
REPRESENTATION OF CATEGORIES

MICHAEL BARR

1. Introduction

One of the earliest theorems in category theory stated that an abelian category could be
represented faithfully by exact functors into the category Ab of abelian groups [Freyd,
1964], [Lubkin, 1961] and [Heron, unpublished]. Then Mitchell [1965] showed that every
such category had a full exact embedding into a module category. An equivalent formu-
lation is that every abelian category into a category of additive functors into Ab or even
into a Set-valued functor category. Mitchell’s argument was based on what was essen-
tially the earliest theorem in category theory: Grothendieck’s theorem that every AB5
category with a generator had an injective cogenerator [Grothendieck 1957].

Continuing in this vein, I showed in [Barr, 1971] that every regular category had a
full, regular embedding into a category of set-valued functors. In doing this, I first tried
to mimic Grothendieck’s argument. Unfortunately, I never succeeded in demonstrating a
non-abelian version of Grothendieck’s theorem. There is a very good reason for that: it is
false, see Corollary 12, below. Instead, the proof was based on showing that the obvious
non-abelian adaptation of Lubkin’s argument [Lubkin, 1960] not only continued to give a
family of embeddings, but when the functors were put together into a category (with all
natural transformations between them), the embedding was even full.

The proof was difficult, to say the least (it has been described as ‘hermetic’), and the
theorem has apparently had little impact although at least one better proof has been pub-
lished since [Makkai, 1980]. Here we give yet another proof (Corollary 15). Surprisingly,
it is based on Grothendieck’s argument. It turns out that a weaker condition than injec-
tivity is sufficient to make the proof work and the non-abelian version of Grothendieck’s
argument is sufficient to give that weaker condition. This argument ultimately goes back
to Baer’s proof that divisible abelian groups are injective.

Here is an outline of the new proof.

1. Show that when C is regular, so is FL(C ,Set)op. (FL is the full subcategory of
finite limit preserving functors.
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2. Adapt Grothendieck’s transfinite induction proof [1957] of the existence of injectives
in an AB5 abelian category to show that Lex(C ,Set)op has enough C -projectives
= regular functors.

3. Adapt Mitchell’s proof [1965] of the abelian category full embedding theorem to show
that by taking a sufficiently large full subcategory P in Lex(C ,Set) consisting
of regular functors, then the evaluation functor C 7→ Func(Pop,Set) is full and
faithful.

The theorem suggests a natural generalization to toposes; one might expect that a
topos has a full embedding into a functor category that preserves the finitary part of the
topos structure, i.e. finite limits, finite sums and epis (such a functor is called bf near exact
in [Freyd, 1972] and we will stick to this usage). However, Makkai has given an example
to show that such a result is false. In fact, we give a necessary condition for the existence
of such an embedding—that the lattice of complemented subobjects of each object be a
complete atomic boolean algebra—that makes it seem as though very few small toposes
have such an embedding. We do give some sufficient condition for the existence of such
an embedding, but a necessary and sufficient condition is still lacking. The necessary
condition is very simple to state: any topos that has a full near exact embedding into a
functor category has a complete atomic boolean algebra as its lattice of it complemented
subobjects. Although there are some details to be checked, the argument is very simple:
in any topos, that lattice is represented by 2 and 2 is preserved by near exact functors.

2. Representations of regular categories

For a category C , we let FL(C ,Set) denote the category of finite limit preserving functors
into sets, with all natural transformations as morphisms. There is a Yoneda embedding
C // C̃ = FL(C ,Set) and we will henceforth treat C as a full subcategory of C̃ . We
begin with some useful facts, which are given in the dual category because the functor
category is more familiar than its opposite. Let R = C op and X = C̃ op

2.1. Lemma. When C is small,

(i) X is complete and cocomplete;

(ii) filtered colimits are exact;

(iii) the inclusion of R into X preserves all limits as well as finite colimits;

(iv) every object of X is a filtered colimit of objects of R;

(v) for R in R, Hom(R,−) commutes with filtered colimits;

(vi) R is coregular.
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Proof. (i) is well known; see [Barr-Wells, 1984], Exercise (LIM FUN) of Section 1.7.
As for (ii), first observe that since a filtered colimit of left exact functors is left exact,
the inclusion X // Func(C ,Set) preserves filtered colimits. It also preserves limits,
in particular, pullbacks. It follows that in X , pullbacks commute with filtered colimits.
It is clear that a colimit of a diagram, each of whose nodes is terminal is also terminal,
if and only if the diagram is connected, which every filtered diagram is. To see (iii), the
preservation of limits is a consequence of the Yoneda lemma, while the inclusion preserves
the colimit of any diagram in R whose dual in C is preserved by every functor in X ,
essentially by definition. (iv) is well known; see [Barr-Wells, 1984], Exercise (FILT) of
Section 4.4. (v) follows from the fact that the representables commute with all colimits
in the functor category (Yoneda, again) and in the subcategory commute with all those
whose colimit is preserved by the inclusion. (vi) is obvious.

2.2. Theorem. Let C be a regular category. Then so is C̃ .

Proof. Since this is the one new idea in this paper, we will do it carefully. We must
show that in X , if the square

Z W//

X

Z
��

X Y// // Y

W
��

is a pushout and if the top row is regular mono, so is the bottom row. From (iv) above each
of the objects in the diagram is the colimit of the filtered diagram of all the representable
objects that map to it. Suppose we begin with arrows from representables R // X,
S // Y , and T // Z. Since the diagram of representables is filtered, we can in fact
suppose the existence of an S ′ // Y that factors both R // X // Y and S // Y .
In R, factor the arrow R // S ′ as R // // R′ // // S ′ with the first arrow an epic and
the second a regular monic. It follows from (iii) that this is also an epic/regular monic
factorization in X as well. Then from the diagram

X Y// //

R

X
��

R R′// // R′

Y

R′

S
��
S

Y
��

we get an arrow R′ // X. The composite R′ // X // Z and replace R // X by
R0

// X, a node later in the diagram. We may and do replace R by R0. Similarly, we
can suppose that there is a T ′ // Z that factors both R′ // X // Z and T // Z.

Then given R // X, S // Y and T // Z and having made the above replace-
ments, we may consider the following diagram, in which the outer square is a pushout
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and the map U ′ // W is the unique one making all the squares commute.

T U// //

R

T
��

R S// // S

U
��

Z W//

X

Z
��

X Y// // Y

W
��

S

Y
���������

R

X
��??????

T

Z??�������
U

W __???????

Since colimits commute with pushouts and a filtered colimit of regular monos is a regular
mono, the conclusion follows.

2.3. Proposition. Suppose every epi in C is regular. Then C̃ has the same property.

Proof. We must show that every mono in FL(C ,Set) is regular. If X // // Y , we saw
in the proof above that it is a colimit of monos in R ∼= C op. But in that category, all
monos are regular and it is evident that a filtered colimit of regular monos is a regular
mono.

2.4. Theorem. Let C be a pretopos. Then so is C̃ .

Proof. The regularity follows from the preceding. We must show that if for i = 1, . . . , n,

Z Wi
//

X

Z
��

X Yi// Yi

Wi

��

is a pushout, then so is

Z
∏
Wi

//

X

Z
��

X
∏
Yi//

∏
Yi

∏
Wi

��

The conclusions of Lemma 2 are still valid and (vi) may now be strengthened to

(vi) it if C is a pretopos, then R is a co-pretopos.

The argument is similar. Given R // X, for i = 1, . . . , n, Si // Y and T // Z,
we may, after suitable replacement, suppose that each R // X // Yi factors through
the corresponding Si and that R // X // Z factors through T . Thus we can form
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pushout diagrams

T Ui//

R

T
��

R Si// Si

Ui
��

and the fact that R is a co-pretopos implies that

T
∏
Ui//

R

T
��

R
∏
Si//

∏
Si

∏
Ui
��

is a pushout. Taking the colimit over all such diagrams and using the fact that filtered
colimits commute with finite products, we draw the desired conclusion.

2.5. Proposition. Any regular category (resp. pretopos) can be fully embedded in a
pretopos in which all epis (resp. finite epi families) are universal and regular.

Proof. Simply take the category of sheaves for the topology of regular epis (resp.
finite regular epi families). Then the least exact subcategory of the sheaf category which
contains the original category will do.

We therefore will suppose, whenever it is convenient, that every epi in a regular cate-
gory (resp. every finite epi family in a pretopos) is universal and regular.

2.6. Definition. Let C be a full subcategory of C̃ . An object P is said to be
C -projective if whenever A // // B is an arrow in C , then Hom(P,A) // Hom(P,B)

is surjective. An object is said to be C -bf injective if it is C op-projective in C̃ op.

We make the trivial observation that when C̃ = FL(C ,Set)op an object P is C -
projective if and only if as a functor it preserves regular epimorphisms. In fact, taking
the variance into account, the Yoneda lemma says that Hom eC (P,C) = P (C).

2.7. Theorem. Suppose C is a small, full subcategory of C̃ and the latter is complete,
with finite colimits and filtered limits commute with finite colimits. Then each object of
C̃ is covered by a C -projective.

Proof. We will prove this in the dual category, the formulation being more familiar.
So we assume a category X and a full subcategory R with filtered colimits and show the
existence of R-injectives. We systematically use capital letters R, S, T to denote objects
of R and X, Y, Z to denote those of X .
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2.8. Lemma. Every object X of X has an embedding X // // X# with the property
that for every diagram

X X#//

R

X
��

R S// // S

X#

there is an arrow S // X# rendering the square commutative.

Proof. We define an ordinal sequence

X0
// // X1

// // X2
// // · · ·Xω

// // · · ·

as follows. Well order the diagrams of R of the form:

X

R

X
��

R S// S

Let X0 = X; at a limit ordinal, let Xα = colim{Xβ|β < α}. To define Xα+1, let R // // S
be the least element of the well ordering such that there is no arrow S // Xα for which

X Xα
// //

R

X
��

R S// // S

Xα

can be made to commute. Then define Xα+1 so that the square

Xα Xα+1
// //

R

Xα

R S// // S

Xα+1

��

R

X
��
X

Xα

��

is a pushout. Since R is small, the process must eventually stop and when it does, the
final object clearly satisfies the conclusion. Of course the coregularity and exactness of
filtered colimits insure that all the required maps remain mono.
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Now we may return to the proof of Theorem 2.7. Define a sequence

X0 // // X1 // // X2 // // · · ·X∗

by letting X0 = X, and Xn+1 = Xn# and X∗ = colimXn. To see that X∗ has the
required property, it is clearly sufficient to show that if f :R // X∗ is a morphism
whose domain lies in R, then f factors through some Xn. But the colimit along a chain –
or any filtered colimit – is preserved by the embedding of the left exact functor category
into the category of all functors. Thus X∗ is the colimit of the Xn even in the category
of all functors. But in that category, Hom from representable functors commutes with
arbitrary colimits. This is what is meant when one says that colimits (and limits) in a
functor category are computed ‘pointwise’.

This construction does more than what was promised. We use it to simplify the proof
of the main embedding, although it is possible to avoid it.

2.9. Proposition. If X // X∗ is as described in the proof above and if Y is an
R-injective, then any map X // Y has an extension to X∗.

Proof. We first prove that any such map can be extended to X#. But X# is constructed
from colimits of Xβ along ordinal chains, so it is sufficient to extend to each link. At limit
ordinals, Xβ is constructed as a colimit, while the diagram

Xα Xα+1
// //

R

Xα

R S// // S

Xα+1

��

R

X
��
X

Xα

��

is defined to be a pushout. Assuming we have a map Xα
// Y and its restriction to R

can, by the R-injectivity of Y , be extended to S, the universal mapping property of the
pushout gives us a map defined on Xα+1.

The simplest way to think of this construction is as being a generalization of the
construction of the algebraic closure of a field. The algebraic closure is injective with
respect to algebraic extensions, but no other. And in fact, this observation will lead in
Section 4 to an example that shows that the existence of injectives in such categories
cannot be expected in general.

3. The embedding theorem

3.1. Theorem. Every small regular category has a full embedding into a set-valued
functor category that preserves finite limits and regular epimorphisms.
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Proof. We will describe a full subcategory P ⊆ C̃ with the property that the functor
Φ: C // Func(Pop,Set) defined by Φ(C)(P ) = P (C) = Hom eC (P,C) has the required

properties. First, the fact that all functors in C̃ preserve finite limits implies that Φ does.
A necessary and sufficient condition that Φ preserve regular epis is that every functor in
P be C -projective, so that we will allow only such functors into P. To get faithfullness,
it will be sufficient that each object of C is the target of a regular epimorphism from at
least one object of P. For in that case, given a monic C ′ // // C in C that is not an
isomorphism, any regular epimorphism P // // C cannot factor through C ′ so that P (C ′)

// P (C) is not an isomorphism.

For each object C of C , let PC
eC // C be a C -projective cover of C as in Theorem 2.7

and let QC

aC //

bC
// PC be a C -projective cover of the kernel pair of PC // C. Thus there

is a coequalizer QC
//// PC // C in C . Let P be the full subcategory consisting of all

the PC and QC . Then we need show only that the embedding C // Func(P,Set) is
full. Suppose that φ: Φ(C) // Φ(C ′) is a natural transformation. This means that there
is given, for each object P of P a function φP : Hom(P,C) // Hom(P,C ′). Naturality
means that for g:P ′ // P

Hom(P,C ′) Hom(P ′, C ′)
φP ′

//

Hom(P,C)

Hom(P,C ′)

φP

��

Hom(P,C) Hom(P ′, C)
Hom(g,P ) // Hom(P ′, C)

Hom(P ′, C ′)

Hom(g,P ′)

��

commutes. Aplying this to an h:P // C, this says that φ(h ◦ g) = φ(h) ◦ g. We apply

this to the diagram QC

aC //

bC
// PC

eC // C, which tells us that

φ(eC) ◦ aC = φ(eC ◦ aC) = φ(eC ◦ bC) = φ(eC) ◦ bC

The coequalizer then implies the existence of a unique arrow f :C // C ′ such that
φ(ec) = f ◦ eC . Now suppose k:P // C is arbitrary with P an object of P. From
Proposition 2.9, it follows that there is an l:P // PC such that eC ◦ l = k and then
φ(k) = φ(eC ◦ l) = φ(eC) ◦ l = f ◦ eC ◦ l = f ◦ k. Thus φ is just composition with f .

4. Example

Let C be the category of those rings which are finite products of fields of characteristic
0 generated by a finite number of elements, i.e. simple extensions of fields of finite tran-
scendence degree over the rational numbers. We denote the sum in this category by ⊗̃.
The first thing we must do is to see how it relates to the ordinary tensor product, which
is the sum in the category of commutative rings.
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4.1. Lemma. If B oo A // C are morphisms of C , then B ⊗A C // B⊗̃AC is
monic.

Proof. We first observe that if we write A = k1 × k2 × · · · × kn, where the ki are
fields, then each of B and C splits up into a product of ki algebras and the tensor product
commutes with that decomposition. As a matter of fact, it will follow from this lemma
that C op is a pretopos and this procedure dualizes what happens to a map into a finite
sum in a pretopos. Thus we can reduce the question to the case in which A = k is a field.
Then we may suppose that

B = k(x1, x2, . . . , xn)[α] and C = k(y1, y2, . . . , ym)[β]

with x1, . . . , xn and y1, . . . , ym independent transcendentals, while α and β are algebraic,
resp., over the preceding transcendentals.

The argument can now be reduced, using associativity of tensor product and the fact
that tensoring over a field is exact, to the following observations:

1. k(x1, x2, . . . , xn)⊗̃kk(y1, y2, . . . , ym) ∼= k(x1, x2, . . . , xn, y1, y2, . . . , ym);

2. k[α]⊗̃kk(y1, y2, . . . , ym) ∼= k(y1, y2, . . . , ym)[α];

3. k[α]⊗̃kk[β] is the cartesian product of a finite number of field extensions of k.

This last observation is standard in the theory of separable field extensions. Its failure
for inseparable extensions is the reason we have restricted ourselves to characteristic 0.

Note that in cases 2 and 3 above, ⊗̃ = ⊗.

4.2. Proposition. Every monomorphism of C rings is universal and regular.

Proof. Given A // // B, form the commutative diagram

B/A B/A⊗B//B/A0 // B/A

0
��

B/A⊗B B/A⊗B/A//B/A⊗B

0
��

B/A⊗B/A

0
��

B/A⊗B/A 0//

B ⊗B/A 0//B ⊗B B ⊗B/A//B B ⊗B//B0 //

A B//A0 // A

0

��
B B/A//B

0

��
B/A

0

��
B/A 0//B/A

B ⊗B/A
��

B

B ⊗B
��

A

B
��
B

B/A
��

B ⊗B

B/A⊗B
��

B ⊗B/A

B/A⊗B/A
��

in which the second and third row are formed by tensoring the top row with B and B/A,
respectively and similarly for the columns. The top row is exact by definition and flatness
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insures that the second and third rows are. A diagram chase shows that then the upper
left corner is a pullback, from which it is clear that

B B ⊗B//

A

B
��

A B// B

B ⊗B
��

is a pullback as well, which means that A // // B is regular. Finally, if A // C is an
arbitrary map of C , the flatness of C as an A module forces C // // B ⊗ C as well.

The following theorem was found by John Kennison, to whom many thanks.

4.3. Theorem. FL(C op,Set) is equivalent to a full subcategory of von Neumann
regular rings of characteristic 0 which contains all fields of characteristic 0.

Proof. Every left exact functor T : C op // Set is given by a filtered colimit of
representable functors. So let T = colim(Hom(−, Ri)), where each Ri is a finite product
of finitely generated fields. Let R = colimRi in the category of regular rings. Since this is
a finitary equational category and the diagram is filtered, this colimit is simply the union
and is, in fact, the colimit in the category of rings. I claim that for F a product of finitely
generated fields,

colim(Hom(F,Ri)) // Hom(F,R)

is an isomorphism. If F = Q(x1, . . . , xn)[α] is a field, this is a standard argument since
every homomorphism to R takes each of the xi to some Rj and by directedness there is
some Rj that contains the image of all of them, along with the image of α. But a regular
ring that contains the image of an invertible element also contains its inverse. This remark
applies not only to the xi and α, but to all rational functions in these elements. If now
F is a finite product, repeat the above argument with each of the finitely many primitive
idempotents. This shows that each functor is represented by a commutative regular ring.
As for natural transformations between functors, it is clear that each ring homomorphism
induces one. For the converse, it is evident that if R and S are two von Neumann regular
rings, each of which is a filtered union of subrings which are products of finitely generated
fields, then a coherent family of homomorphisms on those subrings extends to a unique
homomorphism between the rings. Finally every field of characteristic 0 is in the category,
since it is the union of its finitely generated subfields.

A commutative von Neumann regular ring not in the category is given by an infinite
power of a field, say QN. Only the subset of functions N // Q of finite range belong to
finitely generated extensions. At any rate, we can now conclude,

4.4. Corollary. The category FL(C op,Set) has no non-zero injective.
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Proof. For if k // K is an inclusion of fields, no map k // P can be extended to
K unless the latter is smaller than P . By first taking a putative injective P , we then take
Q // K where K is a field larger than P . Since there is always a map Q // K (Q is
initial in the category), this shows that P cannot be injective.

5. Embedding conditions

Although the embedding has already been established, it is worth exploring more general
conditions that allow one to infer that a restricted Yoneda embedding is full and faithful.
We begin with faithfulness.

5.1. Theorem. Let X be a category and P be a small full subcategory of X . Then
the ‘restricted’ Yoneda embedding X op // Func(P,Set) is faithful if and only if every
object of X is the target of an epimorphic sieve whose domains are in P.

Proof. Consider, for each object X of X the largest sieve: the family {P // X} of
all maps to X with domain in P. This is an epi family if and only if for any two distinct
maps f, g:X // Y , there is at least one h:R // X with fh 6= gh. But this is exactly
the same condition as that the images of f and g remain distinct in Func(P,Set).

In any category D , we say that a sieve {fi:Di
// D} is a regular epimorphic

sieve if, given any object D′ and family of arrows {gi:Di
// D′} such that for any

object E and any pair of arrows h:E // Di and k:E // Dj, fi ◦h = fj ◦ k implies
that gi ◦h = gj ◦ k, then there is a unique g:D // D′ for which g ◦ fi = gi. We say it is
universal if given any D′ // D there is a family of commutative squares

Di D//

D′i

Di

��

D′i D′// D′

D
��

for which {D′i // D′} is a regular epimorphic sieve.
This amounts to the statement that

Hom(D,D′) //
∏

Hom(Di, D
′) ////

∏
Hom(E,D′)

is an equalizer, where the second product is indexed by the (possibly large) family of
all pairs (h, k) as in the definition. If G is a generating family in D , so that for every
object E, there is an epimorphic family {Gk

// E}, which implies that Hom(E,D′)
// //

∏
Hom(Gk, D

′) is monic, then we conclude that

Hom(D,D′) //
∏

Hom(Di, D
′) ////

∏
Hom(G,D′)

is also an equalizer, where the second product is indexed by all pairs (h, k) whose common
domain lies in G . Thus we conclude:
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5.2. Proposition. Suppose D is a category and G is a generating set. Then in order
that {Di

// D} be a regular epimorphic sieve it is sufficient that given any object D′

and family of arrows {gi:Di
// D′} such that for any object G ∈ G and any pair of

arrows h:G // Di and k:G // Dj, fi ◦h = fj ◦ k implies that gi ◦h = gj ◦ k then there
is a unique g:D // D′ for which g ◦ fi = gi.

5.3. Theorem. Let D be a category with pullbacks and G be a full subcategory of D .
Then the ‘restricted’ Yoneda embedding Φ: D // Func(G op,Set) is full and faithful if
every object of D is the target of a universal regular epimorphic sieve whose domains are
in G .

Proof. Let φ: ΦD // ΦD′ be a natural transformation. This means that for all
g:G // D with G an object of G , we have φ(g):G // D′. Naturality means that for
any h:G′ // G with G′ also an object of G , φ(g ◦h) = φ(g) ◦h. Now suppose {gi:Gi

// D} is a universal regular epic sieve. Then we have a family {φ(gi):Gi
// D′} and

for any object G of G , if h:G // Gi, k:G // Gj is any pair of morphisms,

φ(gi) ◦h = φ(gi ◦h) = φ(gj ◦ k) = φ(gj) ◦ k

so that there is a unique f :D // D′ such that φ(gi) = f ◦ gi.

We must still show that φ(g) = fg for all h:G // D. According to the definition of
universality, there is a family of squares

Gi Dgi
//

G′i

Gi

hi

��

G′i G
g′i // G

D

h

��

in which the family {G′i // G} is a (regular) epimorphic family. Then for each i,

φ(h) ◦ g′i = φ(h ◦ g′i) = φ(gi ◦hi) = φ(gi) ◦h = f ◦ gi ◦h = f ◦h ◦ g′i

from which we conclude that φ(h) = f ◦h as required.

This gives an alternate proof of Theorem 3.1 that does not make use of 2.9

6. Intersections

One of the interesting, but heretofore unutilized properties of the full embedding of [Barr,
1971] is the fact that the functor preserved arbitrary intersections. In this section, we
explore this condition.
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A natural monomorphism α:F // // G of left exact functors is said to be an elementary
embedding if whenever A // // B,

GA GB// //

FA

GA

��

��

FA FB// // FB

GB

��

��

is a pullback.

6.1. Example. If F = hD and G = hC are representable, then a natural transformation
F // G is induced by a map C // D. The transformation is mono if and only if the
inducing map is epi. We claim the transformation is an elementary embedding if and only
if the inducing map is a strong epi. For the definition of strong epi is that C // D is a
strong epi if and only if any square

A B// //

C

A
��

C D// D

B
��

the square

Hom(C,A) Hom(C,B)// //

Hom(D,A)

Hom(C,A)
��

Hom(D,A) Hom(D,B)// // Hom(D,B)

Hom(C,B)
��

is a pullback.
Let F be a left exact functor on the left exact category C and A be an object of

C . If a ∈ FA, and A0 is a subobject of A, then we say that A0 bf admits a if there
is an element a0 ∈ FA0 which maps to a under the function FA0

// FA induced
by the inclusion. Since F is left exact, it preserves monos, and hence a0 is unique if it
exists. If one distinguishes monos form subobjects (a mono represents a subobject), we
can legitimately say that a ∈ FA0. Consider the set of all subobjects of A which admit
a. If that collection of subobjects has an intersection then we say that intersection is the
bf support of a.

If A0 is the support of a, we do not usually expect A0 to admit a.

6.2. Theorem. Let C be a left exact category and F : C // Set a left exact functor.
Then of the following conditions,

(i) F is a filtered colimit of elementarily embedded representable functors;
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(ii) F is a filtered colimit of representable functors in which the transition morphisms
are elementary embeddings;

(iii) for every object A of C , every element of a ∈ FA has a support and that support
admits a;

(iv) F preserves all intersections.

(i)⇒ (ii); (ii)⇒ (iii) provided every morphism can be factored as a strict epi followed
by a mono; (iii) ⇒ (i) and (iv); and, if subobject lattices are complete, (iv) ⇒ (iii).

Note that if subobject lattices are complete, then strict epi/mono factorizations exists
and all four conditions are equivalent. Simply take the intersection of all subobjects
through which the map factors.

Proof. (i)⇒(ii): This follows easily from the fact that if the outer square and right
hand square of

Hom(D,B) Hom(C,B)// //

Hom(D,A)

Hom(D,B)
��

Hom(D,A) Hom(C,A)// // Hom(C,A)

Hom(C,B)
��

Hom(C,B) FB// //

Hom(C,A)

Hom(C,B)

Hom(C,A) FA// // FA

FB
��

are pullbacks, so is the left hand square.

(ii)⇒(iii) in the presence of the factorization: Let F be a colimit as described in
the statement. Consider an element a ∈ F (A), represented by a morphism Ai // A,
where Ai is one of the nodes in the colimit. The map Ai // A factors through a least
subobject A0 ⊆ A. If Aj // Ai is a map in the colimit diagram, the induced map on the
representable functors is an elementary embedding, which implies, as already observed,
that the map is a strict epi. But then Aj // Ai // A has the same image as Ai

// A, which means that A0 is the least subobject of A which admits a.

(iii)⇒(i): Let hA // F be a node in a diagram of which F is the colimit. This
represents an element of a ∈ F (A) which has a support A0. I claim that the induced hA0

// F is an elementary embedding. In fact, if g:B // // C is a mono, we must show that

Hom(A0, C) FC//
F (−)(a)

//

Hom(A0, B)

Hom(A0, C)

��

Hom(A0,g)

��

Hom(A0, B) FB// F (−)(a) // FB

FC

��

F (g)

��
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is a pullback. Let f ∈ Hom(A0, C) and b ∈ F (B) such that F (f)(a) = F (g)(b). Form the
pullback

A0 C
f

//

A1

A0

��

A1 B// B

C

g

��

and apply F to get a pullback

FA0 FC
F (f)

//

FA1

FA0

��

FA1 FB// FB

FC

F (g)

��

But then the existence of the elements a ∈ A0 and b ∈ B with F (f)(a) = F (g)(b)
implies that a ∈ FA1. Since we assumed that A0 was the support of a, this implies that
A0 = A1 which means that f factors through B, just what is needed.

(iii)⇒(iv): Consider an intersection A0 =
∧

(Ai) of subobjects of A. The map FA0
//
∧
F (Ai) is clearly monic. If a ∈ FAi for each i, then the support of a is included in

each Ai, hence in their intersection A0. But then a ∈ FA0.
(iv)⇒(i) if the subobject lattices are complete: Consider an element a ∈ FA. Since

subobject lattices are complete, we can form A0 =
∧{Ai | a ∈ Ai}. Since F preserves

intersections, a ∈ FA0. It is clear that a /∈ FA1 for any proper subobject A1 ⊆ A0, so
that A0 is the support of a.

6.3. Theorem. Let C be a regular category, and R be the image of C op in X =
FL(C ,Set). Then if the object X of X preserves intersections, so does X∗.

Proof. We begin by assuming, as we may from Proposition 2.5, that in C all epis are
regular. It follows from Proposition 2.3 that all monos in X are regular. But regular
monos are strict, so all monos are elementary embeddings. It is sufficient to show that
the property of preserving intersections is preserved by the passage from Xα to Xα+1

and by colimits along monomorphic chains. The latter condition will do both for the
passage to Xα and the one to Xα when α is a limit ordinal. As for the first step, let that
Xα = colimRi, with each Ri an elementarily embedded subobject from R. Let

Xα Xα+1
// //

R

Xα

R S// // S

Xα+1

��

R

X
��
X

Xα

��
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be the pushout that defines Xα+1. The map R // Xα factors through some Ri. The
diagram may be replaced by the subdiagram consisting of all nodes beyond Ri. Let

Ri Si// //

R

Ri

��

R S// // S

Si
��

be a pushout. For i < j, let Si // Sj be defined so that the lower square in

Ri Si// //

R

Ri

��

R S// // S

Si
��

Rj Sj// //Rj

��
Sj

��

commutes. Since the outer and upper squares in this diagram are pushouts, so is the lower
square. Since Ri

// // Rj, the same is true of Si // Sj. This verifies the finite step.
Now let Xα = limβ〈αXβ in which β < γ implies that Xβ

// // Xγ, which means it is an
elementary embedding. Let {Ri} be a set of subobjects of R and R0 be their intersection.
It is immediate that Xα(R0) // //

∧
iXα(Ri). Let a ∈ Xα(R) such that a ∈ Xα(Ri) for

all i. Then fix an i and choose β < α such that a ∈ Xβ(Ri). For any Rj ⊆ Ri, there is a
γ, which may be assumed less than β such that a ∈ Xγ(Rj). Since

Xβ(Rj) Xγ(Rj)//

Xβ(Rj)

Xβ(Rj)
��

Xβ(Rj) Xγ(Rj)// Xγ(Rj)

Xγ(Rj)
��

is a pullback, it follows that a ∈ Xβ(Rj) for all j for which Rj ⊆ Ri. Thus a ∈ ∧iXα(Ri).

7. Pretoposes

There would seem to be a regular progression: a small abelian category has a full, exact
embedding into a module category and a small regular category has a full regular embed-
ding into a functor category. The next step would seem to be a Theorem that embeds
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a pretopos near exactly into a functor category. No such theorem is possible, as shown
by examples below. The first such example is the one credited to Makkai. We do show
is that every pretopos E has a near exact embedding into a category in which there is a
regular epimorphic cover by a family of E projectives. Only the universality is lacking.

There seems to be some confusion as to whether ‘pretopos’ includes the hypothesis of
effective equivalence relations. One source of this confusion is in [Makkai-Reyes, 1977] in
which, on page 122, a pretopos is defined to have quotients of equivalence relations. On
page 117, a quotient of an equivalence relation is defined so that the equivalence relation
is required to be the kernel pair, but the definition on page 122 does not point out this
non-standard usage, so potential for confusion is evident. Thus to set the record straight,
a pretopos is required to have effective equivalence relations. Nonetheless, none of the
results of this paper depend on this hypothesis. I know that to be the case because I
wrote it under the misapprehension engendered by the Makkai-Reyes paper.

Let E be a pretopos and A be the opposite of FL(E ,Set). Then A is also a pretopos
by Theorem 2.4.

7.1. Lemma. For A an object of A , Hom(A,−) preserves finite sums if and only if A
is not decomposable into a sum of two subobjects.

Proof. If f :A // B1+B2, then the universality of sums allows us to write A = A1+A2,
when Ai is defined by letting

Bi B1 +B2
//

Ai

Bi

��

Ai A// A

B1 +B2

��

be a pullback for i = 1, 2. If A is indecomposable, it must be that one the Ai is 0 and
the other is A which means that f factors through one of the summands and that

Hom(A,B1 +B2) ∼= Hom(A,B1) + Hom(A,B2)

To go the other way, let A ∼= A1 + A2 with neither summand 0. A non-zero object of a
functor category has an element defined over at least one representable functor, so there
is, for i = 1, 2, and object Yi and a non-trivial morphism ei:Ai // Ei. Then e = e1 + e2

belongs to Hom(A,B1 +B2), but not to either of Hom(A,B1) or Hom(A,B2).

Remark. It is important to observe thatAmay be indecomposable even when Hom(A,−)
does not commute with infinite sums. For an example in the dual of the category of com-
mutative rings, observe that a map from a product of fields to a field factors through one
of the direct factors, but there is no no need for this happen with an infinite product. To
make this argument work with infinite products as well, we would have to suppose that,
in addition, infinite sums were universal.

7.2. Lemma. If P = P1 +P2, then P is E -projective if and only if both P1 and P2 are.
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Proof. Let P = P1 + P2 be E -projective. Consider a diagram

A B//A

P1P1

B
��

with A and B in E . Unless P2 = 0, in which there is nothing to prove, there is an object
C of E and a morphism h:P2

// C. Then in the diagram

A+ C B + C//A+ C

P1 + P2P1 + P2

B + C
��

the projectivity of P = P1 + P2 guarantees the existence of a morphism k:P1 + P2
//

A+ C that makes the triangle commute. Now in the diagram

A+ C B + C//

A

A+ C
��

A Bg
// B

B + C
��

P1

P1 + P2

��
P1 + P2

A+ C

k

��2222222222

P1

B

f

))SSSSSSSSSSSSSSSSS

the fact that the square is a pullback (in a pretopos) gives the required map P1
// A.

The converse is trivial.

Now for an E -projective object P , let Bool(P ) denote the poset of complemented
subobjects of P .

7.3. Lemma. Bool(P ) is a boolean algebra.

Proof. If P = P1 + P2 = P3 + P4, then the universality of sums implies that also

P = (P1 ∧ P3) + (P1 ∧ P4) + (P2 ∧ P3) + (P2 ∧ P4)

from which it is easily seen that both P1 ∧ P3 and P1 ∨ P3 are complemented. Since the
complement of a complemented object as well as the least and greatest subobjects are
evidently complemented, the conclusion follows.
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Now let u be an ultrafilter on Bool(P ). Let Pu = lim{Pi | Pi ∈ u}.
7.4. Theorem. For any E -projective P , and any ultrafilter u in Bool(P ), Pu is an
E -projective indecomposable.

Proof. It follows from the dual of Lemma 2(v) that when E is an object of E , and
D: I // X is a cofiltered diagram, then

colim(Hom(Di,E)) ∼= Hom(limDi,E)

Consequently, for E in E , Hom(Pu, E) ∼= colim(Hom(Pi, E)), the colimit taken over the
Pi ∈ u. Since from Lemma 19 each Pi is E -projective and evidently a colimit of epis
is epi, it is evident that Pu is also E -projective. To show that Pu is indecomposable,
consider a morphism f :Pu

// A+B where A and B are objects of E . From the above,
it is represented by an arrow Pi // A + B, for some Pi ∈ u. Then as in the proof of
Lemma 18, we can decompose Pi = P1 +P2 where f |P1 factors through A and f |P2 factors
through B. But the characteristic property of ultrafilters is that exactly one of P1 and P2

belongs to u. If it is P1 that belongs, then in the colimit f and f |P1 represent the same
element of Hom(Pu, A+B) and the latter belongs to Hom(Pu, A). Thus by the converse
of Lemma TK, P is indecomposable.

7.5. Theorem. The canonical map
∑
Pu

// P , the sum taken over all the ultrafilters
in Bool(P ), is epic.

Proof. Since the objects of E cogenerate, it is sufficient to show that given two maps
f, g:P // A, with A an object of E , there is an ultrafilter u on Bool(P ) such that
Hom(Pu, f) 6= Hom(Pu, g). To see this, observe that for any decomposition P = P1 + P2,
either f |P1 6= g|P1 or f |P2 6= g|P2 (or both). {i | f |Pi 6= g|Pi} is clearly the dual of
an ideal in Bool(P ) and hence contains an ultrafilter u with the property that whenever
Pi ∈ u, f |Pi 6= g|Pi. Since two morphisms in a filtered colimit are equal if and only if
they become equal at some stage, it follows that Hom(Pu, f) 6= Hom(Pu, g).

From Propositions 2.3 and 2.5 above, we may suppose that this epi is, in fact, regular
from which it follows that if P is a cover of an object X, so is {Pu | u ∈ Bool(P )}. This
epi is not universal, however, as we see in the next section.

8. Bounded pretoposes

We say that a pretopos is bf bounded is it has a full, near exact embedding into a set-valued
functor category. In this section, we will investigate some of the properties of bounded
pretoposes. In particular, we will show that if the pretopos has countable sums, then such
an embedding is not only exact, but in fact preserves all colimits. If the pretopos is a
Grothendieck topos, the embedding has a right adjoint and is therefore the left adjoint
part of a geometric morphism.
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In this section, we suppose that E is a bounded pretopos and that Φ: E // SetC is
a full, near exact embedding. We begin with an exercise in boolean algebras which is left
to the reader.

8.1. Proposition. Let B′ and B be lattices and f :B′ // B be a bijective increasing
function. Suppose that B is a (complete) boolean algebra. Then so is B′ and f is an
isomorphism of those algebras.

8.2. Proposition. Let E be a bounded topos. Then for every object E of E , Bool(E)
is a complete atomic boolean algebra. If f :E ′ // E is a morphism of E , then Bool(f)
is a morphism of complete atomic boolean algebras.

Proof. It follows from the preceding proposition and

Hom(E, 2) ∼= Hom(ΦE,Φ2) ∼= Hom(ΦE, 2)

that Bool(E) ∼= Bool(ΦE). Similarly,

Hom(E ′, 2) Hom(ΦE ′, 2)∼=
//

Hom(E, 2)

Hom(E ′, 2)

Hom(f,2)

��

Hom(E, 2) Hom(ΦE, 2)
∼= // Hom(ΦE, 2)

Hom(ΦE ′, 2)

Hom(Φf,2)

��

commutes. Hence it is sufficient to prove that in a functor category SetC , the comple-
mented subobject lattice is a complete atomic boolean algebra. But the forgetful functor
SetC // SetOb(C ) creates all limits and colimits and may easily be seen to preserve the
lattice operations in the subfunctor lattices. A subfunctor is complemented if and only if
its complement in the latter lattice is a subfunctor. Thus any inf or sup of complemented
subfunctors is complemented.

8.3. Proposition. For any object E of E , Bool(E) is a complete sublattice of Sub(E).

Proof. The argument above shows that the assertion is true when E is a functor cate-
gory. That is, the union and intersection of complemented subobjects it is complemented.
Let

∨
and

⋃
denote the supremum operation in subobject lattices in E and SetC , re-

spectively and temporarily let Sup denote the operation in the complemented subobject
lattices in E . Then we have, for an object E of E and a collection {Ei} of subobjects of
E, ⋃

ΦEi ⊆ Φ
(∨

Ei

)
⊆ Φ (SupEi) =

⋃
ΦEi

The last equality is from Proposition 8.2.
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We say that a pretopos is bf molecular if every object is the union of indecomposable
objects and the sum is universal. We say it is bf effectively molecular if every object is the
sum of its indecomposable subobjects and that it is bf universally effectively molecular if
those sums are universal. It is clear that in a topos, the last two concepts coincide and
that in a Grothendieck topos, all three do.

8.4. Corollary. Every bounded topos is universally effectively molecular.

Proof. We must show that if E is an object of E and {Ei} is the set of atoms of Bool(E),
then E ∼= ∑

Ei. Let Φ: E // SetC be a full embedding. Then from the construction
above it is clear that ΦE ∼= ∑ΦEi. If for each i, fi:Ei // F is given, there is a unique
map g: ΦE // ΦF such that g|ΦEi = Φfi. Since Φ is full and faithful, there is a unique
map h:E // F such that Φh = g. The universality also follows immediately from that
of the functor category.

8.5. Theorem. Let E be a bounded topos. Then a near exact functor Φ: E // SetC

preserves all sums. If E has countable sums, then Φ is exact. If E is a Grothendieck
topos, then Φ is a left adjoint of a geometric morphism SetC // Set.

Proof. Let E =
∑
Ei. If the Ei are atoms, the preceding corollary gives the conclusion.

For the general case, write Ei =
∑
Eij. Then E =

∑
Eij and this sum is preserved by

Φ. Since also ΦEi =
∑

j ΦEij, it follows easily that
∑

i,j ΦEij = ΦE. It is well known
[Freyd, 1972] that a near exact functor is exact as soon as countable sums exist and are
preserved. Finally, the special adjoint functor theorem gives a right adjoint as soon as all
colimits are preserved.

Any small pretopos can be fully embedded in a Grothendieck topos in which all uni-
versal sums are preserved. Simply form the category of sheaves for the least topology that
includes all finite epi families and in which universal sums are covered by their summands.
Although the Grothendieck topos is no longer small, it is bf essentially small [Barr-Wells,
1984], Exercise (UNIV) of Section 7.3, and we can work with it as though it were small.
In particular, it is bounded as soon as the original category is. For any functor into a
topos that preserves the covers will extend into a left adjoint of a geometric morphism.

9. Sufficient conditions for boundedness

A lattice is called bf noetherian if every ascending chain is finite. Such a lattice is evidently
sup and hence inf complete. A lattice is bf co-heyting if finite sups distribute over arbitrary
infs.

9.1. Theorem. A small pretopos in which the subobject lattices are noetherian and
co-heyting is bounded.

Proof. We begin the proof with:
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9.2. Lemma. A noetherian co-heyting lattice has a complete embedding into a power
set. In particular, such a lattice is completely distributive.

Proof. Let L be such a lattice and consider two elements a and b of L for which b 6≤ a.
Among all ideals of I ⊆ L with a ∈ L and b /∈ L—there is at least one, namely a∧L—let
I be maximal. The noetherian condition on L insures that all ideals are principal, so that
I is the principal ideal generated by an element p. Like every principal ideal it is closed
under arbitrary sups. I claim its complement is closed under arbitrary infs. In fact, if∧
xi ∈ I, then from the co-heyting hypothesis,

∧
xi = p ∨

∧
xi =

∧
(p ∨ xi)

But maximality of I means that if none of the xi belong to I, b ∈ p ∨ xi for all i, whence
b ∈ ∧xi. a contradiction. Thus both I and its complement are complete, so that the
2-valued homomorphism of which I is the kernel is a morphism of complete lattices. Since
such an ideal exists whenever b 6≤ a, the set of such morphisms gives a complete embedding
of L into a power set from which complete distributivity follows.

9.3. Proposition. Let C satisfy the hypotheses of the theorem. Then every cover in
C̃ of an object of C has a finite refinement.

Proof. Let A be an object of C and {Pi // A} be a cover, i.e. a regular epimorphic
family. Let Pi = limBij, a limit of representables taken over a filtered index category Ji.
By replacing, if necessary, the index category by final segments, we can suppose that for
each i, j there is given a map gij:Bij

// A which represents Pi // A. Let Aij denote
the image of gij. Let c be a ‘choice function’ which chooses for each i an object c(i) in Ji.
We must have

∨
iAi,c(i) = A. For otherwise that union would be a subobject of A which

evidently contains the image of every Pi // A. Thus,

A =
∧
c

∨
i

Ai,c(i) =
∨
i

∧
j∈Ji

Aij

the latter equality being the complete distributive law. But the noetherian condition
implies that there is a finite set of indices, say i = 1, 2, . . . , n such that

A =
n∨
i=1

∧
j∈Ji

Aij

from which it is evident that P1, P2, . . . , Pn cover A.

We can now return to the proof of Theorem 8.5. From Theorem 2.7, there is a
cover P // // A, with P C -projective. Form Theorem 5.1, this can be replaced be a
cover

∑
Pu

// // A with each Pu C projective and indecomposable. From the preceding
proposition, it follows that the sum can be replaced by a finite sum. From Theorem 2.4
and Proposition 2.5, the finite family {Pu

// A} is universal and it then follows from
Theorem 5.1 that if A is the small exact subcategory generated by C and by enough C -
projective indecomposable functors to resolve the objects of C , then the induced functor
C // SetA is full and faithful.
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9.4. Corollary. A pretopos in which subobject lattices are finite is bounded.

Proof. A finite, distributive lattice is completely distributive.

10. Examples

Let X be any topological space which is T1, but not discrete. Then it is known that
the points of Sh(X), the topos of sheaves on X, are exactly the stalks at the points of
X. But being T1, there are no natural transformations between stalks at different points
and no non-trivial endomorphisms of the individual stalk functors. In other words, the
category of points is discrete. But the category of sheaves on a non-discrete space cannot
be fully embedded into a discrete functor category by a functor that preserves sums. For
one thing, the commutative diagram

Bool(ΦY ) Sub(ΦY )//

Bool(Y )

Bool(ΦY )
��

Bool(Y ) Sub(Y )// Sub(Y )

Sub(ΦY )
��

in which Φ is the functor and Y is a sheaf, consists of all monos and both the left hand and
bottom arrows would be isomorphisms, whence the other two would be as well. But then
the subobject lattices would be boolean, contradicting the assumption that the space is
not discrete. Note that the space may be locally connected, thus showing that a molecular
topos need not be bounded.

Here is another interesting example of the same thing which is instructive in other ways
as well. Consider the category of sheaves on the open unit interval (0,1) (or equivalently,
on the real line, but the open interval is a bit more convenient). Suppose we take for E
the category of sheaves for which there is a uniform finite upper bound on the number of
elements in each stalk. This is evidently the least exact full subcategory containing the
space itself. Here is a projective over the space. Take the sequence of spaces of which the
first is the interval (0,1), the second is the sum of the two intervals (0,2/3) and (1/3,1),
the third is the sum of four intervals (0,4/9), (2/9,2/3), (1/3,7/9) and (5/9,1), etc. At
each stage, divide each interval of the preceding stage into two overlapping intervals, each
2/3 the length of the previous ones. If these spaces are denoted

X1
oo X2

oo X3
oo · · ·

then P = colim(Hom(Xi,−) is a projective functor since if Y // // Z is a surjection of
covers and some Xi

// X is given, it will, after suitable subdivision lift to Xj
// X.

On the other hand, an ultrafilter on Bool(P ) is determined a point of (0,1) and the
corresponding limit is the stalk at the point. It is known from sheaf theory that the only
points of the category Sh(X) are given by the stalks at a point, when the space is sober.
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Any near exact functor into Set is actually exact, since every relation generates an
equivalence relation after a finite number of steps. For a set of n elements has only 2n

2

relations on it and hence every reflexive symmetric relation on such a set generates an
equivalence relation after at most that many steps and the same is true of a sheaf in
which each stalk has at most n elements. In any case, such a functor preserves covers and
thus extends to the left adjoint of a geometric morphism on the category of sheaves, i.e.
a point.

But the category of stalks is discrete (there are no morphisms when the space is haus-
dorff) and if the category of sheaves were bounded, and we would have a full embedding
Φ of Sh(X) into a power of Set. In the latter category, every subobject is complemented.
We have a commutative diagram,

Bool(ΦY ) Sub(ΦY )//

Bool(Y )

Bool(ΦY )
��

Bool(Y ) Sub(Y )// Sub(Y )

Sub(ΦY )
��

in which every arrow is mono and the left hand and bottom arrows are isomorphisms,
which implies that the other two are as well. But then every subobject in Sh(X) would
be complemented, which is not the case. On the other hand, Sh(X) is molecular, since
X is locally connected [Barr-Paré, 1980].

Here is an example due to Makkai. It was given to show that not every pretopos
is bounded at a time when that seemed like a plausible conjecture. Let E be a count-
able model of set theory with the axiom of choice, e.g. the standard model. If E were
bounded, E would have to be molecular. But the only molecules are singletons, so that
N, for example, would have to be the sum of countably many copies of 1. But there are
uncountably many ways of mapping such a sum to 1, so that is impossible.

11. Prime generated pretoposes

We say that an object in a pretopos is a prime if it is not the union of two proper
subobjects. We say that a pretopos is prime generated if every object has a regular cover
by primes.

11.1. Theorem. A coherent prime generated pretopos is bounded.

Proof. Every coherent object has a finite cover by primes. Hence it is sufficient to
show that for every prime in C , there is a C -projective indecomposable P for which there
is a regular epi P // // A. Begin by finding a P // // A with a C -projective P . In any
decomposition P = P1 + P2, I claim that either P1

// // A or P2
// // A. For suppose

neither of these holds. Write Pi = limBij for i = 1, 2. Then for any object C of C ,

Hom(A,C) // Hom(Pi, C) ∼= colim Hom(Bij, C)
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is not monic, which means at least one Bij
// A is not epi. Since this can be done for

i = 1, 2, the result is that for some indices j, k, neither B1j nor B2k is a regular epi, which
means, since A is prime, that B1j + B2k

// A factors through some proper subobject
of A which means that P // A does as well. Now we can apply the method of proof
of Theorem 7.4. {Pi ∈ Bool(P ) | Pi // // A} contains an ultrafilter u with the property
that when Pi ∈ u, Pi // // A. The result is that since filtered limits in X preserve finite
colimits, Pu

// // A as well.

11.2. Corollary. If C is a pretopos in which every object is the finite union of prime
subobjects, then C is bounded.

An atomic topos [Barr-Diaconescu, 1980] is a topos in which every object is a sum
of irreducible subobjects. It is not entirely clear what the definition of atomic pretopos
should be, but in the coherent case there is no doubt that every object should be the
finite sum of such subobjects.

11.3. Corollary. A small coherent atomic pretopos is bounded.

Proof. Since an object in a coherent atomic topos is the finite universal sum of its
atoms and its atoms are evidently primes, the conclusion follows from Theorem 11.1.

11.4. Corollary. A coherent Grothendieck atomic topos is bounded.

Proof. We can always take a small subcategory which is a pretopos and contains all
the atoms. An embedding into a functor category can be extended in a unique way to all
sums of atoms, which is what the atomic topos consists of.

11.5. Remark. All the toposes shown by the theorems above to be bounded have
completely distributive subobject lattices. This raises the question of whether all bounded
toposes do. There does not seem to be any obvious reason to expect this, but I have not
found any counterexample either. One approach to finding a counter-example comes down
to this: Find a left exact idempotent cotriple on a functor category that does not preserve
unions. For if G is such a cotriple and it does turn out to preserve unions, we have the
following computation in which the Eij are all G-coalgebras,

∨
i

∧
j

Eij =
⋃
i

G

(⋂
j

Eij

)
= G

(⋃
i

⋂
j

Eij

)
= G

(⋂
c

⋃
i

Ei,c(i)

)
=
∧
c

∨
i

Ei,c(i)

which means the subobject lattices are completely distributive.

However, the only examples I can think of of idempotent cotriples involve all functors
that take a class of cocones (directed to get left exactness) to colimits. But then the
cotriple evidently preserves unions.
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Journal 2, 1957, 199-221.

B. Mitchell (1965), Theory of Categories, Academic Press.

M. Makkai (1980), On full embeddings I, J. Pure Applied Algebra, 16, 183-195.

M. Makkai and G. E. Reyes (1977), First Order Categorical Logic, Lecture Notes in
Math. 611, Springer-Verlag.

Department of Mathematics and Statistics McGill University
805 Sherbrooke St., W Montreal, Quebec Canada H3A 2K6
Email: barr@barrs.org


