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1 Introduction

Philosophically inclined linguists tend to favour Montague semantics, a brave attempt to trans-
late natural language into an intensional variant of the language of set theory.1)

By “Capulet semantics” I have in mind the study of the meaning of words not already
encompassed by Montague semantics, not excluding etymological and other historical side-
excursions. I believe that natural languages embody a kind of folk philosophy of their speakers,
which anticipates more mature forms of mathematics and science. I am even tempted to say
that much philosophical speculation is influenced by the philosophers’ introspection into their
own language.

In order to provide the present enquiry with focus, let me look at one particular English
sentence2):

(1) My uncle drank a glass of water.

While this sentence is innocent enough, a deeper look at the words contained in it will reveal
some interesting problems and help to throw light on what I see as the prehistory of mathematics
and various sciences, both natural and social.

To warm up, let us recall that English nouns, like the nouns in many languages, are divided
into count nouns and mass nouns. The former can be preceded by an indefinite article, the
latter cannot. The former usually possess a plural form, the latter do not. Compare count
nouns pig, bean etc with mass nouns pork, rice etc. However, categories can change in time or
in context. The noun pea is today a count noun, but is derived by back-formation from an old
mass noun pease. Man is normally a count noun, but it can become a mass noun in the mouth
of a cannibal who prefers man to pork. Beer is normally a mass noun, but it can become a
count noun when you order two beers.

2 The subject

Let us look at the noun phrase my uncle, which occurs as the subject of (1). It means “ X’s
uncle” or “the uncle of X”, where X is the present speaker.

For the moment, take a closer look at the first person possessive pronoun my. What is
remarkable about the first letter m is that it represents the first person in many languages
and provides evidence for their common origin. Thus, in many Indo-European and Ural-Altaic
languages, m is attached to the verb in the first person. While, in English verbs, it has only
survived in am, in Latin verbs it denotes the first person in the imperfect past tense. In Polish,
Hungarian and Turkish, it is used more widely. The fact that m tends to denote the speaker
is one clue used by Greenberg [1996] and Ruhlen [1994] to establish the Eurasiatic language
super-family that stretches from the Atlantic to the Pacific.
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Next, look at the word uncle. On the face of it, it is a count noun, having a plural. What
interests us here, however, is that it usually requires a compliment, as in

(2) Joe′s uncle = the uncle of Joe.

In fact, the word uncle denotes a binary relation. Its primary meaning is of course “parent’s
male sibling”, symbolically PSM. Here P and S are more basic binary relations “parent” and
“sibling”. Moreover, M is a subrelation of the identity relation, when this is restricted to males,
and juxtaposition denotes the relative product.

More precisely,
bPSMa means ∃x∃y(bPy ∧ ySx ∧ xMa),

when xMa means that x = a is a male. Such expressions belong to what may well be the
earliest form of mathematics3), the calculus of relations. As Chomsky [1979] pointed out: “the
Greeks made up number theory, others made up kinship systems.”

The word uncle also has a secondary meaning, referring to the male spouse of a parent’s
sibling, symbolically PSΣM , where Σ denotes the relation “spouse”. This basic relation de-
pends on the sociological context of the linguistic community and has recently acquired some
ambiguity in societies that allow same-sex marriages. Anyway, we can show that

PSΣM → PSM

if we adopt the rewrite rule SΣ → S, which allows a sibling’s spouse to be called a sibling.
Such rewrite rules are in fact quite common as we shall see.4)

Of course, the word uncle can also have a number of tertiary meanings, as “mother’s
boyfriend” or as in “Uncle Sam”, but these we will ignore. Instead, we will take a look at
the etymology of uncle. This word is derived from Latin avunculus, meaning “little grandfa-
ther”. In ancient Rome, a woman was supposed to have a male legal guardian. If her father
died, her brother took over this rôle. Not surprisingly, our word nephew is derived from an older
word for “grandson”, as in Sanskrit naptr. In modern Italian, the word nepote is ambiguous,
meaning either “grandson” or “nephew”. Anyway, we can express these facts by the rewrite
rules

PFSM → PPM, SFC → CC

for Latin kinship terminology, where C stands for “child”, the converse of “parent”, and F
denotes identity of females.

We should point out that Romans distinguished between the mother’s brother and the
father’s brother:

PMSM → patruus 6= avunculus.

English too, at one time, distinguished these two relations. Thus, old English had

PMSM → foedera, PFSM → eam.

The word uncle is a relatively new addition to the vocabulary. In German, the word Onkel was
borrowed even more recently from French and replaced the earlier forms

PMSM → V etter, PFSM → Oheim,
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although the former survives only with the meaning “male cousin”.
For comparison, in the Trobriand islands,

PMSM → PM → tama, PFSM → kada,

according to data collected by Malinowski [1932], the former being explained with the help of a
rewrite rule postulated by Lounsbury [1965]. However, there are five different words for cousin,
depending on the genders Gi in G1PG2SG3CC4, one of which is again tama:

MPMSFCM → MPMPFCM → MPMSM → tama,

using Lounsbury’s rewrite rules

PMSF → PMPF, PFC → S,

and one of the cousins is not considered to be a relative at all, since PMC is undefined! See
[BL1995] for more details.

3 The verb

Next, let us look at the finite verb form drank, the past tense of drink /drinks. The English verb
has two simple tenses, present and past, or four simple tenses if we count the almost obsolete
subjunctive. Compare this with French, with seven simple tenses, although two of them, the
definite past and the past subjunctive are in the process of disappearing. The distinction
between past and present is by no means universal; for example, Arabic distinguishes between
complete and incomplete actions instead.

On the face of it, to drink means to consume a liquid and is to be distinguished from to eat,
supposedly restricted to the consumption of solids. When an Englishman eats tea, he may be
consuming cucumber sandwiches; when he drinks soup, he is indeed consuming a liquid. But
why do Americans eat soup?

Surprisingly, modern science tells us that glass is a liquid, albeit a very slowly flowing one.
In principle, my uncle could drink glass, but this is not what the sentence (1) asserts, in view
of the innocent little word a.

4 The object

Let us now look at the noun phrase a glass of water. Here the indefinite article a assures us
that the glass in question is not the substance glass, but a container like a cup.

The indefinite article is usually translated by the existential quantities in elementary logic
courses, yet a word of caution is necessary. In

(3) if a man drinks water, he will stay sober

the indefinite article must be translated by a universal quantifier.
Whereas water cannot be counted, glasses of water can. Whereas a substance can only be

measured, the units of measure may be counted. Already the ancient Greeks were concerned
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with the contradiction between what can be counted and what must be measured, between the
discrete and the continuous (see [AL1995]). To resolve this contradiction, Aristotle proposed
a distinction between matter and form. In “glass of water”, water is the matter and glass is
the form.5) Similarly, we have “loaf of bread”, “cake of soap”, “head of cattle”, and so on in
English. Note, however, that Indonesians count cattle by their tails.

Already the pre-Socratic philosophers were debating whether the world is made up of con-
tinuous substances, which can be infinitely divided without losing their identity, or whether the
world consists of discrete objects; whether it is more important to measure, as in geometry, or
to count, as in arithmetic.

Thales proclaimed that everything is made from a single substance, namely water. Not sur-
prisingly, he is also the first to be remembered for making significant contributions to geometry,
both pure and applied. Some of his followers preferred different primitive substances, until a
final consensus proposed four elementary substances: earth, water, air and fire,6) reminiscent
of the modern three states of matter (solid, liquid and gas) together with energy, into which
matter is now known to be transformable.

Other Greek philosophers, primarily Democritus, conjectured that substances are not re-
ally infinitely divisible, but are made up of indivisible units, called “atoms”. The legendary
Pythagoras went even further, saying that numbers, meaning positive integers, themselves were
the ultimate constituents. His school was more interested in arithmetic than in geometry. A
crisis arose when it was discovered that the ratio of the diagonal of a square to its side could not
be expressed as the ratio of two positive integers. The ingenious proof of this first appears in
the works of Aristotle (see the [1985] translation) and was only later added to revised versions
of Euclid’s Elements (see the [1956] translation). Aristotle used it to illustrate the type of
argument known as “reductio ad absurdum”.

Appendix I. Mathematics at Plato’s Academy

Much of the mathematics at Plato’s Academy was concerned with the problem of how
to resolve the contradiction between geometry and arithmetic, between ratios of geometric
quantities, which we call positive real numbers, and ratios of positive integers, which we call
rational numbers. Plato’s disciples gave two answers.

According to Eudoxus, two ratios of geometric quantities, say α/β and γ/δ, are equal
provided, for all positive integers p and q,

qα ≥ pβ if and only if qγ ≥ pδ,

and similarly with ≥ replaced with ≤. This definition is presented in Euclid’s Elements and
is equivalent to the modern definition of Dedekind (see e.g. the [1963] edition), according to
which α/β = γ/δ means that

α/β ≥ p/q if and only if γ/δ ≥ p/q,

and similarly with ≥ replaced with ≤.
On the other hand, Theaetetus is now known to have discovered continued fractions, called

“anthyphareises” by Aristotle, according to which

√
2 = 1 +

1

2+

1

2+

1

2+
· · ·
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When this potentially infinite expression is terminated after the first, second, third and fourth
step, we obtain the following approximation to

√
2, already known to the Pythagoreans:

1, 3/2, 7/5, 17/12.

More spectacularly, the golden ratio

(
√

5− 1)/2 =
1

1+

1

1+

1

1+
· · ·

plays a crucial rôle in Euclid’s Elements, where its construction precedes that of the regular
pentagon.

Continued fractions were forgotten and only rediscovered in the seventeenth century. How-
ever, as was shown by Fowler [1987], they had played an integral part in Plato’s Academy. More
recently, Stelios Negrepontis [2002] observed that continued fractions metaphorically enter all
of Plato’s dialectical dialogues (see the [1989] translation).

One problem with continued fractions is the absence of an algorithm for adding two such.
Therefore people now prefer the more general Cauchy sequences: each equivalence class of
positive Cauchy sequences contains exactly one continued fraction as a representative member.
Whereas the Eudoxus-Dedekind construction of real numbers is equivalent to the Theaetetus-
Cauchy construction as far as classical mathematics is concerned, they offer demonstrably
different approaches from an intuitionistic point of view. (See e.g. Johnstone [1977].)

Appendix II. Relations in modern mathematics

Binary relations, as distinct from functions, did not really attract the attention of math-
ematicians until the nineteenth century, and then only marginally. They were advocated by
Peirce (see his collective works of [1931-58]) and Schroeder [1890-1905], whose interest was more
philosophical than algebraic. Relations only entered algebra at the end of the century in a little
known paper by Goursat [1989], which was not as influential as it ought to have been.

A slightly updated version of Goursat’s result concerns a homomorphic relation R between
two groups G and H, that is a binary relation whose graph is a subgroup of G × H. This
gives rise to an isomorphism between two other groups obtained from RR∨ and R∨R viewed as
congruence relations on their domain, R∨ being the converse of R. It took another half century
for Goursat’s theorem to be applied to the Zassenhaus Lemma [La1957], crucial in refining
composition series of groups, by letting R be the relative product of two congruence relations
on subgroups of G and H respectively.

It must be admitted that, even today, the calculus of relations has not yet entered the
mathematical mainstream, in spite of valiant attempts by Tarski [1987] and Freyd [1990].

Appendix III. Fundamental particles today

Is the world we live in made up of substances, which can be infinitely divided but not
counted, or of particles which can be counted but not subdivided?

Most modern physicists still side with Zeno that time and space are infinitely divisible and
with Democritus that matter (and energy) consists of indivisible units. Of course, the nature of
these units has evolved with the progress of science. In the nineteenth century, an apparently
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indivisible unit of water turned out to consist of two atoms of hydrogen linked to one atom of
oxygen. The apparently indivisible atoms were seen, in the early twentieth century, to consist
of electrons, protons and neutrons. More recently, the last two of these were decomposed into
quarks.

At the latest count, the generally accepted fundamental particles were fermions and bosons.
In the so-called Standard Model, the fermions are electrons, positrons, neutrinos and quarks
of three different colours. All these come in three generations or families, of which we shall
concentrate on the first. The bosons are photons, gluons and carriers of the weak force. There
is still no consensus on the nature of the graviton, the alleged carrier of the gravitational force,
which Einstein saw as curvature of space-time.

Modifying the views of Harari [1979,1983] and Shupe [1979], I figure [La2000] that the
generally accepted fundamental particles can be represented by four-vectors (a0, a1, a2, a3) with
entries ai = 0, 1 or −1, and that all known interactions between two such particles giving rise
to a third can be described by adding the four-vectors. In particular, a0 = 0 for bosons, a0 = 1
for fermions and a0 = −1 for their anti-particles. Moreover, a1 +a2 +a3 is 3/e times the electric
charge, taking the charge of the electron to be −e.

For example,
electron : (1,−1,−1,−1)
neutrino : (1, 0, 0, 0)

W− : (0,−1,−1,−1)
photon, Z◦ : (0, 0, 0, 0)

red upquark : (1, 0, 1, 1)
red downquark : (1,−1, 0, 0)

blue upquark : (1, 1, 0, 1)
blue downquark : (1, 0, 0− 1, 0)

red-blue gluon : (0, 1,−1, 0)

A sample Feynman diagram would show that an electron may turn into a neutrino and a
W−, while an upquark plus the W− turns into a downquark. Here Z◦ and W− are bosons
which carry the so-called weak force. (See Feynman [1985] and Gell-Mann [1994].)

neutrino ↖ ↗ red downquark
W−· · · · · · →

electron ↗ ↖ red upquark
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Similarly, the following diagram shows how a gluon mediates the strong force between quarks:

red downquark ↖ ↗ red downquark
red-blue gluon· · · · · · · · · · · · →

blue upquark ↗ ↖ blue downquark

It must be admitted that the four-vector representation has some shortcomings. The photon
and the Z◦ are represented by the same four-vector. Two out of eight alleged gluons are not
represented at all6) and there is no account of the higher generation fermions.

Altogether, there are 81 possible four-vectors, only 25 of which represent known particles:
eight first generation fermions, eight anti-fermions and nine gauge bosons.

Of course, adding or subtracting two of the 25 four-vectors may yield a four-vector which
does not have all its entries equal to 0, 1 or −1. Let us admit only those additions and
subtractions which do. We note that the four-vectors representing colourless fundamental
particles, with a1 = a2 = a3, are closed under admissible additions and subtractions. However,
the closure under addition and subtraction of the set of all four-vectors representing known
fundamental particles consists of all 81 four-vectors.
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FOOTNOTES

1) To a mathematician this looks like a functor transforming the structure of sentences into
morphisms of a cartesian closed category.

2) I have used the same sentence in [1995] to illustrate the nominalistic interpretation of
natural languages. Here it is to serve a different purpose, but some overlap with the earlier
paper is inevitable.

3) Evidently, kinship relations were not designed by modern mathematicians. They would
have taken S to be a reflexive relation, making a person his own sibling.

4) In some societies, though not in ours, there is a rewrite rule SΣ → Σ.

5) Aristotle was a sexist; he said that, in procreation, women provide the matter and men
the form.

6) For a more recent exponent of this view see [Br2001].

7) I would have suggested that the weak vector bosons W+ and W−, which may transform
upquarks into downquarks of the same colour, might do double duty as gluons, but this is not
the accepted view, according to which these would be represented by the same four-vector as
the photon and the Z◦.
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