consists

of the base and the iterator of the replaced path.

To motivate the definition of the label, recall our alternative description of the labels

of links. It then becomes obvious that the basic arrows along a path can be composed as
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indicated. For example, the connected graph

A�

s

D��

A�

A� C���

q

B��

B��

C���

t

D��

yields the base graph

A−

s

D+
��

A−

A−�� C−

q

B+
��

B+
��

C−��

t

D+

where

s : D� �� A�, s = s�, s : A �� D
t : C�� �� B��, t = t��, t : C �� B
q : D�� �� C��, q = q��, q : D �� C.

In this case the label is (1B ◦ q ◦ t ◦ s ◦ 1A)�, which is indeed a simple arrow

(q ◦ t ◦ s)� : B� �� A�,

corresponding to the transition

(q◦t◦s)�

A�B�� .

In the next lemma we show that in general the composite of the base arrows with the

chosen iterator is an appropriate label for the link replacing the path.

Lemma 1 (Combing). Let f : Γ �� ∆ and g : ∆ �� Λ be transitions, Γ = A1 · · ·An, ∆ =

B1 · · ·Bm, Λ = C1 · · ·Cp. Then g ◦ f is a transition with domain Γ and codomain Λ.

Proof. We use induction on the length m of the intermediary string ∆. If m = 0, then

∆ is empty, f just has under-links, and g just has over-links. Hence all paths in g; f have

length 1 and g ◦ f = g; f = gf. For the induction step, assume that ∆ is non-empty and

that the property holds for all transitions f′ : Γ �� ∆′ and g′ : ∆′ �� Λ connected at

an intermediary ∆′ shorter than ∆. Note that every path of length at least 2 goes through

a position in ∆. In the following argument, we choose a section of a path through such a

position consisting of two or three consecutive links. This section will be called a strand

and will be replaced by a single link, with the same endpoints. There are eight different

strands to be considered:
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Case 1: Suppose there is a position j in ∆ such that both f and g have a vertical link

through j. Let s : Ai
�� Bj and t : Bj

�� Ck be the corresponding labels. Then

f = f1sf2 and g = g1tg2 where fi : Γi
�� ∆i, gi : ∆i

�� Λi for i = 1, 2. By the

induction hypothesis, gi ◦ fi : Γi
�� Λi is a transition, for i = 1, 2, so

g ◦ f = (g1 ◦ f1)(t ◦ s)(g2 ◦ f2).

(Strand 1)

Γ = Γ1 Γ2Ai

Bj

s

∆ = ∆1 ∆2Bj

Ck

t

Λ = Λ1 Λ2

is replaced by

Γ = Γ1 Γ2Ai

Ck

t◦s

Λ = Λ1 Λ2

Case 2: (Strand 2.1) to (Strand 2.6)

If ∆ does not have such a position, assume first that g has at least one under-link.

Then there is a position j in ∆ such that j and j + 1 form an under-link of g. Let

∆′ be obtained from ∆ by omitting BjBj+1 and g′ from g by omitting the under-link

through j and j + 1. Clearly, g′ is a transition from ∆′ to Λ. Next, consider the links

determined by the positions j and j + 1 in the codomain of f, say{(γ, i), (1, j)} and

{(1, j + 1), (δ, k)}, where γ, δ ∈ {0, 1}. Note that two consecutive positions j, j + 1 in

∆ cannot simultaneously form an over-link of f and an under-link of g. Indeed, the

former would imply that the iterator of Bj is greater than the iterator of Bj+1, whereas

the latter would imply the contrary. Hence, i and k are both different from j and j+1.

We obtain f′ from f by omitting the two links {(γ, i), (1, j)} and {(1, j + 1), (δ, k)} and

adding the new link {(γ, i), (δ, k)}. For each strand, we verify that the labels (or their

adjoints) of the three consecutive links can be composed, thus providing the label for

{(γ, i), (δ, k)}. Then the maximal paths of g; f are identified with the maximal paths of

g′; f′. Hence, by definition, g ◦ f = g′ ◦ f′. The property then follows by the induction

hypothesis.

The under-link from Bj to Bj+1 being fixed in the next 6 cases, let t : Bj+1
�� Br

j be

its label.

Case 2.1: Both positions i and k are in the domain of f.

As links do not cross, we have i < k. Let q : Ai
�� Bj and s : Ak

�� Bj+1 be

the labels of the corresponding vertical links. According to the notation introduced

earlier, qr : Br
j

�� Ar
i , so qr ◦ t ◦ s is defined and is a simple arrow qr ◦ t ◦ s :

Ak
�� Ar

i .
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(Strand 2.1)

Bj

t

Bj+1Bj

Ai

q

������

Bj+1

Ak

s

						

. . .

is replaced by
Ai

qr◦t◦s

Ak. . .

Note that the positions between i and k in the domain must be linked by under-

links of f, thus defining a subtransition f3 with codomain 1 of f. Therefore,

f = f1t
�f3sf2. Replacing the two vertical links {(0, i), (1, j)} and {(0, k), (1, j + 1)}

by a single under-link {(0, i), (0, k)} and leaving the other links of f unchanged, we

obtain a transition f′ from Γ to ∆′.

Case 2.2: Position i is in the domain and position k in the codomain of f.

As links do not cross, j + 1 < k. The label of the vertical link is a simple arrow

q : Ai
�� Bj and the label of the over-link is a simple arrow s : Br

k
�� Bj+1.

Then s� : Bj+1
� �� Bk and t� : Bj

�� B�
j+1, so s� ◦ t� ◦ q : Ai

�� Bk . Hence:

(Strand 2.2)

Bj

Ai

q

Bj

t

Bj+1Bj+1

s

Bk. . .

is replaced by

Bk

Ai

s�◦t�◦q

������

. . .

Case 2.3: Position i is in the codomain and position k in the domain of f.

As links do not cross, i < j. Then q : Br
j

�� Bi, s : Ak
�� Bj+1 and q ◦ t ◦ s :

Ak
�� Bi.

(Strand 2.3)

Bi

q

BjBj

t

Bj+1Bj+1

Ak

s

. . .

is replaced by

Bi

Ak

q◦t◦s
						
. . .

Case 2.4: Both positions i and k are in the codomain of f.

Case 2.4.1: i < j and j + 1 < k.

Let q be the label of the over-link between i and j, and s be the label of

the over-link between j + 1 and k. Then q : Br
j

�� Bi, s : Br
k

�� Bj+1, so

q ◦ t ◦ s : Bk
r �� Bi.

(Strand 2.4.1)

Bi

q

Bj. . . Bj

t

Bj+1Bj+1

s

Bk. . . is replaced by
Bi

q◦t◦s

Bk. . . . . .
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Note that the positions between i and j are linked by over-links in f, and

similarly for the positions between j + 1 and k. Hence f′ is again a transition

from Γ to ∆′.

Case 2.4.2: j < i and j + 1 < k.

As links do not cross, it follows that k < i. The label of the over-link between

i and j is a simple arrow q : Br
i

�� Bj . The label of the over-link between

j + 1 and k is a simple arrow s : Br
k

�� Bj+1, so s� : B�
j+1

�� Bk . Hence

s� ◦ t� ◦ q : Br
i

�� Bk .

(Strand 2.4.2)

Bj

q

BiBj

t

Bj+1Bj+1

s

Bk. . . . . .
is replaced by

Bk

s�◦t�◦q

Bi. . . . . .

Case 2.4.3: i < j and k < j + 1.

As labels, we have q : Br
j

�� Bi and s : Br
j+1

�� Bk . Hence s ◦ tr ◦ qr :

Bi
r �� Bk

(Strand 2.4.3)

Bk

s

Bj+1. . . Bi

q

Bj. . . Bj

t

Bj+1
is replaced by

Bk

s◦tr◦qr

Bi. . . . . .

Case 3: There remains the case where g has no under-links. As we are in the case

where no position in ∆ belongs to both a vertical link in g and a vertical link in f, the

latter must have over-links. Hence there is a position j in the codomain of f linked

to j + 1 in f. Let i and k be the positions in the codomain of g such that i is linked

to j and j + 1 to k in g. As links do not cross, i < k. Then the labels of these links

satisfy s : Br
j+1

�� Bj, t : Bj
�� Ci, u : Bj+1

�� Ck . Therefore, ur : Cr
k

�� Br
j+1

and t ◦ s ◦ ur : Cr
k

�� Ci.

(Strand 3)

Bj

s

Bj+1Bj

Ci

t

		
		
		

. . .

Bj+1

Ck

u
��
��
�� is replaced by

Ci

t◦s◦ur

Ck. . .

This completes the proof.

Note that the vertical composition of two transitions can be computed in time proportional

to the number of links in the transitions. Indeed, it suffices to follow a maximal path

exactly once, computing the label on the way as indicated in the definition.
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Proposition 1. T (C) is a compact strict monoidal category.

Proof. Vertical composition is clearly associative, the identity 1A1 ...An
: A1 . . . An

��

A1 . . . An consists of the obvious vertical links through corresponding simple types. The

label of the link connecting position i in the domain to position i in the codomain is the

identity of the simple type Ai. Recall that Γ is identified with 1Γ. Then the equality (2.1)

gΛ ◦ ∆f = Θf ◦ gΓ = gf, for f : Γ �� Λ, g : ∆ �� Θ

is straightforward.

Compactness follows if

AεA ◦ ηAA = A and εAA
� ◦ A�ηA = A�

holds. By (3.3), it is enough to verify this for all simple types A, namely that

A�

A�

A� AA A�

A�

combs to

A�

A�

and

A

A A�A� A

A

combs to

A

A

The Combing Lemma is the categorical version of cut-elimination in compact bilinear

logic, which was established in Buszkowski (2002). Indeed, the categorical equality defines

an equivalence relation on proofs such that transitions are cut-free representatives of

equivalence classes. Besides providing a graphical representation of cut-free proofs, the

categorical result tells us more: not only can we derive from f : Γ �� ∆ and g : ∆ �� Λ
the existence of a cut-free h : Γ �� Λ, but also show that this new h : Γ �� Λ is

equivalent to g; f.

Justification for the notation. We have introduced s� = (s(z))� = s(z−1), sr = (s(z))r = s(z+1)

for simple arrows as a convenient notation in the meta-language. Now we can show that

they indeed denote the left and right adjoint, respectively, in the compact 2-category of

transitions. For example, we show that s� = εBA
� ◦ B�sA� ◦ B�ηA:

B�

B�B�

B�B� BB

A

s

A A�

A�

A�

= B�

B�

B�

s

AA A�

A�

= A�

B�

s�

A�

A�

1
A�

=

A�

B�

s�
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where, from left to right, we have made the replacements (Strand 2.1), (Strand 2.2) and

(Strand 1).

Similarly, ‘nesting’ can now be described in the language of compact 2-categories. One

verifies easily that for transitions g : Γ �� 1 and h : 1 �� ∆ and simple s : A �� B,

εs(g) = εs ◦ B�gA : B�ΓA �� 1 and ηs(h) = BhA� ◦ ηs : 1 �� B∆A�.

For example,

B�

B�









B�

s

AA

A
�������

B� B D� A
t

combs to B� B� B D� A
t

A

s

.

Theorem 1. T (C) is the free compact strict monoidal category generated by C.

Sketch of proof. (For a complete proof see the Appendix.) A functor Φ : C �� U(M)

into the underlying category of another compact strict monoidal category C, can be

extended to a strict monoidal functor Φ : T (C) ��M as follows.

First we define Φ in the obvious way on simple types and simple arrows and, writing A

for Φ(A) and s for Φ(s), we define Φ for generalised contractions and expansions as

Φ(εs) = εs = εs
Φ(ηs) = ηs = ηs.

Then we extend Φ inductively to all transitions by making it commute with horizontal

composition and nesting:

fg = f̄ ḡ ,

εs(f) = εs ◦ B
�
f A , s : A �� B simple,

ηs(g) = B g A
� ◦ ηs̄ , s : A �� B simple.

By construction, Φ̄ preserves horizontal composition, ε and η. As uniqueness is obvious,

it only remains to show that Φ̄ preserves vertical composition. To do this, we follow the

Combing Lemma. For the induction step, we prove Case 1 thus

g ◦ f = (g1 ◦ f1)(t ◦ s)(g2 ◦ f2)

= (g1 ◦ f1) (t ◦ s) (g2 ◦ f2)

= (g1 ◦ f1)(t ◦ s)(g2 ◦ f2)

= g1tg2 ◦ f1sf2

= g ◦ f.

In the other cases we use the intermediary transitions g′ and f′ for which g ◦ f = g′ ◦ f′,
and therefore g ◦ f = g′ ◦ f′ also. As, by the induction hypothesis, g′ ◦ f′ = g′ ◦ f′, it just

remains to show that g ◦ f = g′ ◦ f′. This requires some care as we must express the

seven definitions of g′ and f′ of the Combing Lemma in the language of T (C). Instead

of carrying out the details of this program for all seven cases, a different proof will be

presented in the Appendix, relating transitions to derivations in the free pregroup.
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This theorem provides a decision procedure for the equational theory of strict compact

monoidal categories given by the axioms of strict monoidal categories together with (3.1)

to (3.4). The procedure then also applies to any definitially equivalent theory such as

that of compact non-symmetric star-autonomous categories where the unit of the tensor

product is a dualising object (Barr 1995). Indeed, to decide whether f = g can be derived,

interpret both terms in the category of transitions.

5. The free strict compact 2-category generated by a given 2-graph

We can modify the above construction to the compact 2-category freely generated from a

given 2-graph. To simplify matters, we will assume that the 2-cells of the 2-graph form a

category:

MQ ��

MQ ��

t

��

A

B

MQ ��

s

��
C

=

MQ ��

MQ ��

t◦s

��

A

B

Then the construction is the same as above. However, if A : M �� N is a 1-cell and

z ∈ �, we have to require that the simple type A(z) is a 1-cell such that

A(z) : M �� N, if z is even

A(z) : N �� M, if z is odd.

Types are now paths, that is, A(z1)
1 . . . A(zn)

n must satisfy

A(zi)
i : Ni

�� Ni+1, 1 � i � n− 1.

Then the 1-cells of the free compact 2-category are the types and the 2-cells are the

transitions between types.

As a particular case, let C consist of two 0-cells, M and N, a 1-cell F : M �� N and

the identity of F as the unique 2-cells. Let G = Fr and only consider transitions with

domain and codomain of the form GFG . . .FG where FG is repeated n times, n � 0. Then

the only possible under-links are between neighbouring FG in the domain and the only

possible over-links between neighbouring GF in the codomain. Hence the first position in

the domain always belongs to a vertical link. When connecting two such transitions, say

G

G

G

G
����������� F GG FF GG FF GG

G









F G F

��
��

��
��

=

G

G

F G F G
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we get that Strands 2.4.2 and 2.4.3 do not occur. More generally, there is no nesting.

These graphs are considered in Dos̆en (2002) under the name of friezes. The connection

between a free adjoint functor pair and cut-elimination is investigated in Dos̆en (1999).

In compact 2-categories the infinite number of adjoints requires more involved graphs for

the computation of composition, like the spiral in Example 1. The 1-cells involving F and

Fr only are so-called ‘linear’ types, see Degeilh and Preller (2005), where it was shown

that there is at most one transition between two given types. In particular, linear types do

not capture differences in meaning for which the presence of both right and left adjoint

is required. Linguistic applications call for right and left iterated adjoints, for example, to

describe the Chomskyan trace, see Lambek (1999).

One may wish to generalise the present results to bicategories, using the notions of

adjunctions on bicategories (see, for example, Lambek (2004)), but we will refrain from

doing so here. The special case of compact symmetric monoidal categories has been

treated in the classical paper Kelly and Laplaza (1980). They did not actually construct

the free such category, instead they established the important result that equations between

morphisms in the language of such categories follow from the axioms if and only if they

hold, up to isomorphism, for the graphs. In the situation we have discussed here, the

graphs have to be equal.

6. Conclusion

We have described the 2-cells of T (C), the free compact monoidal 2-category generated

by C as labelled transition systems. These transition systems draw their labels from C and

are closed under parallel and sequential composition. In the case where C is itself freely

generated by a labelled graph, the edges of this graph stand for non-logical axioms or

‘information’. Both left and right adjoint provide a mechanism for storing this information.

It follows from the above that equality in TC) is decidable if the equality of arrows in C is.

This is, in particular, the case if C is freely generated by a labelled graph. The reductions

constructed when analysing syntax with a pregroup grammar are particular transitions.

As different reductions give rise to different semantical interpretations, transitions are an

indispensable step from pregroup grammars to discourse representation.

Appendix (by Anne Preller).

To prove that T (C) is the free compact strict monoidal category, we define the extension

Φ : T (C) ��M of the functor Φ from C to a compact strict monoidal category M, as

indicated in the outline of the proof in Section 4. First we check that Φ is well defined. The

other property left to be shown is that Φ commutes with vertical composition. The proof

outlined in Section 4 is based on the idea that the Combing Lemma can be expressed in

purely categorical terms. Though the equalities corresponding to the eight cases of the

Combing Lemma can be shown to hold inM, the proof below follows a different line: it

relates transitions directly to the derivations in free pregroups defined in Lambek (1999).

We noted in Section 4 that an arbitrary transition can be obtained from single links

by the graphical operations of juxtaposition and nesting. To express these operations in
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categorical language, we distinguish the horizontal normal forms among the expressions of

the language of compact strict monoidal categories with constants in C.

Definition 2 (Horizontal normal form). Every simple arrow s : A �� B, every generalised

contraction εs : B�A �� 1 and every generalised expansion ηs : 1 �� BA� is a horizontal

normal form.

An arbitrary horizontal normal form is obtained from them by the following rules:

(Horizontal composition)
f : Γ �� ∆ normal g : Θ �� Λ normal

fg : ΓΘ �� ∆Λ normal

(Nesting Contraction)
f : Γ �� 1 normal s : A �� B simple

εs ◦ B�fA : B�ΓA �� 1 normal

(Nesting Expansion)
f : 1 �� ∆ normal s : A �� B simple

ηs ◦ BfA� : 1 �� B∆A� normal

where the Horizontal Composition rule does not apply to u : Γ �� 1 and o : 1 �� Λ.

Note that the Horizontal Composition rule applies to o : 1 �� Λ and u : Γ �� 1.

The order u : Γ �� 1 and o : 1 �� Λ is excluded because uo = ou holds in all

2 -categories by (2.7). Thus, only ou is a normal expression. This, together with the fact

that 1 is not a normal expression, makes it possible to assert the uniqueness of horizontal

normal forms as follows.

Lemma 2 (Horizontal normal form). Every non-empty transition f : A1 . . . Am
��

B1 . . . Bn can be expressed in horizontal normal form, which is unique up to associativity

of horizontal composition.

Proof. We use induction on the number of links in f. At least one of n or m is greater

than 0. First, assume that m > 0. We distinguish two cases:

1 The last position m of Γ is linked to a position k in the codomain ∆ with label s:

A1 . . . Am−1

B1 . . . Bk−1

Am

Bk

s

��
��
��

Bk+1 . . . Bn

.

Then the other links of f can be divided into those with no endpoint to the right of k and

those with both endpoints to the right of k. The former set of links defines a transition

g : A1 . . . Am−1
�� B1 . . . Bk−1, and the latter a transition h : 1 �� Bk+1 . . . Bn such

that f = gsh.

2 The last position m in the domain is linked to a position k < m in the domain:

A1 . . . Ak−1 Ak . . . Am

s

B1 . . . Bn.
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Let g consist of the links of f with endpoints in the codomain or to the left of k in

the domain, and let h consist of the links with both endpoints in the domain strictly

between k and m. Then g : A1 . . . Ak−1
�� B1 . . . Bn, h : Ak+1 . . . Am−1

�� 1 and

f = gεs(h)

Now suppose m = 0 and n > 0, and consider the link through the last position n in the

codomain. Let t be its label. The other endpoint of this link is a position j < n in the

codomain:

B1 . . . Bj−1

t

Bj . . . Bn .

Then the links that have both endpoints to the left of j form a transition g : 1 ��

B1 . . . Bj−1, and the links with both endpoints between j and n form a transition h : 1 ��

Bj+1 . . . Bn−1 such that f = gηt(h).

From the existence of a unique normal form for a transition, it follows at once that the

canonical extension Φ is well defined. We recall the definition using ( ) instead of Φ :

(I) A(0) = Φ(A), A object of C

s(0) = Φ(s), s arrow of C

(II) An+1 = A(n)
r
, A(−n−1) = A(−n)�, for 0 � n

s(n+1) = s(n)
r
, s(−n−1) = s(−n)�, for 0 � n

(III) Γ∆ = Γ ∆ fg = f g

(IV) εs = εs

ηs = ηs

εs(f) = εs ◦ B
�
f A = εs(f), f : Γ �� 1, s : A �� B simple

ηs(g) = B g A
� ◦ ηs = ηs(g), g : 1 �� ∆, s : A �� B simple

(V) 1 = 1, 1Γ = 1Γ.

By definition, Φ preserves horizontal composition and the identities. If the left and right

adjoints of 1-cells are part of the signature of M, Φ preserves left and right adjoints

only up to isomorphism in general. For example, we may just have (GH)� ∼= H�G� in

M. However, as only the existence of left and right adjoints of 1-cells is assumed in the

definition in Section 3, a functor of 2-categories that preserves left and right adjoint up

to isomorphism may still be correctly called a functor of compact 2-categories.

Finally, we must show that Φ commutes with vertical composition. This is easily verified

if the composed transitions are simple arrows or if one of them is an identity. In the

general case, the idea is to prove the property for transitions that consist essentially of

just one link, the so-called single-step transitions, and to show that an arbitrary transition

is equal to a vertical composition of single steps.

Definition 3 (Single step). A single step is a 2-cell of one of the following forms:

Γs∆ : ΓA∆ �� ΓB∆ (Induced step)

Γεs∆ : ΓB�A∆ �� Γ∆ (Generalised contraction step)

Γηs∆ : Γ∆ �� ΓBA�∆ (Generalised expansion step)

where s : A �� B is a simple arrow.
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This definition uses categorical language only, so, replacing s by s, we may say that the

canonical map preserves single steps, that is, Γs∆ = Γs∆, Γεs∆ = Γεs̄∆ and Γηs∆ = Γηs̄∆.

Single steps generate all transitions, as follows from Lemma 2 and the following lemma.

Lemma 3 (Vertical decomposition of horizontal normal forms). Every horizontal normal

form f : A1 . . . An
�� B1 . . . Bm can be expressed as a vertical composition of single steps

f = f1 ◦ . . . ◦ fn such that f = f1 ◦ . . . ◦ fn.

The proof of Lemma 3 is straightforward by induction on the derivation of the horizontal

normal form of f. The distributivity laws (2.3) intervene if one of the nesting rules was

applied. If the horizontal composition rule was applied, the argument is as follows.

For h : Γ �� Θ and g : ∆ �� Λ, the equalities

gΘ ◦ ∆h = gh = Λh ◦ gΓ

∆

∆

∆

Γ

Θ

h

∆

Λ

g

Θ

Θ

Θ

=

∆

Λ

g

Γ

Θ

h =

∆

Λ

g

Γ

Γ

Γ

Λ

Λ

Λ

Γ

Θ

h

hold in an arbitrary 2 -category by (2.1), therefore

gΘ ◦ ∆ h = gh = Λ h ◦ g Γ.

Hence,

gΘ ◦ ∆h = gh = g h = gΘ ◦ ∆ h = gΘ ◦ ∆h

and, similarly,

Λh ◦ gΓ = Λh ◦ gΓ.
In particular, if h and g are single steps, Λh, gΓ, gΘ and ∆h are again single steps. We call

Λh and gΓ, respectively, gΘ and ∆h disjoint, because the essential links cannot interact.

This operation, which switches two disjoint single steps, has given the Switching Lemma

of Lambek (1999) its name.

In general, however, Lemma 3 is not sufficient to show that g ◦ f = g ◦ f, because

g ◦ f is in general not in horizontal normal form. All we can conclude form this is that

g ◦ f = g1 . . . ◦ gn ◦ ◦f1 . . . fm and that g ◦ f = g1 . . . ◦ gn ◦ f1 . . . fm. Our next task is to

associate to a vertical composition of single steps f1 ◦ . . . ◦ fn a normal form f such that

f1 ◦ . . . ◦ fn = f

f1 ◦ . . . ◦ fn = f

and, therefore,

f1 ◦ . . . ◦ fn = f1 ◦ . . . ◦ fn.
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The other operations introduced in the Switching Lemma imply this equality for n = 2

by replacing two successive single steps by one single step. We recall them as Operations

(1) to (4) below and prove that the replaced steps are equal to the replacing step.

Switching Operations

(0) Switch two disjoint steps.

fi ◦ fi+1 = fi+1 ◦ fi and fi ◦ fi+1 = fi ◦ fi+1.

In Operations (1) to (4) below, the two replaced step are non-disjoint.

(1) Replace two induced steps by a single induced step:

Γt∆ ◦ Γs∆ = Γ(t ◦ s)∆

ΓA∆

ΓB∆

s

ΓB∆

ΓC∆

t

=

ΓA∆

ΓC∆

t◦s

As the equality is an instance of the distributive laws in 2-categories, we also have

Γ t∆ ◦ Γ s∆ = Γ (t ◦ s)∆ = Γ t ◦ s ∆.

(2) Replace a generalised expansion followed by a generalised contraction by an induced

step.

(2a) The generalised contraction is on the left:

ΓεtC
�∆ ◦ ΓA�ηs∆ = Γ(t ◦ s)�∆

Γ

Γ
��
��
��

Γ

Γ

��
��

��
�

A�

A�
��
��
��

A�

t

BB

s

C�C�

C�
��
��
��

∆

∆

��
��

��

∆

∆
��
��
��

=

Γ

Γ

A�

C�

(t◦s)�

∆

∆

where t : B �� A and s : C �� B. The equalities

εtC
� ◦ A�ηs = (εA ◦ A�t)C� ◦ A�(sC� ◦ ηC )

= εAC
� ◦ A�tC� ◦ A�sC� ◦ A�ηC

= εAC
� ◦ A�(t ◦ s)C� ◦ A�ηC

= (t ◦ s)�, by (3.5)

and

ΓεtC
�∆ ◦ ΓA�ηs∆ = Γ(εtC

� ◦ A�ηs)∆ = Γ(t ◦ s)�∆
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hold in arbitrary 2-categories. Recall that the canonical map commutes with the

vertical composition of simple arrows and the adjoints of simple arrows

(t ◦ s)� = (t ◦ s)�.

Hence

ΓεtC�∆ ◦ ΓA�ηs∆ = Γ(t ◦ s)�∆
= Γ (t ◦ s)� ∆

= Γ (t ◦ s)�∆
= Γεt∆ ◦ Γηs∆

= Γεt∆ ◦ Γηs∆.

(2b) The generalised contraction is on the right:

ΓDεt∆ ◦ ΓηqB∆ = Γ(q ◦ t)∆

Γ

Γ
��
��
��
�

Γ

Γ

��
��

��
� D

q

A�D

D

��
��

��
� A�

t

B

B

B

��
��

��
∆

∆

��
��

��

∆

∆
��
��
��

=

Γ

Γ

B

D

q◦t

∆

∆

The proof is similar, using an instance of (3.13)

Dεt ◦ ηqB = q ◦ t.

(3) Replace an induced step followed by a generalised contraction by a generalised

contraction.

(3a) The essential link of the induced step is on the right

Γεt∆ ◦ ΓA�s∆ = Γεt◦s∆

Γ

ΓΓ

Γ

��
��

��

A�

A�A�

t

BB

C

s

∆

∆∆

∆
��
��
��

=

Γ

Γ

��
��
��
��
��
��
��
A�

t◦s

C ∆

∆
��
��
��
��
��
��
��

where t : B �� A, s : C �� B.

Indeed,

εt ◦ A�s = εA ◦ A�t ◦ A�s = εA ◦ A�(t ◦ s) = εt◦s,

and

Γεt∆ ◦ ΓA�s∆ = Γ(εt ◦ A�s)∆ = Γεt◦s∆.

hold in all compact 2 -categories, hence

Γεt∆ ◦ ΓA�s∆ = Γεt◦s∆.
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(3b) The essential link of the induced step is on the left.

(4) Replace a generalised expansion and a following induced step by a generalised

expansion.

(4a) The essential link of the induced step is on the right.

(4b) The essential link of the induced step is on the left.

The proofs of Cases (3b), (4a) and (4b) are left to the reader.

There are four cases that are not included in the switching operations, namely the cases

where the two consecutive single steps fi ◦ fi+1 are either both generalised contractions

or both generalised expansions, or where an induced step is preceded by a generalised

contraction or followed by a generalised expansion. For them also there is an intermediary

transition f such that

fi ◦ fi+1 = f

fi ◦ fi+1 = f.

However, in contrast with the cases of the switching operations (1) to (4), f is not a

single step but a horizontal normal form. We will prove this for a vertical composition

of arbitrary length, provided the single steps are all of the same kind. The import of this

property is explained by the fact that the Switching Lemma in Lambek (1999) preserves

equality.

Lemma 4 (Switching). Every vertical composition of single steps can be rewritten as a

vertical composition of single steps

f1 ◦ . . . ◦ fn = (h1 ◦ . . . ◦ hq) ◦ (v1 ◦ . . . ◦ vm) ◦ (g1 ◦ . . . ◦ gp)

such that the gi’s are generalised contractions, the vi’s induced steps and the hi’s are

generalised expansions. Moreover,

f1 ◦ . . . ◦ fn = (h1 ◦ . . . ◦ hq) ◦ (v1 ◦ . . . ◦ vm) ◦ (g1 ◦ . . . ◦ gp).

Proof. Omit the induced steps that are identities and use the switching operations (0)

to (4).

The horizontal normal forms corresponding to a vertical composition of single steps that

are all of the same kind are described as follows.

Definition 4. A normal contraction step is a horizontal composition

u0B1 . . . um−1Bmum : ∆0B1 . . .∆m−1Bm∆m
�� B1 . . . Bm

where uk : ∆k
�� 1 is 1 or a horizontal normal form, with 0 � k � m.

A normal expansion step is a horizontal composition

o0C1 . . . om−1Cmom : C1 . . . Cm
�� Γ0C1 . . .Γm−1CmΓm

where ok : 1 �� Γk is 1 or a horizontal normal form, with 0 � k � m.
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A normal vertical step is a horizontal composition

s1 . . . sm : B1 . . . Bm
�� C1 . . . Cm

where sk : Bk
�� Ck is a simple arrow.

We note that these normal steps generalise the single steps and are horizontal normal

forms.

Lemma 5. Every vertical composition of generalised contractions

g1 ◦ . . . ◦ gp : A1 . . . An
�� B1 . . . Bm

can be rewritten as a normal contraction step

u0B1 . . . um−1Bmum

such that

g1 ◦ . . . ◦ gp = u0B1 . . . um−1Bmum

and

g1 ◦ . . . ◦ gp = u0 B1 . . . um−1 Bm um.

Moreover,

g1 ◦ . . . ◦ gp = g1 ◦ . . . ◦ gp.

Proof. We use induction on the length p of the vertical decomposition. Note that

g1 = B1 . . . BjεtBj+1 . . . Bm

where εt : AiAk
�� 1 for some 1 � i < k � n. By the induction hypothesis,

g2 ◦ . . . ◦ gp = f′AiuAkf
′′,

where u : Ai+1 . . . Ak−1
�� 1 is the identity 1 or in normal form, and where f′ :

A1 . . . Ai−1
�� B1 . . . Bj and f′′ : Ak+1 . . . An

�� Bj+1 . . . Bm are normal contraction steps.

Hence,

g1 ◦ g2 ◦ . . . ◦ gp = (B1 . . . BjεtBj+1 . . . Bm) ◦ (f′AiuAkf
′′)

= f′(εt ◦ (AiuAk))f
′′ by (2.2)

= f′εt(u)f
′′.

Recall that f′ = u0
′B1 . . . uj−1

′Bjuj
′ and f′′ = u0

′′Bj+1 . . . Bmum−j
′′, and define

ul = ul
′, for 0 � l � j − 1

uj = uj
′εt(u)u0

′′

ul = ul−j
′′, for j + 1 � l � m.

As the equalities above hold in all 2-categories, the rest of the assertion follows.

Lemma 6. Every vertical composition of generalised expansions

h1 ◦ . . . ◦ hq : C1 . . . Cm
�� D1 . . . Dm
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can be rewritten as a normal expansion step

o0D1 . . . om−1Dmom

such that

h1 ◦ . . . ◦ hq = o0D1 . . . om−1Dmom

and

h1 ◦ . . . ◦ hq = o0D1 . . . om−1Dmom.

Moreover,

h1 ◦ . . . ◦ hq = h1 ◦ . . . ◦ hq.

Proof. The proof is similar to the case of generalised contractions.

Lemma 7. If v1 ◦ . . . ◦ vn : B1 . . . Bm
�� C1 . . . Cr is a vertical composition of induced

steps, then r = m and there is a normal vertical step s1 . . . sm such that

v1 ◦ . . . ◦ vn = s1 . . . sm and v1 ◦ . . . ◦ vn = s1 . . . sm.

Moreover,

v1 ◦ . . . ◦ vn = v1 ◦ . . . ◦ vn.

Proof. First note that the domain and codomain of an induced step are strings of the

same length, so r = m. Now we proceed by induction on n, using the switching operation

(0) and the distributive laws (2.3)

Lemma 8. The canonical extension ( ) preserves vertical composition.

Proof. By Lemmas 2 and 3, each of g and f separately can be written as a vertical

composition of single steps, so

g ◦ f = f1 ◦ . . . ◦ fn
and

g ◦ f = f1 ◦ . . . ◦ fn,
respectively.

Then, by Lemmas 4, 5, 6 and 7, this vertical composition is equal to

f1 ◦ . . . ◦ fn = o0C1 . . . Cmom ◦ s1 . . . sm ◦ u0B1 . . . Bmum

and

f1 ◦ . . . ◦ fn = o0 C1 . . . Cm om ◦ s1 . . . sm ◦ u0 B1 . . . Bm um,

respectively.

By the distributive laws (2.2) and (2.7), we derive

f1 ◦ . . . ◦ fn = o0u0s1 . . . smomum

and

f1 ◦ . . . ◦ fn = o0 u0 s1 . . . sm om um,

respectively.
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By definition, the canonical extension commutes with horizontal composition, hence

f1 ◦ . . . ◦ fn = f1 ◦ . . . ◦ fn,

and thus

g ◦ f = g ◦ f.
This completes the proof of the Theorem in Section 4.
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