CrLAUDIA CASADIO

JOACHIM L AMBEK A Tale of Four Grammars

Abstract. In this paper we consider the relations existing between four deductive sys-
tems that have been called “categorial grammars” and have relevant connections with
linguistic investigations: the syntactic calculus, bilinear logic, compact bilinear logic and
Curry’s semantic calculus.
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1. Introduction

The grammars we are considering have been called “categorial”, but we
prefer to call them “type grammars”, in order to avoid confusion with the
categories of Eilenberg and Mac Lane, which will also enter our story. The
idea of a type grammar is to assign a type to each word of the language to
be studied, say English, so that the sentencehood of a string of words can
be determined by a calculation on their types, hopefully without recourse to
further language specific grammatical rules. It seems that this idea cannot
be carried out except for a first approximation to the language. As shown
by the history of categorial grammars, there are linguistic environments that
represent a serious problem for this approach.! For example, consider the
English sentences:

Girls he admired tended to love boys he dislikes.
The horse raced around the barn fell.

No type assignment we know will enable us to show that these are indeed
well-formed sentences, unless we refer to grammatical rules not in the dictio-
nary or unless we insert additional words with appropriate types, e.g. whom
twice in the first sentence and which was in the second. For the time being
we shall therefore look at a first approximation to English in which elliptical
constructions such as the above are not admitted.

2. Four grammars

We shall look at four formal systems in which the calculations on types are
to be carried out:

(1) the syntactic calculus,

! For detailed discussion we refer to Morrill (1994), Moortgat (1988), (1997).
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(2) classical bilinear logic,
(3) compact bilinear logic,

(4) Curry’s semantic calculus.

2.1. The syntactic calculus was developed by the second author (1958) and
was based on earlier systems by Ajdukiewicz (1935) and Bar-Hillel (1953).
From given basic types, it allows compound types to be built up by three
operations:

A ® B (henceforth abbreviated as AB), A/B and A\B,
subject to the following axioms and rules of inference:

(AB)C + A(BC),
AB - C iff A= C/B iff B — A\C,

where — is a deduction symbol satisfying the usual reflexive and transitive
rules. Later, a constant 1 was also introduced satisfying:

Al & A & 1A,

Note however that the syntactic calculus with 1 is not a conservative ex-
tension of that without 1. For example, A/(B/B) — A is provable in the
former but not in the latter.

In the syntactic calculus one could prove a number of theorems, in par-
ticular:

(A/B)B— A Ajdukiewicz’s law,
B — (A/B)\A type raising,
(A/B)(B/C) - A/C composition,
A/B — (A/C)/(B/C) Geach’s law,
(C/B)/A + C/(AB) Curry’s law,

as well as their mirror images such as:
B (B\A) > A etc.
We have also
(A\B)/C « A\(B/C),
hence we often write A\B/C for either side, and the following rules of
inference indicating what categorists call functoriality:

A—-B C—=D A—-B C—-=D
AC - BD A/D = B/C

and the mirror dual of the latter.
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2.2. Under the influence of Girard (1987), Abrusci (1991) and Lambek
- (1993) had developed a non-commutative version of his linear logic, here
called classical bilinear logic. Casadio (1997), (2001) realized that this too
had a linguistic application. It can be obtained from the syntactic calculus
by adjoining a constant symbol 0 satisfying:

0/(A\0) <> A < (0/A)\O
In what follows, it will be convenient to abbreviate
A\ = A", 0/A = AL

One can show that

(BTAT)E o (BEAZ)T,
for which it is convenient to write A @ B, or simply A+B. We may think of
@ as the De Morgan dual of ®: it corresponds to what Girard calls “par”.2
Here are some theorems of classical bilinear logic, which had been anticipated

by Grishin (1983):

1" <5 0 &> 1¢
A+0 & A & 0+A
(A+B)+C < A+(B+C)
AfA -0, AA" -0
1 A+AL 15 ATHA
A/B < A+Bf, B\A & B'+A
(A+B)C - A+BC, C(B+A) - CB+A

The last two are the mized associative laws of Grishin.3

2.3. When hearing Casadio’s exposition of her ideas, discussing linguistic
applications of bilinear logic, Lambek observed that there was a simplifica-
tion if one assumed that

A+B & AB, 0o 1.

The word “compact” had been used by Kelly (1972) and Barr (1979) to
describe this situation in a categorical context, though then still restricted

2 The duality relation between ® and & plays a crucial role in non-commutative linear
logic (or bilinear logic), as developed in Abrusci (1991).

3 The name weak distributivity is also introduced for these laws by Cockett and Seely
(1997D).
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to the commutative case. Finally, it was realized that compact bilinear logic
allowed a simpler description as follows:

(AB)C <> A(BC), Alo A e 1A
AN -1 ANA, ANAS 15 AA

Models in which — stands for a partial order were called “pregroups”;
they reduce to groups if the order is discrete, that is, is the equality relation,
and to partially ordered groups in the so-called cyclic case when Af < A",
If however the arrows are allowed to stand for morphisms in a category, one
would also demand that the above occurrences of <+ represent isomorphisms
and that the composite arrows

A ANA A A ANASA

are identity arrows, making A’ the left adjoint and A" the right adjoint of A
in a 2-category. It follows from the work of Abrusci [(1991), (1995), (1996)]
that the passage from the syntactic calculus to classical bilinear logic is a
conservative extension, but it would be nice to have a direct proof of this.
On the other hand, the passage to compact bilinear logic is not conservative,
as in the latter

A(B/C) + ABC! & (AB)/C,
but in the former
(AB)/C 4 A(B/C).

In view of the fact that this counter-example involves the tensor product
(here denoted by juxtaposition), one may ask whether compact bilinear logic
is a conservative extension of a pure division calculus, that is to say a variant
of the syntactic calculus without the tensor product. We are indebted to
Wojciech Buszkowski for pointing out that even this is not the case, since

B/((A/A)/A)/A - B

is provable in compact bilinear logic, but not in the pure division calculus.

3. The syntactic calculus (I)

In order to compare the three type grammars, we shall adopt the same set
of basic types, actually a partially ordered set or, in the categorical context,
a graph, first used in connection with compact bilinear logic:

1, T2, T3
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stand for first, second and third person pronouns I, you, he, she and it. In
English it is possible to assign w9 also to the three plural pronouns we, you
(= you all), and they. We also write 7 when the person is irrelevant and
postulate m, — 7 (kK = 1, 2, 3). Such a postulate may be viewed as an
oriented edge of the graph of the basic types. The types:

81, 82, 8

stand for statements in the present, the past tense and when the tense is not
relevant, respectively. We postulate: s; — s (i = 1, 2). The types:

q1, 92, q

stand for yes-or-no questions in the present, the past tense and when the
tense does not matter, respectively. We postulate: q; — q (2 = 1, 2). We
also assign the type q to all questions®, including wh-questions, and postulate
q—q

The type ¢ stands for the infinitive of intransitive verbs. The types:

P1, P2

stand for present and past participles.

The type o stands for objects such as me, him, her, us, and them. Note
that ¢f can have type 73 or o and that you can have type w3 or o.

We list some sample sentences, with types of the syntactic calculus at-
tached, bearing in mind that proofs in the syntactic calculus will be required
to show that they are statements or questions. First some statements:

you  go, I went,

T (m2\s1) ™ (m\sz)

he is  going, we  have gone,
w3 (m3\s1/p1) P1 Ty (m2\s1/p2) P2
they had  been going, you saw him.

my (m\s2/p2) (P2/P1) P1 w2 (m\sz/0) o
From these statements we form questions, e.g.:

Do you go? Did I go?
((ar/i)/ma) ma i ((az/1)/m) my i

Is he going? Have we gone?
((ar/p1)/ms) w3 p1 ((ar/p2)/m2) m2 D2

* On analogy with the principles of X-bar theory, § may be considered as the first level
expansion of q.
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Have  they been going? Did you see him?
((a1/p2)/m2) m2 (p2/P1) P1 ((a2/?)/m) w2 (i/0) o

Whom did  you see _7
(@/(a/0)) ((a2/t)/m) w2 (i/o)

Note that in these questions the auxiliary verbs, accompanied by a ris-
ing intonation, have different types than they would have in declarative
sentences. The dash indicates a Chomskian trace, here inserted for compar-
ison only. For example, to prove that the last is a well-formed question, we
invoke the axiom wy — 7, hence we have

((a2/1)/m) m2 = ((@2/1)/7) ® = @2/i

by functoriality of ® and Ajdukiewicz’s rule, that

(a2/i) (i/0) — qa2/0

by composition, that
gz2/0 — q/o
by the axiom qs — q and functoriality of /, and finally that

(@/(a/0)) (a/0) = 1

by Ajdukiewicz’s rule. Of course, in reality, the hearer would process the
information from left to right and begin by calculating the type of whom
did, which has to be (g/(i/o))/=, but which is a little more difficult to arrive
at (see the Appendiz below).

It is interesting that the above type for whom still works in more complex
sentences, such as the following:

Whom did you  say you saw 7

@/(a/0)) ((a2/i)/m) m (i/s) m (m2\s/o)
Since the part of the question following whom is easily seen to have type
q2/o0 — q/o, the entire question has type g . However, there are limits to
what used to be called wh-transformations. For instance the following are
not well-formed questions, even though we can also calculate their types to
be T:

*Whom did you see him and _ 7
*Whom did you see the man who loved _ 7

One of us has attempted an explanation of this phenomenon, in the easier
context of compact bilinear logic.
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4. Classical bilinear logic (II)

To pass from the above examples to classical bilinear logic, following Casadio
(1997) and (2001), all we have to do is to replace A/B by A+B¢ and B\A
by B"+A . For instance, we thus obtain the following type assignments:

goes : my + 81 , went : 77 + sg,
is : w5 + 81+ pt, is:ql-l—p{—{—'irg.
Let us look again at the question:

Whom did you see _7
@+0%") (@+i+) m  (i+0f)

But, this time, we shall analyze it from left to right. By the axiom ¢y —
q and mixed associativity, whom did has type:

=+ G+ (0% o' )(a+i+ 19
— g+o% (¢f q+ it + b
- g+ o%* (0 +1if + 79

— g+ o (i + )

@+ o%q) (q + it + 7b)

hence, by the axiom ws — 7, whom did you has type:

@+o*F+m)7m - G+ +n)n
— g+ o (i + «tn)
— gq+o®(f+o0
— g+otit

and the whole sentence has type:

— g+ o (iti+ o)
— g+ o (0+ 0
— g+ (o o)

— q+0

- q

@+ o i)(i + of)

In the above calculations we have taken advantage of the usual algebraic
convention that products inside sums require no parentheses.

This derivation may also be represented by means of the proof nets of
linear logic. The proof nets of non-commutative linear logic have the nice ge-
ometrical property of being planar graphs in which the order of the premises
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and of the conclusions is preserved.> We can e.g. introduce the following
non-commutative proof net for the example above, where the axiom qo —
q becomes q + qg and the axiom w9 — 7 becomes 7 + 7r§ :

Whom did you see
@+o*q) adf (@+it+7") 75 m (i+0

I N U B

o*®q* I ‘ ‘ 1
qodo

Through the elimination® of the major link connecting the types o%® ¢’
~and q&® of, we obtain the proof net in normal form (i.e. with simple links
only):

Whom did you see
@+o”q) q o (@+if+7) 7 75 mm ({+0H
|

5. Compact bilinear logic (III)

Finally, let us look at the same example from the viewpoint of compact
bilinear logic”, where A + B=AB and 0 = 1:

5 Abrusci, in (1991) and particularly in (1995), defines a correctness criterion for non-
commutative proof nets and shows that the proof nets of (multiplicative) non-commutative
linear logic may be converted into corresponding proof nets of Girard’s (multiplicative)
commutative linear logic. We assume that his criterion is satisfied here.

6 This operation corresponds to cut-elimination in the sequent calculus for non-
commutative linear logic that, as proved in Abrusci (1991), enjoys the cut-elimination
property. Through repeated applications of this procedure, we obtain normalized non-
commutative proof nets with simple cuts only.

" See Lambek (1999) and (2001).
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Whom did you  see
@o%d") (@ifr") m (i)
I

The underlining linkage makes it clear which cancellations take place to
reduce the composite types to @ . It is but a degenerate form of the proof
nets we have considered above and indicates that we calculate first qfqs —
afq = 1, then wmy — nfm — 1, then ii — 1 and finally o of — 1.

We note that, in this example, only the contractions A’A — 1 are in-
volved, and not the expansions 1 — A Af. This is explained by a metatheo-
rem (Lambek 1999), which shows that, in compact bilinear logic, one may as-
sume, without loss of generality, that the contractions A’A —+1 and AA”™ —1
precede the expansions 1 — A AY and 1 — ATA. Tt follows that, if one is in-
terested in showing that a string of types reduces to a basic type, such as q,
only contractions are needed.

We note similarly that, for the purpose of verifying sentencehood, type
raising was not required for the syntactic calculus and the expansions 1 —
A A, 1 AA play no role in classical bilinear logic, at least in the above
examples. As far as we know, no corresponding metatheorem has been
established there, although Buszkowski (1986) and Kandulski (1988, 1999)
have come close. It would seem to follow from such a metatheorem that
the grammar implicit in classical bilinear logic is context-free and one might
then deduce the same result for the syntactic calculus, thus providing a new
proof of the theorem of Pentus (1993, 1997).

A.K. Joshi has drawn our attention to an interesting paper by Z. Harris
(1966), which anticipates the algorithm and even the diagrams implicit in
the application of compact bilinear logic to natural languages. In attempting
to specify “the simplest device sufficient for recognizing sentence structure”,
Harris also introduces what we have called “adjoints”, in our notation A"
and A, but only for basic types, so he does not consider A% or A’". He does
not relate his calculus to any known algebraic or logical system nor does he
refer to other papers on categorial grammar.

6. Curry’s semantic calculus (IV)

We shall now turn to a fourth grammar, the semantic calculus of Haskell
B. Curry (1961). Formally this is the same as the positive propositional
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calculus, which may be obtained from the syntactic calculus by introducing
Gentzen’s three structural rules: interchange, contraction and weakening.
Gentzen had formulated these rules in terms of his sequent calculus, but
they may also be expressed without reference to his sequents as follow®:

ab—ba interchange
a—aa weakening
ab—a, ba—a contraction

When Gentzen’s structural rules are in force, one usually writes
ab=aAb, a/b=a<b=>b= a=Db\a,
or even, with a set-theoretical interpretation in mind,
ab=axb, a/b=aP=>b\a.

We may think of the passage from the syntactic to the semantic calculus
as semantic interpretation. Once basic types have been interpreted, say 7 by
the set [7] of persons, o by the set [0] of entities and sy by the set [so] of past
truth values, the interpretation of compound types follows. For example, the
type (m\sz)/o of saw is interpreted as ([s2]™)!%), the set of all functions from
[o] to the set of all functions from [z] to [s2]. Curry’s semantic calculus is
closely related to Montague semantics, but to see that we have to pass from
the calculus to its proof theory. Instead of just reading A — B to mean that
B may be deduced from A, we should look at the actual deduction f: A — B
and consider the problem when two such deductions are equal. In this way
the deductive systems discussed above are turned into categories:

(1) the syntactic calculus into a residuated (i.e. biclosed) monoidal cate-
gory;
(2) classical bilinear logic into a non-commutative *-autonomous category;

(3) compact bilinear logic into a monoidal category in which each object
(thought of as a bimodule) has both a left and a right adjoint;

(4) positive intuitionistic propositional logic (i.e. Curry’s semantic calculus)
into a cartesian closed category.

& When expressed in this way, interchange can be derived from the other rules:
ab—s>abab—-sbab—-ba.
This may explain why no one has studied a substructural logic which allows contraction
and weakening, but not interchange. On the other hand, interchange is admitted in linear

logic, BCK logic and relevance logic; the second also allows weakening, but not contraction,
while the third allows contraction but not weakening.
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To understand these categories we think of their objects as types and
introduce variables and other terms of each type. We shall only discuss this
briefly for the semantic calculus. If ¢ and b are terms of types A and B
respectively, there is a term (a, b) of type A x B . If p(z) is a term of type
C, = being a variable of type A, and f is a term of type C4 (think of it as
a function A — C), then f‘a is a term of type C satisfying

Azeap(z)a=pla), IAgeal(f'z)=7Ff.

In this way one obtains the so-called Curry-Howard isomorphism between
the proof theory of positive intuitionistic logic and the A-calculus. In this
way one also obtains Montague semantics which interprets the syntactic
calculus (I) into the semantic calculus (IV).

For example, if the name John has type n in (I), then it denotes a person
of semantic type [n] in (IV). If John works is a sentence of type s, then it
denotes a truth-value of type [s]. Therefore, the word walks of type n\s is
interpreted as the function Aycp,)(z walks) which to any person [a] of type
[n] assigns the truth value of a walks.

If we now look at the sentence somebody walks, we cannot view somebody
as a name, but we may still assign it type s/(n\s) which denotes a function
from [s]™ to [s]. Since somebody walks has the logical form 3x €[n)(z walks)
and somebody drinks has the logical form 3x €[n](z drinks), somebody should
be thought of as denoting the function Au €[s]! "3k e [n](u‘z) and this mean-
ing should be entered into the dictionary. Of course, this is not the whole
story of semantics; the dictionary should also tell us that the noun uncle
has the primary meaning parent’s male sibling and that learn means get to
know.

Comparing the deductive systems (I), (II) and (III) from the viewpoint of
easy computation, we find that calculations in (II) are easier than those in (I)
and that calculations in (III) are easier than those in (IT). On the other hand,
comparing the same systems from the viewpoint of ease of interpretation, we
find the reverse order. (I) has the intriguing property of leading immediately
to the Curry-Montague semantics (IV) by introducing the three structural
rules. Since (II) is a conservative extension of (I), it might §eem likely
that this semantic interpretation can be extended to (II).? However, (III)
is not a conservative extension of (I), so it is less likely that this semantic
interpretation can be made to work for (IIT). How can we reconcile these
conflicting demands?

® There is a difficulty: a cartesian closed category with a dualizing object is just a
Boolean algebra, i.e. any two arrows with the same source and target are equal.
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7. Appendix

We present a calculation of the type (qG/(i/o))/n for whom did, using a cut-
free Gentzen style argument (see Lambek 1958), where juxtaposition no
longer stands for the tensor product, but for Gentzen’s comma:
qz — q i—i
(a2/i)i—=q 0—o0
(q2/i) (i/o) o = q
q—a  (q/i) (i/o) = q/o

(@/(a/0)) (@2/i) (/o) = 1

(@/(a/0)) (@/i) = q/(ifo) =—m
(@/(a/0)) ((q2/1)/m) ® = q/(i/0)
(@/(a/0)) ((a2/1)/m) = q/(i/0)/m

This example should convince the reader that the original syntactic cal-
culus does not realistically reflect the hearer’s information processing and it
motivates the transition to classical or compact bilinear logic.
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