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Preface

These seminar notes contain the results announced in Abstracts 576-219, Notices Amer.
Math. Soc. 7 (1960), 980; 61T-27, ibid. 8 (1961), 60; and 61T-28, ibid. 8 (1961), 61.

The rings of quotients recently introduced by Johnson and Utumi are applied to the
ring C(X) of all continuous real-valued functions on a completely regular space X. Let
Q(X) denote the maximal ring of quotients of C(X); then Q(X) may be realized as
the ring of all continuous functions on the dense open sets in X (modulo an obvious
equivalence relation). In special cases (e.g., for metric X), Q(X) reduces to the classical
ring of quotients of C(X) (formed with respect to the regular elements), but in general,
the classical ring is only a proper subring of Q(X).

A natural metric may be imposed on the ring Q(X) (although Q(X) does not, in
general, become a topological ring). Let denote the metric completion and let ∗ denote
bounded functions. Then: C(X) is a ring of quotients of C∗(X), so that Q(X) = Q(βX);
Q
∗
(X) is a topological ring; Q∗(X) = Q

∗
(X); and Q(X) is the maximal ring of quotients

of Q
∗
(X). (βX denotes the Stone-Čech compactification of X).

The ring Q(X) may be realized as the ring of all continuous functions on the dense
Gδ-sets in βX (modulo an equivalence relation).

Let K denote the maximal ideal space of Q(X). The space K is compact and ex-
tremally disconnected and is homeomorphic with the maximal ideal spaces of Q∗(X), of
Q(X), and of Q

∗
(X). In addition, K is homeomorphic with the maximal ideal space of

E(Q(X)), where E(A) denotes the Boolean ring of all idempotents of a ring A. Inciden-
tally, E(Q(X) = E(Q(X)); this ring is also isomorphic with the Boolean algebra B(X) of
all regular open subsets of X, so that K is homeomorphic with the maximal ideal space of
B(X). (It follows that K is the same for all separable metric spaces X without isolated
points.) Finally, K may be realized as the inverse limit of the spaces βU , U ranging over
all dense opens sets in X; the spaces βV with V ranging over all dense open sets in βX;
and the spaces βS with S ranging over all dense Gδ’s in βX.

Results obtained in the course of the study include new proofs of known theorems,
notably, the Stone-Nakano Theorem that C(X) is conditionally complete as a lattice if
and only if X is extemally disconnected, and Artin’s Theorem that in a formally real field,
any element that is positive in every total order is a sum of squares.
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1. Rings of Quotients of
Commutative Rings

1.1. Modules. Let A be a commutative ring with 1. Any ideal I in A may, of course,
be regarded as an A-module. The set of all A-homomorphisms from I into A is denoted
by Hom(I, A) or Hom I.

The set Hom I is also an A-module. If I ′ is an ideal, with I ′ ⊂ I, then the restriction
map

ϕ → ϕ|I ′ (ϕ ∈ Hom I).

is a homomorphism of the module Hom I into the module Hom I ′.
Each a ∈ A may be identified with the mapping x → ax (x ∈ A); as such, it belongs

to Hom A.

1.2. The classical ring of quotients. The ”classical” ring of quotients of A—to
be denoted by Qcl(A)—is the ring of equivalence classes of formal quotients c/d for c ∈ A
and d a non-zero-divisor of A.

This construction has been generalized in the work of Johnson, Utumi, Findlay and
Lambek [Johnson (1951), Johnson (1954), Johnson (1957), Utumi (1956), Findlay & Lam-
bek (1958)]. Let d be any non-zero-divisor of A. For each c ∈ A, a mapping c/d may be
defined on the principal ideal (d) as follows:

c

d
(dx) = cx;

then c/d ∈ Hom(d). Conversely, if ϕ ∈ Hom(d), then ϕ(dx) = ϕ(d) · x, so that ϕ acts
like ϕ(d)/d. Thus one may construct Qcl(A) by taking the direct limit of the modules
Hom(d) and then defining a suitable ring structure on this direct limit. The generalization
consists in considering modules Hom D for arbitrary ”dense” ideals D, not just for the
principal ideals generated by non-zero-divisors. There are further generalizations - e.g.,
for noncommutative rings. However, our discussion will be limited to commutative rings
with unity.

1.3. Dense ideals. An ideal in A is said to be (rationally) dense if its only annihila-
tor in A is 0. Note that a principal ideal (d) is dense precisely when d is a non-zero-divisor.
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More generally, we can speak of denseness of any subring. If A is a subring of B, then
we shall say that A is (rationally) dense in B provided that A has no nonzero annihilator
in B.

Any subring containing a dense subring is dense. The product of a dense ideal with a
dense subring is dense. Hence the intersection of two dense ideals is dense.

The following lemma will be useful. An ideal is said to be large if it has nonzero
intersection with every nonzero ideal—equivalently, with every nonzero principal ideal.
Obviously, every dense ideal is large. The ring A is semi-prime if it has no nilpotent ideal
except (0)—equivalently (for commutative A), if it has no nilpotent element except 0.

Lemma. A is semi-prime if and only if every large ideal is dense.

Proof. Assume A semi-prime, and let L be large and a 6= 0. Since L ∩ (a) 6= 0, we
have 0 6= (L ∩ (a))2 ⊂ La, which shows that L is dense. Conversely, assume every large
ideal dense, and let I be an ideal such that I2 = 0. Then for any a, we have AI ⊂ Iˆ,
where Iˆ = {x ∈ A : xI = 0}, the annihilator of I. Hence if (a) ∩ Iˆ = 0, then
aI ⊂ (a)∩ Iˆ = 0—that is, a ∈ Iˆ; consequently, a ∈ (a)∩ Iˆ = 0. This shows that Iˆ is
large. Therefore Iˆ is dense. Since IIˆ = 0, this yields I = 0.

1.4. Rings of quotients; rational extensions. Let B be a commutative ring
containing A and having the same unity element. For b ∈ B, we write

b−1A = {a ∈ A : ba ∈ A}.

Obviously, b−1A is an ideal in A. For b = 0 or 1, b−1A is dense: it is A.

Definition. B (⊃ A) is a ring of quotients or rational extension of A provided that
for every b ∈ B, b−1A is dense in B—that is,

(1) for 0 6= b′ ∈ B, there exists a ∈ A such that ba ∈ A and b′a 6= 0.

A ring without a proper rational extension is said to be rationally complete. (For a
(commutative) semi-prime ring A, this coincides with self-injective, that is to say, injective
as an A-module.)

Let A ⊂ B ⊂ C; if C is a ring of quotients of A, then obviously C is a ring of quotients
of B and B is a ring of quotients of A. The converse is also true. To see this, we note
first that if B is a ring of quotients of A, then the element a in (1) can always be chosen
so that b′a ∈ A: given a1 as in (1), choose a2 ∈ b′−1A such that b′a1a2 6= 0; then take
a = a1a2. Suppose now that C is a ring of quotients of B and B is a ring of quotients of
A. Given c ∈ C and 0 6= c′ ∈ C, choose b ∈ B such that cb ∈ B and 0 6= c′b ∈ B; now
choose a1 ∈ A such that cba1 ∈ A and c′ba1 6= 0, and then pick a2 ∈ A such that ba2 ∈ A
and c′ba1a2 6= 0; finally, take a = ba1a2. Then ca ∈ A and c′a 6= 0, q.e.d.
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Next, we observe: if B is a ring of quotients of A and D is a dense ideal in A, then
D is dense in B. For consider any b 6= 0 in B. Choose a ∈ A for which 0 6= ba ∈ A and
then d ∈ D for which (ba)d 6= 0. Then ad ∈ D and b(ad) 6= 0.

Finally, if B is a ring of quotients of A and E is a dense ideal in B, then E ∩ A is
dense in B. For let b(E ∩A) = 0. Then for each e ∈ E, we have be(e−1A) = 0; since e−1A
is dense, this yields be = 0. Thus, bE = 0 and therefore b = 0.

1.5 Lemma Let B ⊃ A.

(1) B is a ring of quotients of A if and only if for each nonzero b ∈ B, b−1A is dense
in A and b · (b−1A) 6= 0.

(2) If b · (b−1A) 6= 0 for all nonzero b ∈ B, then each ideal b−1A is large.

Proof. (1). The necessity is trivial. Conversely, to show that b−1A is dense in B,
consider any nonzero b′ ∈ B. Pick x ∈ b′−1A for which b′x 6= 0; then pick a ∈ b−1A for
which b′xa 6= 0.

(2). Let a ∈ A, with a 6= 0, be given. If a ∈ b−1A, we are done. If a /∈ b−1A, then
ba 6= 0, and so there exists a′ ∈ (ba)−1A for which baa′ 6= 0; then 0 6= aa′ ∈ (a) ∩ b−1A.

Theorem. Let B ⊃ A. If A is semi-prime, then B is a ring of quotients of A if and
only if b · (b−1A) 6= 0 for all nonzero b ∈ B—that is,

for 0 6= b ∈ B, there exists a ∈ A such that 0 6= ba ∈ A.

Proof. This is an immediate consequence of the lemmas.

1.6. Closed families of A-modules. We shall say that a family D of dense ideals
in A is closed provided that A ∈ D and the product of any two members of D is a member
of D. Thus, the smallest closed family is {A}. (Since 1 ∈ A, A · A = A.) The largest
closed family is

D0(A), the family of all dense ideals in A.

If D and D′ are dense ideals, with D ⊃ D′, then the restriction homomorphism ϕ →
ϕ|D′ from Hom D into Hom D′ is a monomorphism. For if 0 6= ϕ ∈ Hom D, then ϕ(d) 6= 0
for some d ∈ D; since D′ is dense, there exists d′ ∈ D′ such that 0 6= ϕ(d) · d′ = ϕ(dd′);
therefore ϕ|D′ 6= 0. We abuse notation to write Hom D ⊂ Hom D′.

Let D be a closed family of dense ideals. By a standard family of A-modules, we shall
mean a family (Dh)D∈D satisfying:

(α) Dh is a submodule of Hom D,

(β) 1 ∈ Ah
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(γ) if D ⊃ D′, then Dh ⊂ D′h,

(δ) if ϕ1, ϕ2 ∈ Dh, then ϕ1 ◦ ϕ2 ∈ (DD)h.

Of course, 1 ∈ Hom A. If D ⊃ D′, then trivially Dh ⊂ Hom D′. In (δ), ϕ1 ◦ ϕ2 is
indeed defined on DD (since ϕ2(dd′) = d ·ϕ2(d

′)), and obviously it belongs to Hom(DD).
In particular, then, (Hom D)D∈D is a standard family of A-modules.

1.7. Direct limits. We now consider the direct limit module

Qh(A) = lim→ D∈D Dh.

Because of (γ), Qh(A) may be thought of as ∪D∈DDh, where we identify ϕ1 ∈ Dh
1 with

ϕ2 ∈ Dh
2 whenever ϕ1 and ϕ2 agree on D1D2. The module operations in Qh(A) then

reduce to the operations within each Dh.

To obtain a ring structure on Qh(A), we define

ϕ1 · ϕ2 = ϕ1 ◦ ϕ2,

which makes sense because of (δ). Then Qh(A) becomes a commutative ring with unity
element 1 ∈ A. By (β), a = a · 1 ∈ Ah for each a ∈ A; hence A ⊂ Qh(A).

Let (Dh)D∈D and (Ek)E∈E be standard families such that D ⊂ E , and Dh ⊂ Dk for
D ∈ D; then Qh(A) ⊂ Qk(A). Evidently,

Q(A) = lim→ D∈D0(A) Hom D.

is the largest of all the rings Qh(A), and A itself is the smallest.

1.8. Representation theorem. The rings of quotients of A are precisely the direct
limit rings Qh(A). Specifically:

(1) If (Dh)D∈D is any standard family of A-modules, then

Qh(A) = lim→ D∈D Dh

is a ring of quotients of A.

(2) If B is any ring of quotients of A, then (B ∩ Hom D)D∈D0(A) is a standard family
and

B = lim→ D∈D0(A)(B ∩ Hom D).
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Proof. (1). Let ϕ ∈ Qh(A); we are to prove that ϕ−1A is dense in Qh(A). Given
0 6= ϕ′ ∈ Qh(A), pick D such that ϕ, ϕ′ ∈ Dh and then choose d ∈ Dh for which
ϕ′(d) 6= 0. Since (ϕ◦d)(a) = ϕ(da) = ϕ(d) ·a for a ∈ A, we have ϕ ·d = ϕ◦d = ϕ(d) ∈ A;
hence d ∈ ϕ−1A and ϕ′ · d = ϕ′(d) 6= 0.

(2). This is a consequence of (1) (see next section), but the following proof also seems
of interest. If b ∈ B, D ∈ D0(A), and b|D ∈ Hom D, then b is uniquely determined by
b|D : b 6= 0 implies bD 6= 0 (D being dense in B), i.e., b|D 6= 0, so that the mapping
b → b|D is one-one; hence, abusing notation to write b ∈ Hom D, we see that B ∩Hom D
has meaning. Next, it is obvious that (B∩Hom D)D∈D0 is a standard family (1.6). Finally,
each b−1A is dense and b ∈ Hom b−1A, which shows that B ⊂ ∪D∈D0(B ∩ Hom D) [=
lim→ D(B ∩ Hom D)]; and the reverse inclusion is trivial.

1.9 Corollary A has a largest ring of quotients—namely,

Q(A) = lim→ D∈D0(A) Hom D.

This follows from (1) and the remark at the end of 1.7. The result implies (2): (B ∩
Hom D)D∈D0 is a standard family, and B ⊂ Q(A).

The ring Q(A) is called the maximal ring of quotients or rational completion of A;
evidently, Q(A) is rationally complete. There is also a smallest ring of quotients: A itself.

1.10 Corollary The classical ring of quotients—Qcl(A)—is given by

Qcl(A) = lim→ (d)∈D0(A) Hom(d).

This follows from the discussion in 1.2.

1.11. Regular rings. The ring A (commutative, with 1) is regular if for each el-
ement a, there exists an element b (in general, not unique) such that a2b = a. Since
a(1 − ab) = 0, every element is either a zero-divisor or a unit. If a 6= 0, then 1 − ab is
not a unit and so belongs to some maximal ideal M , whence a 6∈ M ; this shows that A is
semi-simple (i.e., the intersection of all maximal ideals is 0). Hence A is semi-prime.

Theorem. If A is semi-prime, then Q(A) is regular [Johnson (1951)].

Proof. Consider any b ∈ Q(A). Then b ∈ Hom(D, A) for some dense ideal D in A. Let
K denote the kernel of b and Kˆ its annihilator:

K = {d ∈ D : bd = 0}, Kˆ = {a ∈ A : aK = 0}.
Since A is semi-prime, K ∩ Kˆ = 0; it follows that b is one-one on D ∩ Kˆ. Put

E = b(D∩Kˆ). Since (E + Eˆ)ˆ = Eˆ∩Eˆ ˆ = 0, E + Eˆ is dense. (Similarly, K + Kˆ
is dense.) Define c ∈ Hom(E + Eˆ, A) by means of:

c(bd) = d for d ∈ D ∩Kˆ, c(Eˆ) = 0.
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Then b2cd = bd for d ∈ D ∩ Kˆ; and the equation holds trivially for d ∈ D ∩ K.
Consequently, b2c− b annihilates the dense ideal D ∩ (K + Kˆ) and hence is 0.

The proof of this special case of [Johnson (1951), Theorem 2] is of some interest in
that it does not require Zorn’s lemma.



2. Rings of Quotients of C(X)
and C∗(X)

2.1. Rings of functions. Let X be a topological space. Let C(X) denote the ring
of all continuous functions from X into the real line R, under the pointwise operations;
the subring of bounded functions in C(X) is denoted by C∗(X). It is obvious that C and
C∗ are commutative rings with zero and unity elements the constant functions 0 and 1.
They are also lattices under the pointwise definition of order.

It is obvious that C(X) is semi-prime. (In fact, it is easy to see that C(X) is semi-
simple.) Hence Theorem 1.5 yields:

A ring B ⊃ C(X) is a ring of quotients of C(X)
if and only if b(b−1C(X)) 6= 0 for all nonzero b ∈ B.

In studying C(X), we assume without loss of generality that the space X is completely
regular, i.e., it is a Hausdorff space such that for any neighborhood U of a point x, some
function in C∗(X) vanishes outside U but not at x; using lattice properties, it is then
easy to construct a continuous function that vanishes on some neighborhood of X−U and
has a constant nonzero value on some neighborhood of x. It is also easy to prove that all
subspaces of completely regular spaces are completely regular. (See [Gillman & Jerison
(1960)].)

If S is dense in X, then the homomorphism f 7→ f |S from C(X) into C(S) is a
monomorphism; we abuse notation to write C(X) ⊂ C(S).

The family of all dense open sets in X is denoted by V0(X).

2.2. Zero-sets and cozero-sets. The zero-set of a continuous function f—i.e., its
set of zeros—is denoted by ZX(f) or Z(f). Obviously, every zero-set is closed: Z(f) =
f←(0), the preimage of a point in R. (The arrow indicates inverse of mapping.) In
addition, every zero-set is a Gδ (i.e., a countable intersection of open sets) in X, since {0}
is a Gδ in R. The cozero set of f is denoted by cozX f or coz f :

coz f = X − Z(f) = {x ∈ X : f(x) 6= 0}.
For any ideal I in C (or C∗), we write

Z(I) =
⋂

f∈I

Z(f), coz I =
⋃

f∈I

coz f.
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Obviously, coz I is open (and, dually, Z(I) is closed). Moreover, every open set U is of
the form coz I for some ideal I : define I = {f ∈ C(X) : coz f ⊂ U}; then I is an ideal
and coz I ⊂ U ; by complete regularity, coz I = U .

Evidently, coz(f) is the cozero-set coz f . However, an arbitrary open set is not neces-
sarily a cozero-set; so when an ideal I is not principal, coz I need not be a cozero-set (in
spite of the notation). Cf. 3.2.

Theorem. An ideal D in C (or C∗) is (rationally) dense if and only if coz D is (topo-
logically) dense in X.

Proof. The following are successively equivalent: D is dense; for all g ∈ C, gD = 0
implies g = 0; for all g ∈ C, Z(g) ⊃ coz D implies g = 0; coz D is dense (by complete
regularity).

2.3 Theorem

(1) C(X) is a ring of quotients of C∗(X).

(2) C(X) and C∗(X) have the same maximal ring of quotients and the same classical
ring of quotients.

(3) If V ∈ V0(X), then C(V ) is a ring of quotients of C(X).

Proof. If 0 6= g ∈ C(X), then f = 1/(1 + g2) ∈ C∗(X) and 0 6= gf ∈ C∗(X). This
yields (1), and the first half of (2) follows. For the second half of (2), we note that any
quotient g/h of two functions in C(X) is equivalent (see 1.2) to the quotient gf/hf , where
f = 1/(1 + g2 + h2), of two functions in C∗(X). (Cf. 3.8.)

For (3), we note first that C(V ) ⊃ C(X), because V is dense. Now consider any
h ∈ C(V ). For each v in the open set V , there exists f ∈ C∗(X) that vanishes on a
neighborhood of X − V but not at v; then v ∈ coz f and hf ∈ C(X). In case v ∈ coz h,
we have hf 6= 0, which yields (3). In general, if we put f ′ = f/(1+h2f 2), then f ′ ∈ C∗(X)
and hf ′ ∈ C∗(X), i.e., f ′ ∈ h−1C∗(X); and v ∈ coz f ′. So we have (for later use):

(4) If V ∈ V0(X) and h ∈ C(V ), then V ⊂ coz h−1C∗(X).

It follows from (3) that C(V ) and C(X) have the same maximal ring of quotients.
However, they do not in general have the same classical ring of quotients; see 3.7.

2.4. Direct limits. Let S be a family of nonvoid subsets of X. When S is a filter
base (i.e., when S is closed under finite intersection), we are invited to consider the direct
limit ring lim→ S∈S C(S), with respect to the restriction homomorphisms f 7→ f |S ′, when
f ∈ C(S) and S ⊃ S ′. When S is a family of dense sets, all these homomorphisms are
one-one, and lim→ S∈S C(S) may be thought of as

⋃
S∈S C(S), where we identify f1 ∈ C(S1)

with f2 ∈ C(S2) whenever f1 and f2 agree on S1 ∩ S2.
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For the time being, we shall confine our attention to the filter base V0(X) of all dense
open sets. If h ∈ lim→ V ∈V0 C(V ), h 6= 0, then h ∈ C(V ) for some V ∈ V0; since C(V ) is
a ring of quotients of C(X), we have h · (h−1C(X)) 6= 0. This shows that lim→ V ∈V0 C(V ),
is also a ring of quotients of C(X). Consequently, it is a subring of the maximal ring of
quotients Q(C(X)). Explicitly: if h ∈ C(V ), then D = h−1C(X) is a dense ideal in C(X)
and h ∈ Hom D. Conversely, if D is dense and ϕ ∈ Hom D, then ϕ ∈ C(V ) for some V ,
as we now show.

2.5 Lemma Let A be a subring of C(X); for any ideal D in A, we have Hom D ⊂
C(coz D).

Proof. Let ϕ ∈ Hom D be given. For x ∈ coz D, choose d ∈ D for which d(x) 6= 0, and
define

g(x) =
ϕ(d)(x)

d(x)
.

Since ϕ(d′) · d = ϕ(d) · d′, this definition is independent of d. For each x ∈ coz D, g
agrees with a continuous function on a neighborhood (namely, coz d) of x; therefore g is
continuous on its domain coz D. Finally, consider any d ∈ D. For each x ∈ coz D, we
have, via suitable d′,

ϕ(d)(x) =
ϕ(d′)(x)

d′(x)
d(x) = g(x) · d(x);

hence ϕ(d) = g · d and therefore ϕ = g.

Remark. It is not true in general that Hom D = C(coz D), even when A = C(X) and
D is dense (although it is easily seen that Hom D ⊃ C∗(coz D)). Take X = R, A =
C(R), D = {f ∈ C(R) : f(0) = 0}, d(r) = r, g(x) = 1/x2; then gd /∈ C(R), i.e., g /∈
Hom D.

2.6. Q(X) and Qcl(X). We write

Q(X) = Q(C(X)), Qcl(X) = Qcl(C(X)).

Theorem. [Representation Theorem]

(1) Q(X) = lim→ V ∈V0(X) C(V ).

(2) Qcl(X) = lim→ V C(V ), V ranging over all dense cozero-sets in X.
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Proof. Because Hom D ⊂ C(coz D) for each D, we have

Q(X) = lim→ D∈D0 Hom D ⊂ lim→ D∈D0 C(coz D) = lim→ V ∈V0 C(V ) ⊂ Q(X).

This yields (1). To establish (2), we begin as above; we have

Qcl(X) = lim→ (d)∈D0 Hom(d) ⊂ lim→ (d)∈D0 C(coz d) = lim→ C(V ),

where V ranges over the dense cozero-sets in X. We are to establish the reverse inclusion;
thus, given (d) ∈ D0 and f ∈ C(coz d), we are to find (d′) ∈ D0 such that f ∈ Hom(d′).
Define d′ to be equal to d/(1 + f 2) on coz d and 0 otherwise; then d′ ∈ C(X). Since
coz d′ = coz d, a dense set, (d′) ∈ D0. Finally, consider any member of (d′); it has the
form hd′ for h ∈ C(X). The function fhd′ = [f/(1 + f 2)]hd belongs to C(coz d) and,
clearly, it extends continuously to all of X. Thus, f ∈ Hom(d′).

Thus Q(X) is the ring of all continuous functions on the dense open sets in X, and
Qcl(X) is the ring of all continuous functions on the dense cozero-sets in X.

Corollary. Q(X) is regular.

Proof. C(X) is semi-prime. Apply Theorem 1.11.

Remark. It is interesting to prove this directly. If f ∈ Q(X), then f ∈ C(V ) for some
dense open V . Define g(x) = 1/f(x) for x ∈ coz f , and g(x) = 0 for x ∈ int Z(f). Then
g is continuous on a dense open set, and f 2g = f .

2.7. Elaborations. If B is any ring of quotients of C(X), so that B ⊂ Q(X), then
B is a subring of a direct limit of rings of continuous functions. More explicitly, B =
lim→ D(B ∩ Hom D) and Hom D ⊂ C(coz D), so that B is exhibited as a direct limit itself
of rings of continuous functions.

We can also consider any subring A of C(X). Putting

V =
⋃

D∈D0(A)

{V ∈ V0 : V ⊃ coz D},

we have
Q(A) = lim→ D∈D0(A) Hom D ⊂ lim→ D∈D0(A) C(coz D)

τ←− lim→ V ∈V C(V ) ⊂ lim→ V ∈V0 C(V ) = Q(X),

where τ is the restriction homomorphism. Thus, Q(A) is exhibited as a subring of a
homomorphic image of a subring of Q(X). The condition that τ be one-one is that coz D
be dense in V in each case. Hence we have:
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Corollary. Let A ⊂ C(X); then Q(A) ⊂ Q(X) if and only if all dense ideals in A
have dense cozero-sets.

Finally, we see as above that every ring of quotients of A is a ring of continuous
functions on open sets in X—and, when dense ideals have dense cozero-sets, on dense
open sets in X.

2.8 Theorem Q(Rn) 6= Q(R) for n > 1.

Remark. This result, due to J. G. Fortin and F. Rothberger, appears in Fortin’s McGill
thesis [Fortin (1963)]. The exposition below has benefited from some suggestions made
by A. W. Hager.

We shall use the following notation: if U is an open set in a space X, then eU denotes
the idempotent in Q(X) for which coz eU = U (that is, eU is equal to 1 everywhere on U
and to 0 on X − cl U). Also, in what follows, we use the same letter to denote a member
of Q(X) and any one of its representative functions defined on a dense open set in X.

Lemma 1. Let f ∈ Q(X) and let e be an idempotent in Q(X). Then the set cl f [coz e]
consists precisely of those r ∈ R such that for every ε > 0,

(1) there exists an idempotent eU in Q(X) satisfying:

(a) eU 6= 0,

(b) e · eU = eU ,

(c) eU · [ε2 − (f − r)2] ≥ 0.

Proof. By definition, cl f [coz e] is the set of all r ∈ R such that for every ε > 0,

(2) there exists x0 such that |f(x0) − r| ≤ ε and e(x0) = 1. Since (c) states that
|f(x)− r| ≤ ε whenever eU(x) = 1, it is clear that (1) implies (2).

Conversely, consider the set

U = coz e ∩ f←[(r − ε, r + ε)].

The corresponding idempotent eU clearly satisfies conditions (b) and (c). Because of (2),
it satisfies (a) as well. Thus, (1) holds.
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Lemma 2. If f 7→ f ′ is an isomorphism from Q(X) onto Q(X ′), then cl f [coz e] =
cl f ′[coz e′].

Proof. Any isomorphism carries R (the constant functions) onto R, identically; the
proof is like that in [Gillman & Jerison (1960), 1.9 and 1I]. Isomorphisms also preserve
order (since nonnegative functions are squares). The characterization of cl f [coz e] given in
Lemma 1 is thus an algebraic one, and shows that the set is preserved under isomorphisms.

Proof of Theorem. Assume that there exists an isomorphism f 7→ f ′ from Q(Rn)
onto Q(R), where n > 1. Let i denote the identity function on R (i(x) = x) and let h
denote the preimage of i in Q(Rn) (h′ = i).

First we show that h cannot be constant on any nonvoid open set G. Suppose, on the
contrary, that h[G] = {r0}. Then cl h[coz eG] = {r0}. By Lemma 2, cl i[coz e′G] = {r0};
then coz e′G is a single point, which is absurd.

Accordingly, we can find a connected open set S in the domain of h and points p and
q in S such that h(p) < h(q). Choose disjoint connected open sets U and V in S whose
closures contain both p and q. (Here we need n > 1.) The connected sets cl h[U ] and
cl h[V ] contain both h(p) and h(q), and hence

(3) cl h[U ] ∩ cl h[V ] contains the entire interval [h(p), h(q)].

On the other hand, since U ∩ V = ∅, we have eU · eV = 0, whence e′U · e′V = 0, and
therefore coz e′U ∩ coz e′V = ∅, from which it follows that

(4) cl coz e′U ∩ cl coz e′V is nowhere dense.

Since cl h[U ] = cl h[coz eU ] = cl coz e′U and, similarly,
cl h[V ] = cl coz e′V , the results (3) and (4) are contradictory. This completes the proof

of the theorem.



3. Equalities Among Various
Rings of Quotients of C(X)

3.1. Preliminaries. We let Q∗(X) and Q∗
cl(X) denote the subrings of all bounded

functions in Q(X) and Qcl(X), resp. Evidently, C∗(X) ⊂ Q∗
cl(X) ⊂ Q∗(X).

Continue means to extend continuously; continuation, continuous extension.

A subspace S of X is said to be C-embedded in X if every function in C(S) can be
continued to X; similarly, S is C∗-embedded if every function in C∗(S) can be continued
to X. C-embedding implies C∗-embedding, but not conversely. (See [Gillman & Jerison
(1960)] for a full discussion of this and related matters.)

As is well known, each (completely regular) space X has a compactification βX, unique
up to homeomorphism, in which X is C∗-embedded. (βX is known as the “Stone-Čech”
compactification of X.) More generally, any continuous mapping from X to a compact
space Y has a continuation from βX into Y .

Since C∗(βX) = C∗(X), we have Q(βX) = Q(X) and Qcl(βX) = Qcl(X).

The condition C(X) = C∗(X) defines X as pseudocompact . Compact spaces are
pseudocompact, but not conversely. (A compact space is a Hausdorff space in which
every open cover has a finite subcover.)

The device of continuing a function from an open set U to a dense open set by assigning
it the value 0 on X − cl U has several helpful consequences: if all dense open sets are C-
embedded, or C∗-embedded, or pseudocompact, then all open sets are C-embedded, or
C∗-embedded, or pseudocompact, resp.

N denotes the countably infinite discrete space.

3.2. The space ∆∗. Pick an uncountable discrete space ∆ and let ∆∗ = ∆ ∪ {∞}
denote its one-point compactification. This space will be useful in several examples.

Neighborhoods of ∞ are the complements of finite subsets of ∆. It follows that all
infinite sets have ∞ as a limit point.

Another consequence is that every nonvoid set, being a Gδ, meets ∆. Therefore, no
proper cozero-set in ∆∗ is dense. In particular, ∆ is not a cozero-set in ∆∗.

Let E = (en) be a sequence of distinct points in ∆. If f(en) = 1/n, and f(x) = 0 for
x ∈ ∆∗ − E, then f is continuous; hence E is a cozero-set in ∆∗. A function on E that
assumes distinct constant values on complementary infinite sets cannot be continued to
the point ∞; consequently, the cozero-set E is not C∗-embedded in ∆∗. Likewise, ∆ is
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not C∗-embedded.

3.3. Q(X) and Qcl(X). The equality Q(X) = Qcl(X) means that every continuous
function on a dense open set in X can be defined on a dense cozero-set (2.6); similarly,
Q∗(X) = Q∗

cl(X) means that every such bounded function can be so defined.

Theorem. Q(X) = Qcl(X) if and only if Q∗(X) = Q∗
cl(X).

Proof. The necessity is trivial. Conversely, given h ∈ C(V ), where V is dense and open
in X, put h′ = 1/(1 + h2); then h′ ∈ C∗(V ) and hh′ ∈ C∗(V ). By hypothesis, there
exist f, g ∈ C(X) such that h is defined on coz f and hh′ on coz g. Since h′ has no zeros,
h = (hh′)/h′ is defined on coz f ∩ coz g.

If X is a metric space, then Q(X) = Qcl(C)—for in a metric space, every open set is
a cozero-set.

The space ∆∗ satisfies Q 6= Qcl, since ∆ is not C∗-embedded in ∆∗, the only dense
cozero-set in ∆∗.

3.4. Qcl(X) and C(X). The equality Qcl(X) = C(X) means that every dense cozero-
set in X is C-embedded, hence closed (since 1/f ∈ C(coz f).) Therefore Qcl(X) = C(X)
if and only if no proper cozero-set in X is dense.

Q∗
cl(X) = C∗(X) means that every dense cozero-set in X is C∗-embedded.

Obviously, Qcl = C implies Q∗
cl = C∗. The space βN satisfies Q∗

cl = C∗ but Qcl 6= C
(since N is a dense cozero-set).

Qcl(X) = C(X) does not imply that all cozero-sets in X are C∗-embedded (i.e., that X
is an “F -space” [Gillman & Jerison (1960), 14.25]); the space ∆∗ is an example (supplied
by Henriksen, simpler than the original one).

3.5. Q(X) and C(X). The equalityQ(X) = C(X) means that every dense open set is
C-embedded, whence every open set is C-embedded. This requires that X be extremally
disconnected (every open set is C∗-embedded [Gillman & Jerison (1960), 1H]) and a
P -space (every cozero-set is C-embedded [Gillman & Jerison (1960), 14.29]). Since C∗-
embedding in a P -space implies C-embedding (as follows from [Gillman & Jerison (1960),
1.18]), the converse holds as well.

It is known that extremally disconnected P -spaces of reasonable cardinal (not large
enough to admit a 2-valued measure) are discrete [Gillman & Jerison (1960), 12H]; for
“practical” purposes, then, Q(X) = C(X) if and only if X is discrete.

Q∗(X) = C∗(X) means that every dense open set is C∗-embedded, i.e., that X is
extremally disconnected.

The space βN satisfies Q∗ = C∗ but Q 6= C.
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3.6. Q(X) and Q∗(X). The equality Q(X) = Q∗(X) means that every dense open
set is pseudocompact, whence every open set is pseudocompact. This requires that X
be finite; for else some f ∈ C(X) assumes arbitrarily small positive values [Gillman &
Jerison (1960), 3L], whence a/f ∈ C(coz f) is unbounded.

Qcl(X) = Q∗
cl(X) means that every dense cozero-set is pseudocompact. Hence X is

pseudocompact and no proper cozero-set is dense (since 1/f ∈ C(coz f) is bounded away
from 0, whence coz f is closed).

∆∗ is an infinite compact space containing no proper dense cozero-set (3.2). βN−N
is another such space [Gillman & Jerison (1960)].

3.7. Dense subspaces. Let S be a dense subspace of Y . The condition that Q(S) =
Q(Y ) is that every continuous function on a dense open set in S can be defined on some
dense open set in Y . Similarly, Qcl(S) = Qcl(Y ) means that every continuous function
on a dense cozero-set in S can be defined on a dense cozero-set in Y .

In 3.12 we shall present an example in which Q(S) 6= Q(Y ) as well as an example
where S is not open but Q(S) = Q(Y ).

Q(S) = Q(Y ) does not imply Qcl(S) = Qcl(Y ), even for S open. For instance,
Qcl(∆) = Q(∆) = Q(∆∗) 6= Qcl(∆

∗).
The above conditions state that for each dense open (or cozero-) set U in S and for

each h ∈ C(U), there exist a dense open (or cozero-) set W in Y and a function g ∈ C(W )
such that g|W∩U = h|W∩U . It is not required that W ⊃ U ; indeed, we shall present an
example in 3.12 in which for a particular h, no W ⊃ U exists.

First, however, we consider the important case S = X, Y = βX. We remark that in
general, X is not open in βX; in fact, X is open in βX if and only if X is locally compact
[Gillman & Jerison (1960)].

3.8 Theorem Every continuous function on a dense open set V in X can be contin-
ued to an open set (⊃ V ) in βX. Every continuous function on a dense cozero-set in X
can be continued to a cozero-set in βX.

Proof. Given h ∈ C(V ), define D = h−1C(βX); then h ∈ Hom(D, C(βX)). By Lemma
2.5, h ∈ C(cozβX D). By (4) of 2.3, coz D ⊃ V. In case V is a cozero-set cozX f, we define
d = f/(1 + f 2 + h2); then d ∈ D, V ⊂ cozβX d ⊂ coz D, and h ∈ C(coz d).

Corollary. C(X) = lim→ W C(W ), W ranging over all cozero-sets in βX that contain
X.

Explicitly, each h ∈ C(X) can be continued to coz d, where d = 1/(1 + h2). In the
notation of [Gillman & Jerison (1960), 8B], coz d is the space υhX; thus,

C(X) = lim→ h∈C(X) C(υhX).
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3.9. Irreducible functions. A continuous function defined on a subspace of X will
be called irreducible if it cannot be continued further in X.

Every continuous function on a dense set S has an irreducible continuation; the union
h of all its continuations. (To see that h is continuous, note that each c ∈ dom h has a
neighborhood (in X) within which h(x) is near h(s) for s ∈ S and hence near h(y) for
y ∈ dom h.)

Every continuous function on an open set U has a continuation to a dense open set
(obtained by assigning it the value 0 throughout X − cl U) and hence has an irreducible
continuation.

A continuous function f can fail to have an irreducible continuation. For this, it is
sufficient that f be defined on a closed set E whose complement D is discrete and that f
have no continuation to all of X: for then if f ′ is any continuation of f , there is an isolated
point outside its domain, and f ′ can be continued further to that point. As an example,
let E be the real axis, D the rational points in the upper half plane, and X = E∪D, with
the relative topology of the plane enlarged as follows: each point of D is isolated, and
the neighborhoods of a = (x, 0) include all sets {b ∈ D : |b− (x, r)| < r} ∪ {a} for r > 0.
One can check that X is completely regular (cf. [Gillman & Jerison (1960), 3K]). Clearly,
the countable set D is dense in X, and E is discrete; hence X admits just c continuous
functions, while E admits 2c, so that some function on E has no continuation to X. (For
alternative examples, see [Gillman & Jerison (1960), 5I or 6Q].)

3.10 Theorem

(1) The domain of an irreducible function is a dense Gδ.

(2) Conversely, if X is locally connected, then each dense, countable intersection of
cozero-sets is the domain of some bounded irreducible function.

Proof. (1). This result is familiar from classical analysis. Let f ∈ C(S) be irreducible;
then S is dense. To prove that S is a Gδ, one first defines osc f on X:

osc f(x) = inf
U

[sup f(U ∩ S)− inf f(U ∩ S)],

U ranging over all neighborhoods of x. Then osc f is upper semi-continuous and

S = {x ∈ X : osc f(x) = 0} =
⋂

n>0

{x ∈ X : osc f(x) < 1/n},

so that S is a Gδ.
(2). Let S =

⋂
n>0 cozX gn be dense. Define fn = sin(1/gn) on coz gn; then fn ∈

C(coz gn) and |fn| ≤ 1. Next, we show that for each x ∈ Z(gn), osc fn(x) = 2. Let U
be any connected neighborhood of x. Then gn(U) is a connected set in R, containing
0 (because x ∈ U), and containing points 6= 0 (because the dense set coz gn meets U).
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Therefore gn(U ∩ coz gn) contains an open interval having 0 as an endpoint. This implies
that osc fn(x) = 2.

Now define f =
∑

n>0 3−nfn on S; then f ∈ C∗(S). To prove that f is irreducible, we
show that osc f(s) > 0 for every x /∈ S. Given such x, let m be the smallest integer such
that x ∈ Z(gm). Then

osc f(x) ≥ 3−m osc fm(x)− ∑
n>m

3−n osc fn(x)

≥ 2 · (3−m − ∑
n>m

3−n) = 3−m.

3.11 Corollary In a locally connected metric space, each dense Gδ is the domain
of some bounded irreducible function.

Proof. Every open set in a metric space is a cozero-set.

Remark. In (1), we cannot derive the stronger conclusion that the domain is a dense,
countable intersection of cozero-sets. For example, ∆ is not C∗-embedded in ∆∗, the only
cozero-set containing it.

In (2), the hypothesis of local connectedness cannot be wantonly discarded. In the
space βN, for example, N is a dense cozero-set, but every bounded function on N continues
to all of βN.

3.12. Examples. (See 3.7.) (1). S dense in Y but Q(S) 6= Q(Y ). Let Y = R and let
S be the subspace of irrationals. Since S is a dense Gδ in the locally connected metric
space R, it is the domain of some irreducible function h; then h is continuous on the dense
open set S in S. If V is dense and open in R, then h|V ∩S cannot be continued to any
rational point—else h itself could be continued to that point (see 3.9). Since V contains
rationals, no function in C(V ) can agree with h on V ∩ S.

(2). S dense (but not open) in Y , with Q(S) = Q(Y ) = Qcl(S) = Qcl(Y ), but for some
dense cozero-set U in S, some h ∈ C(U) has no continuation to a dense open set (⊃ U)
in Y . Let Y be a closed disc in the plane and S the set int Y plus a boundary point of Y .
Then S is dense in the metric space Y . To show that Q(S) = Q(Y )[= Qcl(S) = Qcl(Y )],
let V be dense and open in S and let f ∈ C(V ). Then V ∩ int Y is dense and open in Y
and f ∈ C(V ∩ int Y ).

Now observe that S is a dense Gδ in the locally connected metric space Y . Let h be
an irreducible function with domain S; then h is continuous on the dense open set U = S
in S. But h has no continuation to an open set in Y (note that S itself is not open in Y ),
because it has no proper continuation to anything in Y .



4. Various Operations on Q(X)

4.1 Definition If S(X) is any filter base of dense subsets of X, then

C[S] = lim→ S∈S C(S)

is defined as a ring of continuous functions (2.4). In this notation, Q(X) = C[V0(X)].
The subring of bounded functions is denoted C∗[S]. Clearly,

C∗[S] = lim→ S∈S C∗(S).

As in 2.3, we see that C[S] is a ring of quotients of C∗[S].
Let f ∈ C∗[S]; then f ∈ C∗(S) for some S ∈ S. The sup norm ‖f‖ = sups∈S |f(s)|

is determined by the values of f on any dense subset of S. Hence we may define the sup
norm of f in C∗[S] to be its norm in C(S) and denote it by the symbol ‖f‖. The sup
norm induces a natural metric (f, g) → ‖f − g‖ on C∗[S]. Then C∗[S] becomes a normed
algebra over R (not necessarily complete).

An equivalent metric on C∗[S] is

(f, g) → ‖ f − g

1 + |f − g|‖,

and the same expression defines a metric on all of C[S]. (Note, however, that multiplica-
tion in C[S] is not in general continuous—not even in C(X).) Because the two metrics
on C∗[S] are equivalent, we may deal with convergence in C[S] in terms of the natural
metric or sup norm. Evidently, C∗[S] is a closed set in the metric space C[S]. The metric
completion of C is denoted C .

Each ring C[S] is also a lattice with respect to the pointwise definition of order. If
every nonvoid subset with an upper bound in C has a supremum in C, then C is Dedekind-
complete. If C is Dedekind-complete, B ⊂ C, and every element of C is the supremum
of some subset of B, then C is the Dedekind completion of B.

4.2 Theorem Let S be a filter base of dense sets in X. The following is a necessary
and sufficient condition that C[S] be rationally complete:

Let (Ei)i∈I be any family of disjoint open subsets in X whose union is dense in X, let
(Si)i∈I be a subfamily of S, and let

T =
⋃

i∈I

(Ei ∩ Si)

24
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(whence T is dense in X); then C(T ) ⊂ C[S].

Proof. Necessity. Given g ∈ C(T ), Let D = g−1C[S]; then D is an ideal of C[S] and
g ∈ Hom D. We show that S is dense, from which it will follow that g ∈ Q(C[S]) = C[S].
Suppose 0 6= h ∈ C[S]. Then coz h meets the dense open set

⋃
i∈I Ei, hence meets some Ei,

and therefore meets Ei ∩Si (since Si ∩ dom h is dense). So h(x) 6= 0 for some x ∈ Ei ∩Si.
Choose d ∈ C(X) to vanish on a neighbourhood of X − Ei but not at x. The function
f equal to gd on Ei ∩ Si and 0 on X − Ei is continuous on (Ei ∩ Si) ∪ (X − Ei), and it
agrees with gd on the dense set T . But f ∈ C(Si) ⊂ C[S]. Therefore, gd ∈ C[S], i.e.,
d ∈ D. Obviously, hd 6= 0.

Sufficiency. Let ϕ ∈ Hom D, where D is a dense ideal in C[S]; we are to show that
ϕ ∈ C[S]. Represent each element of D by a specific function d defined on some member
of S. Evidently,

⋃
d coz d is dense in X (else D would have a nonzero annihilator in C(X)).

Pick Hd open in X such that coz d = Hd ∩dom d; then
⋃

d Hd is open and dense in X. By
Zorn’s Lemma, there exist disjoint open sets Ed ⊂ Hd such that

⋃
d Ed is also dense.

Now for each d, pick a representative ϕ(d), and define Sd = dom d ∩ dom ϕ(d) and

T =
⋃

d

(Ed ∩ Sd).

Then Sd ∈ S and, by hypothesis, C(T ) ⊂ C[S].

Consider any x ∈ T . There is a unique d such that x ∈ Ed ∩ Sd; define

g(x) =
ϕ(d)(x)

d(x)
.

This defines g on all of T . Since g is continuous on each of the open subsets Ed ∩ Sd of
T , it is continuous on T . So g ∈ C[S].

Finally, consider any d ∈ D. For every x ∈ T ∩ Sd,

g(x)d(x) =
ϕ(d′)(x)

d′(x)
d(x) = ϕ(d)(x) (x ∈ Ed′ ∩ Sd′).

Therefore gd agrees with ϕ(d) on a dense subset; hence gd = ϕ(d). Consequently, g = ϕ.

Remark. The inclusion C(T ) ⊂ C[S] does not imply T ∈ S, even when S is a filter.
Let Q denote the rationals1 and let S be all sets in R that contain Gδ’s containing Q.
Every function in C(Q) has an irreducible extension to a dense Gδ (3.9 and 3.10). But
Q /∈ S.

1The original used P for the rationals, presumably because they lacked a bold font
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4.3. Locally constant functions. We shall say that f ∈ C(S) is locally constant
provided that f←(r) is open in S for each r ∈ R. The locally constant functions in C(S)
form a ring L(S). We define

QL(X) = lim→ V ∈V0(X) L(V ).

Then QL(X) ⊂ Q(X). The set of functions in C(S) whose range is finite is denoted by
F (S). We define

QF (X) = lim→ V ∈V0(X) F (V ).

Since F (V ) ⊂ L∗(V ), we have QF (X) ⊂ Q∗
L(X). Theorem 3.8 leads to a proof that

QL(βX) = QL(X) and QF (βX) = QF (X).
The ring QL(X) is rationally complete. To see this, notice first that if D is a dense

ideal in QL(X), then coz D is dense in X; for if coz D misses a nonvoid open set G,
then the characteristic function χG on G ∪ (X−) cl G belongs to QL(X), is not zero, and
annihilates D. The result can now be inferred from the proof of sufficiency in Theorem
4.2; more directly, we may argue as follows. Let ϕ ∈ Hom D be given. For each r ∈ R,
define g(x) = r for all x in the open set

⋃

d∈D

⋃

06=s∈R

[d←(s) ∩ ϕ(d)←(rs)].

Then g is defined on a dense open set (denseness following from the denseness of coz D);
evidently, g is locally constant. Finally, one verifies without difficulty that for each d ∈ D,
gd agrees with ϕ(d) on a dense set.

QL(X) is a rational extension of QF (X) and hence is its rational completion. For
consider any h ∈ QL(X), h 6= 0. Then 0 6= h ∈ L(V ) for some dense open V , and there
exists r 6= 0 for which G = h←(r) is nonvoid. The function χG on V belongs to F (V ) and
0 6= h · χG ∈ F (V ) ⊂ QF (X).

4.4 Lemma If S ⊃ V0(X), then QL(X) and hence Q(X) are metrically dense in C[S],
and QF (X) and Q∗(X) in C∗[S]. Hence C[S] = QL(X) + C∗[S] = Q(X) + C∗[S].

Proof. The first assertion implies the last. It also implies that Q∗
L(X) is dense in C∗[S];

since, obviously, QF (X) is dense in Q∗
L(X), the second assertion follows.

To prove the first, let S ∈ S, g ∈ C(S), and an integer n > 0 be given; we are to
find V ∈ V0 and f ∈ L(V ) such that ‖g − f‖ ≤ 1/n. Let E denote the set of all integer
multiples of 1/n. For e ∈ E, the set

Ue = g←(e, e + 1/n) ∪ intS g←(e)

is open in S; choose Ve open in X such that Ue = Ve∩S. Since E is discrete, int g←(E) =⋃
e∈E int g←(e).

Next, U =
⋃

e∈E is dense in S; for if s ∈ S − U , then s /∈ int g←(E), i.e., every
neighbourhood of s meets g←(R− E) ⊂ U .
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Since S is dense in X, so, then, is U and hence so is V =
⋃

e∈E Ve.
Next, the open sets Ve are disjoint; for if e 6= e′, then Ve ∩ Ve′ ∩ S = Ue ∩ U ′

e = ∅,
whence Ve ∩ Ve′ = ∅, since S is dense. Therefore,

f(v) = e (v ∈ Ve, e ∈ E)

defines f as a locally constant function on V ∈ V0. Clearly, ‖g − f‖ ≤ 1/n.

4.5 Lemma If S is closed under countable intersection, then C[S] is metrically com-
plete.

Proof. Let (gn) be a Cauchy sequence in C[S]. Each gn belongs to C(S), where S =⋂
n dom gn ∈ S. Since C(S) is complete, limn gn exists in C(S).

A Baire space is one in wich countable intersections of dense open sets are dense.
Locally compact spaces and complete metric spaces are Baire spaces, as is well known.

G0(X) denotes the family of all dense Gδ’s in X. Clearly, in a Baire space, G0 is closed
under countable intersection.

4.6 Theorem Q(X) = C[G0(βX)]; and if X is a Baire space, then Q(X) = C[G0(X)].

Proof. Recall that Q(X) = Q(βX) = C[V0(βX)]. Since βX is compact, G0(βX) is
closed under countable intersection. By Lemma 4.4, Q(βX) is dense in C[G0(βX)]; and
by Lemma 4.5, the latter is metrically complete. This establishes the first assertion; the
second follows similarly.

4.7. The rings Q(X) and Q
∗
(X). We have just proved that Q(X) is a ring of con-

tinuous functions. We are therefore invited to consider its subring Q
∗
(X) of bounded

functions. From the relation Q∗(X) ⊂ Q
∗
(X), we get Q∗(X) = Q(X) ∩Q

∗
(X).

Since Q
∗
(X) is a closed set in Q(X), it is complete; therefore Q

∗
(X) is a Banach

algebra over R. Evidently, Q∗(X) is dense in Q
∗
(X); therefore,

Q∗(X) = Q
∗
(X).2

Since QL(X) = QL(βX), QL(X) is dense in Q(X), QF (X) is dense in Q
∗
(X), and

Q(X) = QL + Q
∗
(X) = Q(X) + Q

∗
(X) (Lemma 4.4).

In general, Q(X) 6= Q(X). For example, Q(R) 6= Q(R), as follows from Example (1)
in 3.12. Since C(R) is metrically complete, this can be written Q(C(R)) 6= Q(C (R)); thus
the operations of metric completion and rational completion need not commute. When
acting on Q∗(X), however, they do commute, as we now show.

2The original said Q∗(X) = Q∗(X).
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4.8 Theorem Q(X) is rationally complete. Hence Q(X) = Q(Q
∗
(X)) and Q

∗
(X) =

Q∗(Q
∗
(X)).

Proof. We verify the condition of Theorem 4.2—in fact, the following stronger result:
if Ei are open and disjoint and Si are Gδ’s, then T =

⋃
i(Ei ∩ Si) is a Gδ. We have

Si =
⋂

n Vi n, Vi n open (n = 1, 2, · · ·). Define

Tn =
⋃

i

(Ei ∩ Vi 1 ∩ · · · ∩ Vi n);

then Tn is open. Because the Ei are disjoint, T =
⋂

n Tn. So T is a Gδ.

4.9 Theorem Q(X) is the Dedekind completion of QL(X) and hence of Q(X). Like-
wise, Q

∗
(X)) is the Dedekind completion of QF (X) and of Q∗(X).

Proof. We observe that metric denseness implies order-denseness: if gn → h, then
rn = ‖h − gn‖ → 0 whence h = supn(gn − rn); therefore every element of Q is the
supremum of some subset of QL and every element of Q∗ is the supremum of some subset
of QF (4.7). Next, if Q is Dedekind-complete, then so is Q

∗
. Consequently, the last half

of the theorem is implied by the first.
Now let P be any nonvoid subset of Q = C[G0(βX)] with an upper bound u. In

seeking a supremum of P , we may assume that P ⊂ QL and u ∈ QL; furthermore, we
may assume that each f ∈ P takes irrational values only, while u takes rational values
only.

For integers n ≥ 0 and k ≥ 0, and for rational q, define

V n
q,k = u←(q) ∩ ⋃

f∈P

f←(q − k + 1

2n
, q − k

2n
).

Then V n
q,k is open in βX and

⋃
k V n

q,k = u←(q) ∩ ⋃
f dom f .

Next, define
W n

q,k = V n
q,k − cl

⋃

1<k

W n
q,i [= V n

q,k − cl
⋃

i<k

V n
q,i].

Then
⋃

k W n
q,k is dense in

⋃
k V n

q,k. Hence the set

W n =
⋃
q

⋃

k

W n
q,k

is dense in
⋃

q

⋃
k V n

q,k = dom u ∩ ⋃
f dom f . Consequently, W n is open and dense in βX.

Now put S =
⋂

n W n. Then S is a dense Gδ in βX: S ∈ G0(βX).
For each n and for each s ∈ S, there are unique q and k such that s ∈ W n

q,k; define

gn(s) = q − k

2n
(s ∈ W n

q,k).

This defines gn on S. Evidently, gn ∈ L(S) ⊂ C(S).
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Now let n ≥ 0 be given and consider any s ∈ S. There exist unique q and k for which
s ∈ W n

q,k. Since

W n
q,k ⊂ V n

q,k −
⋃

i<k

V n
q,i,

we have

gn(s) = q − k

2n
> f(s) for all f ∈ P

and

q − k + 1

2n
< f0(s) for at least one f0 ∈ P.

Therefore, letting g = pointwise sup P , we have

0 ≤ gn(s)− g(s) ≤ 1

2n
.

Hence, (gn) converges uniformly to g, g ∈ C(S), and g = sup P .

4.10 Lemma Given S ⊂ X and h ∈ C(S), with h ≥ 0, there exists B ⊂ C∗(X) such
that h(s) = supf∈B f(s) for all s ∈ S.

Proof. For s ∈ S and ε > 0, let Vs,ε be a neighbourhood of s in X such that

sup h(Vs,ε ∩ S)− inf h(Vs,ε ∩ S) < ε.

Choose gs,ε ∈ C∗(X) such that gs,ε(s) = 1, g(X − Vs,ε) = 0 and 0 ≤ gs,ε ≤ 1; and define

fs,ε(x) = inf h(Vs,ε ∩ S) · gs,ε(x) (x ∈ X).

Then fs,ε ∈ C∗(X), fs,ε|S ≤ h, and

fs,ε(s) = inf h(Vs,ε ∩ S) ≥ h(s)− ε.

Hence for all s ∈ S,
h(s)− ε ≤ fs,ε(s) ≤ sup

t∈S
ft,ε(s) ≤ h(s).

Therefore, h(s) = supt,ε ft,ε(s).

4.11 Theorem The Dedekind completion of C(X) is the ring of all ”C-bounded” func-
tions in Q(X)—i.e., all h ∈ Q(X) for which there exists g ∈ C(X) with |h| ≤ g. Likewise
the Dedekind completion of C∗(X) is Q

∗
(X).

Proof. Clearly, the ring of C-bounded functions is Dedekind-complete, since Q is. If
h ∈ Q is C-bounded (resp. bounded), then h + g ≥ 0 for some g ∈ C (resp. C∗). By the
lemma, there exists B ⊂ C∗ such that h + g = sup B. Then h = supf∈B(f − g).
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4.12 Corollary [Stone-Nakano] X is extremally disconnected if and only if C(X) is
Dedekind complete, and if and only if C∗(X) is Dedekind-complete.

Proof. The result is well-known (see, e.g., [Gillman & Jerison (1960), 3N and 6M]), but
here we have another proof. Since C∗ ⊂ Q∗ ⊂ Q

∗
and C∗ is metrically complete, C∗ = Q∗

if and only if C∗ = Q
∗
—that is X is extremally disconnected (3.5) if and only if C∗ is

Dedekind-complete (4.11). Next, Dedekind completeness of C obviously implies that of
C∗. Conversely, assume Q

∗
= C∗, and let h ∈ Q be C-bounded. Then |h| + 1 ≤ g for

some g ∈ C, whence f = h/g ∈ Q
∗

= C∗ so that h = fg ∈ C.



5. Maximal ideal spaces of C[S]
and C∗[S]

5.1. Lattice homomorphisms. Let A be a ring, I an ideal in A. The image of a
(∈ A) in A/I under the canonical homomorphism is denoted by I(a). When A and A/I are
lattices and the canonical homomorphism preserves the lattice operations, then it is called
a lattice homomorphism. In particular, under a lattice homomorphism, |I(a)| = I(|a|).
(By definition, |a| = a ∨ −a. For more details, see 9.6.)

M(A) denotes the set of all maximal ideals in A.

Let S be a filter base of dense sets in a space X. For brevity, we shall write

C = C[S], C∗ = C∗[S]

M = M(C), M∗ = M(C∗).

Lemma. All homomorphisms C → C/M (M ∈ M) and C∗ → C∗/M (M ∈ M∗) are
lattice homomorphisms, and the residue class fields are totally ordered fields containing R
as the image of the constant functions. Moreover, C∗/M = R.

Proof. As in [Gillman & Jerison (1960), 5.5 and 5.8].

In general, the fields C/M are non-archimedean, i.e., they contain infinitely large
elements (> n for every integer n) and infinitely small elements (> 0 but < 1

n
for every

positive integer n).

5.2 Theorem For f ∈ C∗, ‖f‖ = supM∈M∗ |M(f)|, so that ‖f‖ is determined alge-
braically. Consequently, any isomorphism of C∗ to a ring of functions is an isometry.

Proof. Since |f | ≤ ‖f‖, each |M(f)| ≤ ‖f‖ and therefore, s = supM |M(f)| ≤ ‖f‖.
On the other hand, for any r ≤ ‖f‖, there exists x with |f(x)| > r. Then (|f | − r) ∧ 0
vanishes on a neighborhood of x; hence it is a non-unit of C∗ and therefore belongs to
some maximal ideal M ; then |M(f)| ≥ r, whence s ≥ r. This implies that s ≥ ‖f‖.
Consequently, s = ‖f‖.
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5.3. The Stone topology. The Stone topology on M(A) has for basic open sets
those sets of the form

Γ(a) = {M ∈ M(A) : M(a) 6= 0} (a ∈ A).

On M or M∗ the sets {M : M(f) 6= 0} are open, because M(f)− r = M(f − r); and
because of the lattice homomorphism, {M : M(f) < r} is the open set {M : M(f ∧ r) 6=
r}.

On M∗, we define the real-valued functions

f̂(M) = M(f) (f ∈ C∗, M ∈M∗).

The weak topology on M∗ determined by these functions has for a base all sets of the
form f̂←(r, s); since f̂←(r, s) = (f̂ − t)←(−ε, ε), where ε = (s − r)/2, t = (s + r)/2, the
sets of the form ĝ←(−ε, ε) are themselves a base.

Lemma. The weak topology on M∗ coincides with the Stone topology and is compact.

Proof. f̂←(−ε, ε) is the open set {M : |M(f)| < ε} in the Stone topology; and {M :
M(f) 6= 0} is the open set f̂←(R− {0}) in the weak topology. So the topologies agree.

M∗ is a Hausdorff space, because the continuous functions f̂ distinguish points. Since
C∗ is a commutative ring with 1, every open cover of M∗ has a finite subcover, as is well
known. (A cover by sets {M : fα 6∈ M} means that the fα generate the whole ring (1),
whence some finite subset generates (1).) Therefore M∗ is compact.

5.4 Theorem The mapping f 7→ f̂ is an isomorphism of C∗[S] onto a dense subal-
gebra of C∗(M∗) which contains all constant functions.3

Proof. The mapping is obviously a homomorphism onto a subalgebra of C∗(M∗) con-
taining the constants. If f 6= 0, then by Theorem 5.2, ‖f̂‖ 6= 0, whence f̂ 6= 0; therefore
the mapping is one-one. Since the subalgebra distinguishes points, it is dense, by the
Stone-Weierstrass theorem.

5.5 Theorem For each space X, there exists a compact, extremally disconnected space
K—namely, M(Q

∗
(X))—such that Q

∗
(X) ∼= C(K).

Proof. Since Q
∗
(X) is metrically complete, it is isomorphic with C∗(K), by the preced-

ing theorem; and K is compact (Lemma 5.3). Since Q
∗
(X) is Dedekind-complete (4.11),

K is extremally disconnected (4.12).
On taking rational completions, by the way, we get Q(X) ∼= Q(K) = Q(K) (Theorem

4.8) and hence Q
∗
(X) ∼= C(K) = Q∗(K) = Q

∗
(K). (Hence by 3.5, K is extremally

disconnected.)

3This statement clarifies the original.
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5.6. The function f̌ .

Lemma. Let a ∈ C/M , where M ∈ M. If |a| is not infinitely large, then there exists
a unique real number r such that |a− r| is either infinitely small or zero.

Proof. By hypothesis, the set {s ∈ R : s < a} is nonvoid and has an upper bound in R;
let r denote its supremum in R. For each positive integer n,

r − 1

n
< a < r +

1

n
,

whence |a− r| < 1
n
; therefore |a− r| is infinitely small or 0. Uniqueness of r is obvious.

Corollary. For each M ∈ M and f ∈ C∗, there exists a unique real number r such
that |M(f)− r| is either infinitely small or zero. (Cf. [Gillman & Jerison (1960), 7.6].)

Proof. There exists an integer m such that |f | ≤ m, whence |M(f)| ≤ m. So |M(f)| is
not infinitely large.

For each f ∈ C∗, we now define a real-valued function f̌ on M as follows:

f̌(M) = r,

where |M(f)− r| is infinitely small or zero.

Remark. Observe that f̌(M) < s implies M(f) < s but that M(f) < s implies only
that f̌(M) ≤ s.

5.7 Lemma

(1) For each M ∈M,

τ ∗(M) = {f ∈ C∗ : f̌(M) = 0}
is a maximal ideal in C∗.

(2) The weak topology on M (determined by the functions f̌) is Hausdorff.

(3) The mapping τ ∗ : M → M∗ defined in (1) is one-one and onto and satisfies f̌ =
f̂ ◦ τ ∗.
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Proof. (1). If |a| and |b| are infinitely small (in C/M), so is |a − b|; and if |c| is not
infinitely large, then |ac| is infinitely small. It follows that τ ∗(M) is an ideal. Obviously,
it is proper. To establish maximality, consider any f ∈ C∗ with f 6∈ τ ∗(M). Then
f 6∈ M , and so there exists h ∈ C such that M(hf) = 1. By assumption, |M(f)| is not
infinitely small; hence |M(h)| is not infinitely large, and so there exists a real number
r for which |M(h) − r| is infinitely small or zero. Evidently, r − 1 < M(h) < r + 1.
Hence for h′ = ((r − 1) ∨ h) ∧ (r + 1), we have h′ ∈ C∗ and M(h′) = M(h). Thus,
h′f − 1 ∈ M ∩ C∗ ⊂ τ ∗(M). This shows that τ ∗(M) is maximal.

(2). If M 6= M ′, there exist f ∈ M ∩ C∗ and g ∈ M ′ ∩ C∗ such that f + g = 1; then
f̌(M) = 0 6= f̌(M ′). This shows that the functions f̌ distinguish points—whence the
weak topology is Hausdorff—and that τ ∗ is one-one.

(3). We have just seen that τ ∗ is one-one. Given M∗ ∈M∗, consider the set

L = {(|f | − ε) ∨ 0 : f ∈M∗, ε > 0}.

Now if f1, · · · , fn ∈ M∗, then f 2
1 + · · ·+ f 2

n belongs to M∗, hence is not a unit of C∗, and
so is not bounded away from 0. Given ε1 > 0, · · · , εn > 0, let ε = min(ε1, · · · , εn); then

⋂

k

Z((|fk| − εk) ∨ 0) ⊃ {x : f 2
1 (x) + · · ·+ f 2

n(x) < ε2}

a nonvoid open set (in
⋂

k domfk). It follows that no linear combination in C of the
functions (|fk| − εk) ∨ 0 can be equal to 1. The set L therefore generates a proper ideal
in C and hence it is contained in some maximal ideal M .

For f ∈ M∗, we have (|f | − ε) ∨ 0 ∈ M , whence |M(f)| ≤ ε, for all ε > 0. Hence
f̌(M) = 0. Thus, M∗ ⊂ τ ∗(M)l by maximality, M∗ = τ ∗(M). So τ ∗ is onto.

As we have just seen, f̂(τ ∗(M)) = 0 implies f̌(M) = 0. Hence, clearly, f̂(τ ∗(M)) = r
implies f̌(M) = r for all r. Thus, f̌ = f̂ ◦ τ ∗.

5.8 Theorem The weak topology onM coincides with the Stone topology and is com-
pact; and the mapping τ ∗ : M→M∗ is a homeomorphism.

Proof. Since f̂(−ε, ε) =
⋃

0<δ<ε{M : |M(f)| < δ} (see 5.6, Remark) the Stone topology
on M contains the Hausdorff weak topology. Since C is a commutative ring with 1, M
is compact in the Stone topology. Therefore the identity mapping from M in the Stone
topology to M in the weak topology is a homeomorphism.

Because each function f̂ · τ ∗(= f̌) is continuous and the functions f̂ determine the
topology ofM∗ (5.3), τ ∗ is continuous (see, e.g., [Gillman & Jerison (1960), 3.8]). Since τ ∗

is one-one from the compact space M to the Hausdorff space M∗, it is a homeomorphism.
The proofs here of 5.7 and 5.8 give information about the behavior of functions. The

homeomorphism between M and M∗ will also follow from Theorem 10.18 below, whose
proof has a more algebraic flavor. (To apply 10.18, note that C∗ is semi-simple (as is
easily seen) and that M∗ is Hausdorff (5.3).)
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5.9 Corollary The maximal ideal spaces of Q(X) and Q∗(X) are homeomorphic;
so are those of Q(X) and Q

∗
(X).

So are those of C(X) and C∗(X) as is well known [Gillman & Jerison (1960)].
We now consider a family S ′ ⊃ S such that C∗[S] is metrically dense in C∗[S ′]. With

C, C∗,M and M∗ as before, we also put C ′ = C[S ′],M′ = M(C ′), C ′∗ = C∗[S ′], and
M′∗ = M(C ′∗).

5.10 Theorem If C∗ is metrically dense in C ′∗, thenM∗ is homeomorphic withM′∗,
under the mapping σ : M 7→ clC′∗ M . Hence M,M′,M∗, and M′∗ are all homeomorphic.

Proof. Because of continuity, cl M contains sums and products—i.e., it is an ideal. For
maximality, we show that C ′∗/ cl M is the field R. Given f ′ ∈ C ′∗, choose fn ∈ C∗ with
fn → f ′. By 5.1, rn = M(fn) ∈ R. Since |rm − rn| = M(|fm − fn|) ≤ ‖fm − fn‖, (rn) is a
Cauchy sequence in R and hence converges to some r ∈ R. The sequence (fn − rn) in M
then converges to f ′ − r and so f ′ − r ∈ clM .

Thus, σ maps M∗ into M′∗. Obviously it is one-one. We prove that σ is onto. Given
any M ′ ∈ M ′∗, define M = M ′∩C∗. Evidently, M is an ideal in C∗. For f ∈ C∗, we have
r = M ′(f) ∈ R, by 5.1, whence f−r ∈ M ′∩C∗ = M . Therefore, C∗/M = R, and so M is
a maximal ideal in C∗. Now, we observe that cl M ′ is an ideal (again, by continuity) and
proper (since the 1

2
-neighboorhood of 1 contains only units); by maximality cl M ′ = M ′.

So we have cl M ⊂ cl M ′ = M ′; since cl M is maximal, clM = M ′. Thus, σ is onto.
Given f ′ ∈ C ′∗ and ε > 0, let f ∈ C∗ satisfy ‖f ′ − f‖ < ε; then on M′∗, |f̂(M ′)| <

ε implies |f̂ ′(M ′)| < 2ε. Therefore the functions f̂ , for f ∈ C∗ alone, determine the
topology of M′∗. Since M(f) = (cl M)(f), σ carries the basic open set {M : |f̂(M)| < ε}
in M∗ onto the basic open set {cl M : |f̂(cl M)| < ε} in M′∗. Consequently, σ is a
homeomorphism.

5.11 Corollary For any space X, the maximal ideal spaces of Q(X), Q∗(X), Q(X),
and Q

∗
(X) are all homeomorphic.



6. Maximal Ideal Spaces of
Subalgebras of C∗(X)

6.1. z-determining subalgebras. Let A be a subalgebra of C∗(X): we shall use
this term to include the condition R ⊂ A.

An ideal I in A for which Z(I) is nonempty is said to be fixed . For each x ∈ X, the
set

Mx = {f ∈ A : f(x) = 0}

is a (fixed) maximal ideal in A whose residue field is R; for the mapping f → f(x)
(f ∈ A) is an epimorphism of A onto R. When A distinguishes the points of X, the
mapping x → Mx from X to the fixed maximal ideals is one-one.

For S ⊂ X, we write

MS = {Mx : x ∈ S}.

In particular, MX denotes the set of all fixed maximal ideals in A.

We shall say that the subalgebra A is z-determining if the zero-sets of A form a
base for the closed sets in X, i.e., if every closed set is an intersection of zero-sets of A.
In particular, C∗(X) itself is z-determining. Any z-determining subalgebra determines
the topology of X (i.e., as its weak topology). On the other hand, the polynomials in
C∗([0, 1]), for example, determine the topology of [0, 1] but are not z-determining. Also, a
z-determining subalgebra need not be dense. An example is the algebra of all f ∈ C∗(X)
for which f(p) = f(q), where p and q are fixed distinct points of βX −X. (This follows
from the Stone-Weierstrass Theorem.)

6.2 Lemma If X is compact and if the subalgebra A distinguishes points and is a sub-
lattice of C∗(A), then A is z-determining.

Proof. Let F be a closed set in X and let p ∈ X−F . For each x ∈ F there exists fx ∈ A
such that fx(p) > 0 and fx(x) < 0. Define gx = fx∨0. Then gx ∈ A, gx(p) > 0, and Z(gx)
is a neighborhood of x. A finite number of these zero-sets—say Z(gx1), · · · , Z(gxn)—cover
F . Then Z(gx1 · · · gxn) contains F but not p. Thus, F is an intersection of zero-sets of
A.

36
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6.3. The Stone Topology. Recall that M(A) denotes the set of all maximal ideals
in A. For f ∈ A, we put

Γ(f) = {M ∈ M(A) : f 6∈ M}.
The sets Γ(f) constitute a base for the Stone topology on M(A).

Lemma. Let A be a subalgebra of C∗(X).

1. The subspace MX of fixed maximal ideals in A is dense in M(A).

2. If X is compact, then MX =
⋂

Z(f)=∅ Γ(f).

Proof. (1). If the basic open set Γ(f) in M(A) is not void, then f 6= 0; pick x with
f(x) 6= 0; then Mx ∈ Γ(f).

(2). For each x ∈ X, Z(f) = ∅ implies f 6∈ Mx, i.e., Mx ∈ Γ(f); so Mx ∈ ⋂
f Γ(f).

Therefore MX ⊂ ⋂
f Γ(f). Conversely, for each M ∈ ⋂

f Γ(f), g ∈ M implies Z(g) 6= ∅; it
follows easily that the family {Z(f) : f ∈ M} has the finite intersection property. Since X
is compact, there exists x ∈ Z(M). Then M ⊂ Mx and therefore M = Mx. Consequently,⋂

f Γ(f) ⊂ MX .

6.4. Convexity. We shall say that the subalgebra A is convex if every element ≥ 1
in A is a unit of A. In case X is pseudocompact, this is equivalent to: for f ∈ A,
Z(f) = ∅ only if f is a unit of A. Indeed, the latter assertion trivially implies convexity.
Conversely, if Z(f) = ∅, then by pseudocompactness, f 2 ≥ r for some r > 0; then
f 2/r ≥ 1 and convexity implies that f is a unit.

Theorem. If X is compact, then the subalgebra A of C∗(X) is convex if and only if
all the maximal ideals in A are fixed.

Proof. If A is convex, then Z(f) = ∅ implies that f is a unit (since X is compact), so
that Γ(f) = M(A); by the lemma, MX = M(A). Conversely, if MX = M(A), then by the
lemma, Z(f) = ∅ implies that f belongs to no maximal ideal, whence f is a unit.

Corollary. If X is compact, then A is convex if and only if every proper ideal in A
is fixed.

Proof. Under convexity, a proper ideal is contained in a maximal ideal Mx. This yields
the necessity; the converse is trivial.
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6.5 Theorem The subalgebra A of C∗(X) is z-determining if and only if X is home-
omorphic with MX under the mapping x → Mx. Hence if X is compact, A is z-
determining, and M(A) is Hausdorff, then the homeomorphsim carries X onto all of
M(A).

Proof. If A is z-determining, then the family of all sets Z(f) for f ∈ A, is a base for
the closed sets in X. Since x ∈ Z(f) if and only if f ∈ Mx, the one-one mapping x → Mx

carries this family onto the family of basic closed sets {Mx : f ∈ Mx} (f ∈ A) in MX .
Therefore it is a homeomorphism.

Conversely, consider any closed set F in X and any point p ∈ X − F . If the mapping
x → Mx is a homeomorphism, then Mp 6∈ MF and MF is closed in MX . Since Mp ∈ MX ,
this implies that Mp 6∈ clM(A)MF . Let Γ(f) be a basic neighborhood (in M(A)) of Mp

disjoint from MF ; then Z(f) contains F but not p. Thus, A is z-determining.
Under the additional conditions, the dense set MX in the Hausdorff space M(A) is

compact, hence closed, and hence all of M(A).

6.6. Examples. Let X = [0, 1].

1. If A is the algebra of all differentiable functions on X, then A is convex and z-
determining (but is not a lattice). Hence M(A) ≈ X.

2. If A is the algebra of all piecewise polynomials on X, then A is z-determining but
not convex. Hence not every maximal ideal is fixed. Indeed, the polynomial x− 2,
for instance, has no zeros and so belongs to no fixed maximal ideal, but it is not a
unit.

3. If A is the algebra of all rational functions on X, then A is convex, but not z-
determining.

6.7. Inverse limits. Let S = (Sa) be a filter base of dense sets in X. The index set
is directed, a ≤ b meaning Sa ⊃ Sb. The direct limit

C∗[S] = lim→ a C∗(Sa)

was defined with respect to the monomorphism

(1) fa → fb = fa ◦ πb
a (a ≤ b)

of C∗(Sa) into C∗(Sb), where πb
a denotes the injection of Sb into Sa. Now, fa and fb

have continuations to βSa and βSb, and πb
a has a continuation from βSb onto βSa (onto

because Sb is dense in βSa). Denote the extension by the original symbols; (1) holds in
the extension, because it holds on the dense set Sb. For like reason, πb

a ◦ πc
b = πc

a for
a ≤ b ≤ c. With respect to the extended mappings, we have

C∗[S] = lim→ a C∗(βSa).
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In addition we are invited to consider the inverse limit

K = lim← a βSa.

By definition, K is the subspace of
∏

a βSa consisting of all points x = (xa) for which
πb

a(xb) = xa (a ≤ b). As is well known, the projections πa from K to βSa satisfy πa = πb
a◦πb

(a ≤ b). Also, K, as the inverse limit of compact spaces, is compact; and in this case,
because all the mappings πb

a are onto, each πa is onto.
The members of C∗[S] are the elements of f = (fa) in

∏
a C∗(βSa) for which (1) holds.

Hence if f ∈ C∗[S] and x ∈ K, then fa(xa) is independent of a, and so

f ′(x) = fa(xa)

defines f ′ as a real-valued function on K.
These considerations lead to a new proof of Theorem 5.5.

6.8 Theorem The mapping f → f ′ is an isomorphism of C∗[S] onto a dense suba-
glebra and sublattice of C(K). Consequently, this subalgebra is z-determining, and M(C∗[S]) ≈
K.

Proof. Clearly, the mapping f → f ′ is a ring homomorphism. Fix a; since πa is onto,
the mapping is one-one. Also, the equation f ′ = fa ◦ πa holds for all f ; therefore f ′ is
the composition of two continuous functions and hence is continuous. Evidently, A =
{f ′ : f ∈ C∗[S]} is a subalgebra of C(K). If x 6= y in K, then xa 6= ya for some a and
then fa(xa) 6= fa(ya) for some fa ∈ C∗(βSa). Therefore A distinguishes points; by the
Stone-Weierstrass Theorem, A is dense. Clearly, f ′ ∨ g′ = (fa ∨ ga) ◦ πa = (f ∨ g)′ ∈ A;
therefore A is a sublattice of C(K). By Lemma 6.2, A is z-determining. Since M(A) is a
Hausdorff space (5.3), M(A) ≈ K, by Theorem 6.5.

Remark. More generally, if (Ka) is any inverse system of compact spaces with respect
to onto maps πb

a, then (C(Ka)) is a direct system of rings with respect to the monomor-
phisms (1), and B = lim→ a C(Ka) is isomorphic with a dense subalgebra and sublattice of
C(K), so that B is z-determining and M(B) ≈ K.

6.9 Theorem For each space X, the compact space

K = lim← S∈G0(βX) βS

(G0(βX) denoting the family of all dense Gδ’s in βX) is homeomorphic with lim← V ∈V0(βX) βV ,

with lim← V ∈V0(X) βV , with M(Q∗(X)), and with M(Q
∗
(X)); also K is extremally discon-

nected. Moreover, Q
∗
(X) ∼= C(K); thus

lim→ S∈G0(βX) C(βS) ∼= C(lim← S∈G0(βX) βS).

Finally Q(X) ∼= Q(K).
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Proof. Take C∗[S] in Theorem 6.8 as Q∗(X) and as Q
∗
(X) (see 4.6). The final assertion

and the fact that K is extremally disconnected follow as in 5.5.
A direct proof that lim← V ∈V0(βX) βV is extremelly disconnected appears in E. C. Wein-

berg’s thesis [Weinberg (1961)].



7. Invariant Norms

7.1. Hemi-norms. Let A be an algebra, by which we mean a commutative algebra
over R with unity element 1. By a hemi-norm on A, we shall mean a mapping ν: A →
[0,∞] such that for all a, b ∈ A and all r ∈ R,

(α) ν(ra) = |r| · ν(a) (r 6= 0 or ν(a) < ∞),

(β) ν(a + b) ≤ ν(a) + ν(b),

(γ) ν(ab) ≤ ν(a) · ν(b) (unless ν(a) · ν(b) is undefined)4,

(δ) ν(1) = 1,

(ε) ν(a) = 0 only if a = 0.

By (α) and (δ), ν(0) = 0. The restriction of ν to the subalgebra of elements of finite
hemi-norm is evidently a norm on that subalgebra.

Remarks. (i). We could assume only ν(1) < ∞, and then achieve (δ) by defining a
new hemi-norm ν ′ by: ν ′(a) = supb 6=0 ν(ab)/ν(b). (ii). More generally, A could be any
commutative ring with 1, condition (α) then applying only for r an integer.

7.2. Invariant norms. Let ν be a norm on A. For D ⊂ A, we define

νD(a) = sup06=d∈D
ν(ad)
ν(d)

(a ∈ A).

By (γ), νD(a) ≤ ν(a).
We say that the norm ν is invariant if νD = ν whenever D is a dense ideal in A.
More generally, consider an algebra B ⊃ A; For D ⊂ A and b ∈ B such that bD ⊂ A,

we define

νD(b) = sup0 6=d∈D

ν(bd)

ν(d)
.

4This condition was expressed somewhat differently in the original.
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7.3 Lemma Let ν be an invariant norm on A, let B be a ring of quotients of A, and
let b ∈ B. Then

νD(b) = νb−1A(b)

for each dense ideal D in A contained in b−1A.

Proof. Obviously, νD(b) ≤ νb−1A(b). In the other direction, consider any positive r < 1.
There exists 0 6= d ∈ b−1A such that

r · νb−1A(b) ≤ ν(bd)

ν(d)
.

Since ν is invariant, ν(bd) = νD(bd), and so there exists 0 6= d′ ∈ D such that

r · ν(bd) ≤ ν(bdd′)
ν(d′)

.

Since bd′ ∈ bD ⊂ A, ν(bd′) is defined and satisfies

ν(bd′) ≥ ν(bdd′)
ν(d)

;

consequently,

νD(b) ≥ ν(bd′)
ν(d′)

≥ ν(bdd′)
ν(d′) · ν(d)

≥ r · ν(bd)

ν(d)
≥ r2 · νb−1A(b).

This implies that νD(b) ≥ νb−1A(b).

7.4 Theorem An invariant norm ν on A has a canonical extension to a hemi-norm
ν on Q(A), defined by

ν (b) = νb−1A(b) (b ∈ Q(A)).

Proof. For a ∈ A, we have 1 ∈ A = a−1A; this implies that ν (a) ≥ ν(a) and hence that
ν (a) = ν(a). Therefore, ν is an extension of ν.

Evidently, ν satisfies conditions (α) and (δ) in the definition of hemi-norm.
(β). Given b1, b2 ∈ Q(A), define D = b−1

1 A ∩ b−1
2 A. Then D is a dense ideal in A

contained in (b1 + b2)
−1A. Applying the lemma and the fact that property (β) holds for

the norm ν, we get

ν (b1 + b2) = νD(b1 + b2) = sup
0 6=d∈D

ν((b1 + b2)d)

ν(d)

≤ sup
06=d∈D

ν(b1d)

ν(d)
+ sup

06=d∈D

ν(b2d)

ν(d)

= νD(b1) + νD(b2) = ν (b1) + ν (b2).
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(γ). Given b1, b2 ∈ Q(A), define D = (b1b2)
−1A ∩ b−1

2 A. Then D is a dense ideal in A
and b2D ⊂ b−1

1 A. Since ν (0) = 0, we may assume in the proof that b2 6= 0; then b2D 6= 0.
Again applying the lemma, and the fact that ν(0) = 0, we obtain

ν (b1b2) = νD(b1b2) = sup
0 6=d∈D

ν(b1b2d)

ν(d)

= sup
d∈D, b2d 6=0

ν(b1b2d)

ν(b2d)
· ν(b2d)

ν(d)

≤ sup
06=a∈b−1

1 A

ν(b1a)

a
· sup

06=d∈D

ν(b2d)

ν(d)

= νb−1
1 A(b1) · νD(b2) = ν (b1) · ν (b2).

(ε). If ν (b) = 0, then ν(bd) = 0 for all d ∈ b−1A. Thus, b · (b−1A) = 0. Since Q(A) is
a ring of quotients of A, b = 0.

7.5 Theorem Let ν be an invariant norm on A and define Q∗(A) = {b ∈ Q(A) :
ν (b) < ∞}.

(1) If A ⊂ B ⊂ Q∗(A), then ν |B is an invariant norm on B.

(2) Q∗(A) is the largest normed rational extension of A.

Proof.

(1) Let E be any dense ideal in B and consider any b ∈ B. By 1.4, E ∩ A is a dense
ideal in A and therefore D = E ∩ b−1A is a dense ideal in A. Since ν is an extension
of ν, we see that νD(b) ≤ νE(b). Using the lemma, we get

ν (b) = νD(b) ≤ νE(b) ≤ ν (b).

Therefore, ν |B is invariant.

(2) If B′ is a rational extension of A, then A ⊂ B′ ⊂ Q(A). Let ν ′ be a norm on B′

that extends ν. Then for any b ∈ B′,

ν (b) = νb−1A(b) = ν ′b−1A(b) ≤ ν ′(b) < ∞.

Therefore, b ∈ Q∗(A).
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7.6 Lemma If A is a subalgebra of C∗(X), D an ideal in A, and p ∈ coz D, then there
is a function d ∈ D such that

d(p) = ‖d‖ = 1.

Proof. Choose f ∈ D such that s = f(p) 6= 0. Since D is an ideal in the algebra A,
g = f 2/s2 ∈ D; evidently, g ≥ 0 and g(p) = 1. Let n be an integral upper bound for g.
The real polynomial

P (r) =
1

nn
r · (n + 1− r)n

satisfies P (r) ≥ 0 for 0 ≤ r ≤ n (in fact, 0 ≤ r ≤ n + 1). Also maxr P (r) = P (1) = 1.
Since D is an ideal in A, the function

d = P (g)

in C∗(X) belongs to D. For every x ∈ X, since 0 ≤ g(x) ≤ n, we have 0 ≤ d(x) ≤ 1;
also, d(p) = P (1) = 1. Consequently, ‖d‖ = 1.

7.7 Lemma If A is a subalgebra of C∗(Y ) and D is a dense ideal in A such that coz D
is dense in Y , then for each g ∈ C∗(Y ),

‖g‖ = ‖g‖D.

Proof. Since coz D is dense, ‖g‖ = supy∈coz D |g(y)|. Consequently, given ε > 0, there
exists p ∈ coz D such that |g(p)| > ‖g‖ − ε. By Lemma 7.6, there exists d ∈ D such that
d(p) = ‖d‖ = 1. Hence

‖g‖D ≥ ‖gd‖
‖d‖ = ‖gd‖ ≥ |g(p)d(p)| = |g(p)| ≥ ‖g‖ − ε.

This implies that ‖g‖D ≥ ‖g‖ and therefore that ‖g‖D = ‖g‖.

7.8 Theorem Let A be a subalgebra of C∗(X). Then for the following propositions:

(1) A is z-determining,

(2) A has a z-determining ring of quotients B in C∗(X),

(3) Each dense ideal in A has a dense cozero-set,

(4) The sup norm on A is invariant,

(5) A is metrically dense in C∗(X),

we have (1) ⇒ (2) ⇒ (3) ⇒ (4), and (4 and 5) ⇒ (3).
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Proof. (1) implies (2). Trivial.

(2) implies (3). Let D be a dense ideal in A. Consider any nonvoid basic open set
coz g, where g ∈ B. Since D is dense in B, we have gD 6= 0; therefore coz g meets coz D.
Thus, coz D is dense.

(3) implies (4). This is an immediate consequence of Lemma 7.7.

(4 and 5) implies (3). Let D be an ideal in A for which coz D is not dense in X; then
there exists g ∈ C∗(X) such that ‖g‖ = 1 and g(coz D) = 0. Since A is metrically dense,
there exists f ∈ A with ‖g− f‖ < 1/2; then ‖f‖ > 1/2, while |f(x)| < 1/2 for x ∈ coz D.
Hence for 0 6= d ∈ D, we have (noting that d vanishes outside of coz D),

‖fd‖
‖d‖ =

1

‖d‖ sup
x∈X

|f(x)d(x)| = 1

‖d‖ sup
x∈coz D

|f(x)d(x)|

≤ 1

‖d‖ sup
x∈coz D

|f(x)| · ‖d(x)‖ ≤ 1/2.

Consequently, ‖f‖D = sup06=d∈D
‖fd‖
‖d‖ ≤ 1/2 < ‖f‖; thus, the sup norm is not invariant.

7.9. Counterexamples. Let X = [0, 1].

(2) does not imply (1). Let A be the algebra of all functions f ∈ C∗(X) for which
f(0) = f(1). Obviously, A is not z-determining. (It does not even distinguish points.)
However, C∗(X) itself is a ring of quotients of A. For, if 0 6= g ∈ C∗(X), then there exists
p ∈ (0, 1) such that g(p) 6= 0. Pick f ∈ C∗(X) such that f(p) 6= 0 while f(0) = f(1) = 0;
then f ∈ A and 0 6= gf ∈ A.

(3) does not imply (2). Take A = R.

(5) does not imply (3); hence (5) does not imply (4). Let d be a function in C∗(X)
such that d←(r) contains an interval Ir for infinitely many r including r = 0; and let A be
the algebra generated by d and the polynomials. Then A is metrically dense in C∗(X).
Now, obviously, the principal ideal (d) in A does not have a dense cozero-set; but we shall
show that (d) is a dense ideal. Consider any g ∈ A for which gd = 0. Now g has the form

g =
∑n

k=0
pkd

k,

where the pk are polynomials. Since 0 = gd =
∑

k pkd
k+1, we have

∑
k pk(x)rk+1 = 0 for

all x ∈ Ir and hence for all x. For each x, then, the polynomial qx(y) =
∑

k pk(x)yk+1 has
infinitely many zeros; so all its coefficients pk(x) are zero. Thus each pk = 0 and therefore
g = 0. This shows that (d) is a dense ideal.
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7.10 Corollary (i) The sup norm on C∗(X) is invariant;

(ii) its canonical extension to Q∗(X) coincides with the sup norm on Q∗(X) and

(iii) is invariant.

(iv) Q∗(X) is the largest normed rational extension of C∗(X).

(v) The ring Q
∗
(X), with the sup norm, has no proper normed rational extension.

Proof. Since dense ideals in C∗(X) have dense cozero-sets, (i) is given in Theorem 7.8
(with A = C∗(X)). Assertions (iii) and (iv) now follow from 7.5.

To prove (ii), consider any g ∈ Q∗(X); then g ∈ C∗(V ) for some V dense and open in
X. Since D = g−1C∗(X) is a dense ideal in C∗(X), Lemma 7.7 (with A = C∗(X), Y = V )
yields ‖g‖D = ‖g‖, q.e.d.

To establish (v), we recall that Q
∗
(X) ∼= C(K) for suitable K (5.5 or 6.9). Hence by

(i), the sup norm on Q
∗
(X) is invariant. (Recall that by 5.2, the isomorphism preserves

the sup norm.) By Theorem 4.8, Q∗(Q
∗
(X)) = Q

∗
(X); therefore Q

∗
(X) has no proper

normed rational extension (7.5).

7.11 Theorem If A is a z-determining subalgebra of C∗(X), then QL(X) ⊂ Q(A) ⊂
Q(X). Consequently, Q(A) is dense in Q(X) and Q(X) = Q(A) + Q

∗
(X).

Proof. Consider any g ∈ QL(X) (see 4.3), and define D = g−1A. Given x ∈ dom g,
put r = g(x). Since g←(r) is open and A is z-determining, there exists d ∈ A such that
x ∈ coz d ⊂ g←(r). Then gd extends to r ·d ∈ A. Therefore d ∈ D and so x ∈ coz D. This
shows that coz D ⊃ dom g; therefore coz D is dense. Consequently, D is a dense ideal in
A and we have g ∈ Hom D ⊂ Q(A). Thus QL(X) ⊂ Q(A).

By Theorem 7.8, dense ideals in A have dense cozero-sets. Therefore Q(A) ⊂ Q(X)
(see 2.7). The remaining assertions follow from 4.7.

Remark. It is easily seen that the embedding of Q(A) in Q(X) of 2.7 preserves the sup
norm.

7.12. Another example of a non-invariant norm. Let B be the Banach alge-
bra of all continuously differentiable real functions on [0, 1], with norm

ν(f) = ‖f‖+ ‖f ′‖
(prime denoting derivative). Let D be the principal ideal generated by the function
i(x) = x; then every function in D vanishes at 0. Obviously, D is dense.

Given 0 6= d ∈ D, we have r = ‖d‖ > 0. If we look at a point x for which |d(x)| = r,
we see from the mean-value theorem that ‖d′‖ ≥ r/x ≥ r; consequently, ν(d) ≥ 2r. Next,

ν(id) = ‖id‖+ ‖(id)′‖ ≤ ‖id‖+ ‖id′‖+ ‖d‖ ≤ r + ν(d),
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so that
ν(id)

ν(d)
≤ r

ν(d)
+ 1 ≤ 3/2.

Therefore, νD(i) ≤ 3/2 < 2 = ν(i). Thus, ν is not invariant.



8. Quasi-Real Rings

8.1. Formally real rings. We shall say that a ring A (commutative, with 1) is
formally real if for all a1, . . . , an ∈ A,

∑
k a2

k = 0 implies all ak = 0. Obviously, a formally
real ring contains no nonzero nilpotent elements, i.e., is semi-prime.

Theorem. If A is formally real, then Q(A) is formally real.

Proof. Let
∑

k b2
k = 0, where each bk ∈ Q(A). The ideal D =

⋂
k b−1

k A in A is dense.
For d ∈ D, ∑

k

(bkd)2 = (
∑

k

b2
k)d

2 = 0 ;

hence each bkd = 0. Thus, bkD = 0, and therefore bk = 0.

8.2. Quasi-real rings. Let A be a partially ordered ring. We recall that the order-
ing is determined by its positive cone P , a subset of A with the characteristic properties:
P + P ⊂ P , PP ⊂ P , P ∩ −P = {0}.

We shall say that the order on A is quasi-real provided that all squares are positive,
i.e., a2 ∈ P for all a; we also refer to A itself, or to P , as quasi-real. Obviously, any total
order is quasi-real: given a, we have ±a ≥ 0 and hence a2 ≥ 0.

If a ring A admits quasi-real orderings, then it admits a smallest one: the intersection
of them all. On the other hand, the union of a chain of quasi-real orders is, clearly,
quasi-real; hence by Zorn’s lemma, every quasi-real order is contained in a maximal one.

The set of all elements expressible as a sum of squares is denoted by P0.

8.3 Theorem A formally real ring A admits a quasi-real ordering; for the smallest
such, the positive cone is the set P0. Conversely, any quasi-real semi-prime ring is formally
real.

Proof. Clearly, 0 ∈ P0, P0 + P0 ⊂ P0, and P0P0 ⊂ P0. Finally, if a ∈ P0 ∩ −P0, then,
since A is formally real, a = 0. Thus, P0 is a positive cone. Obviously, it is quasi-real
and, in fact the smallest such.

Conversely,
∑

k a2
k = 0 implies 0 ≤ a2

i ≤
∑

k a2
k = 0, so that a2

i = 0, whence ai = 0.

48
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We remark that a quasi-real ring need not be semi-prime; 9.2 below contains an
example.

8.4 Theorem Let A be quasi-real and let a ∈ A. A necessary and sufficient condition
that the order on A be extendable to one in which a is positive is that

(1) Pa ∩ −Pa = {0}, where Pa = {pa + q: p ≥ 0, q ≥ 0}; and Pa is the positive cone
of the smallest such extension.

A sufficient condition that the order be so extendable is

(2) for x ∈ A, x2a ≤ 0 implies x = 0;
when A is a regular ring, a sufficient condition is

(3) for e an idempotent, ea ≤ 0 implies e = 0;
when A is a field, a sufficient conditon is

(4) a 6≤ 0.

Proof. The positive cone of such an extension clearly contains Pa; therefore (1) is nec-
essary. Conversely, Pa + Pa ⊂ Pa; and because a2 ≥ 0, PaPa ⊂ Pa. Hence if (1) holds,
then Pa is a positive cone, and evidently the smallest one containing P and a.

Now assume (2), and consider any b ∈ Pa ∩ −Pa. There exist p, q, p′, q′ ≥ 0 such that
b = pa+ q = −(p′a+ q′); then (p+ p′)a = −(q + q′) ≤ 0. Therefore, (p+ p′)2a ≤ 0; by (2),
p + p′ = 0 and hence q + q′ = 0. It follows that p = q = 0, so that b = 0. Thus (1) holds.

If A is regular, then (by definition) given x ∈ A, there exist y ∈ A such that x2y = x;
then xy is idempotent. Hence if x2a ≤ 0, then xya = x2y2a ≤ 0, so that (3) implies
xy = 0 and therefore x = x(xy) = 0; thus, (2) holds. Finally, if A is a field, then the only
idempotents are 0 and 1, whence (4) implies (3).

We shall have more to say about regular rings in Chapter 10.

A number of known results about fields may be deduced easily from the theorem.

8.5 Corollary Any maximal quasi-real order on a field is total. Hence every quasi-
real order on a field can be extended to a total order.

8.6 Corollary (Artin-Schreier). Every formally real field can be totally ordered.

Proof. 8.3 and 8.5. (Cf. [Bourbaki (1952)].)

8.7 Corollary (Artin). In a formally real field, any element that is positive in every
total order is a sum of squares.
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Proof. Consider any a 6∈ P0; then −a 6∈ −P0. By (4), the quasi-real order determined
by P0 (8.2) extends to a maximal one in which a is negative—that is, to a total order
(8.5) in which a (6= 0) is not positive.

We remark that this proof is more elementary than Artin’s [Artin (1926)] since it is
carried out entirely within the field and does not involve the notion of real closure.

One may ask whether Artin’s theorem generalizes to regular rings: in a formally real
regular ring, is an element that is positive in every maximal quasi-real order necessarily
a sum of squares? The answer is “no”; a counterexample is described in 10.8 below.

8.8. Convexity. Let A be a partially ordered ring. As in 6.8, we shall say that A is
convex provided that every element ≥ 1 is a unit. When 1 ≥ 0, as when A is quasi-real,
this implies that A contains the rationals.

Next, we say that an ideal I is a convex ideal if 0 ≤ a ≤ b and b ∈ I implies a ∈ I. As
is well known (and easily seen), convexity of I is the necessary and sufficient condition
that A/I be partially ordered in a natural way: the positive elements are the classes I(x)
for x ≥ 0 in A.

8.9 Theorem A quasi-real ring is convex if and only if all its maximal ideals are con-
vex ideals.

Proof. Assume the ring convex, consider any maximal ideal M , and let 0 ≤ a ≤ b, with
a 6∈ M . There exists x ∈ A such that 1− xa ∈ M . Then m = 1− x2a2 ∈ M and we have
1 = x2a2 + m ≤ x2b2 + m 6∈ M . Therefore b 6∈ M .

Conversely, assume maximal ideals convex. If a ≥ 1 ≥ 0, then a belongs to no maximal
ideal and hence is a unit.

8.10. The subring A∗ of bounded elements. Let A be ordered. An element a
is bounded if there exists a natural number m such that −m ≤ a ≤ m. The set of all
bounded elements of A is denoted by A∗.

Theorem. If 1 ≥ 0 in A, then A∗ is a subring of A.

Proof. 0 ∈ A∗; so A∗ is not empty. Let a, b ∈ A∗; then −m ≤ a ≤ m and −n ≤ b ≤ n
for some natural m and n. Then −(m + n) ≤ a− b ≤ m + n. Next, 0 ≤ (m− a)(n + b);
since m ≥ 0 and n ≥ 0 in A,

ab ≤ mn + mb− an ≤ 3mn .

Similarly, 0 ≤ (m− a)(n− b), whence ab ≥ −3mn. Therefore A∗ is a ring.

8.11. Infinitesimals. Let A be ordered. An element a ∈ A will be called infinitesi-
mal if −1 ≤ na ≤ 1 for all natural n. Trivially, infinitesimals are bounded.
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Lemma. Let A be ordered and let a ∈ A. If there exist an element e and an integer n
such that ena ≥ e > 0, then a is not an infinitesimal.

Proof. If a is infinitesimal, then 1 ≥ 2na, whence e ≥ 2ena > ena ≥ e.

8.12 Theorem Let A be quasi-real. If
(1) for all a > 0, there exists an idempotent e 6= 0 and an integer n such that na ≥ e,

then every infinitesimal in A is nilpotent.

Proof. If b is infinitesimal, then a = b2 is infinitesimal. If a 6= 0, then a > 0 and na ≥ e
as in (1) implies e = e2 > 0 and then ena ≥ e > 0, contradicting the lemma.

8.13 Theorem Let A be quasi-real and convex, and let S be a subring containing A∗.
Then:

(1) S is quasi-real and convex.

(2) x2 ∈ S implies x ∈ S.

(3) A is a ring of quotients of S.

(4) All residue fields of S can be totally ordered; and those of A∗ are embeddable in R.

(5) All infinitesimals of A lie in the radical of A∗.

Proof. (1). Trivially, S is quasi-real. By convexity of A, if x ≥ 1, then x−1 exists in A;
we prove:

(6) if x ≥ 1, then 0 ≤ x−1 ≤ 1, whence x−1 ∈ A∗.
In fact, x−1 = x(x−1)2 ≥ 0, whence x−1 ≤ xx−1 = 1. It follows from (6) that S is
convex.

(2) By (6), y = (x2 + 1)−1 is a positive element of S; so is 2−1. Hence from the evident
relation

−(x2 + 1) ≤ 2x ≤ x2 + 1 ,

we get −1 ≤ 2xy ≤ 1, so that 2xy ∈ A∗ ⊂ S, whence xy ∈ X. Therefore x =
(xy)(x2 + 1) ∈ S.

(3) Given b ∈ A and 0 6= b′ ∈ A, we are to find a ∈ S such that ba ∈ S and b′a 6= 0 (see
1.4). Define a = (b2 + 1)−1; as above, a ∈ S and ba ∈ S. Finally, b′a 6= 0, because
b′ 6= 0 and a is a unit.

(4) Since each maximal ideal is convex, its residue field is partially ordered as described
above (8.8). Evidently, the order is quasi-real; by 8.5, it extends to a total order.
In the case of A∗, the field is obviously archimedean and hence, as is well known,
embeddable in R.
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(5) Let a be infinitesimal, and consider any maximal ideal M in A∗. By (4), A∗/M ⊂ R.
Evidently, |M(a)| ≤ 1/n for all natural n (> 0). Hence a ∈ M .

Remark. The embedding referred to in (4) is in general not unique, because the partial
order may have several extensions to total orders. Compare Corollary 9.5.



9. π-Rings

9.1. π-values. Let A be an ordered ring, and let a ∈ A; by a π-value of a, we shall
mean any element p ≥ 0 for which p2 = a2.

Theorem. If A is quasi-real and semi-prime, then each element of A has at most one
π-value.

Proof. Suppose that p2 = q2, where p ≥ 0 and q ≥ 0. Define

s = p(p− q)2, t = q(p− q)2 ;

then s + t = 0. Since A is quasi-real, s ≥ 0 and t ≥ 0; therefore s = t = 0. Hence
(p− q)3 = s− t = 0. Since A is semi-prime, p− q = 0.

9.2. π-rings. An ordered ring in which each element a has a unique π-value πa will
be called a π-ring. Clearly, π-rings are quasi-real.

Trivially, in any π-ring:

(1) (πa)2 = a2,

(2) π(πa + πb) = πa + πb,

(3) π[(πa)(πb)] = (πa)(πb),

(4) π(−a) = πa.
Also, πa = a if and only if a ≥ 0; in particular, π0 = 0 and π1 = 1.

Property (3) can be considerably strengthened. For we have [π(ab)]2 = (ab)2 =
[(πa)(πb)]2; by uniqueness,

(3′) π(ab) = (πa)(πb).

Example. It will be seen (Theorem 9.7) that a semi-simple convex π-ring satisfies πa ≥
a for all a. Here we exhibit a convex π-ring S in which the inequality fails. S will be the
set of all polynomials a+bx, where a and b are rational, under the usual operations except
that x2 = 0; and the positive elements will be 0 and all a+ bx for which a > 0. Obviously,
S is not semi-prime. Each element of S has a unique π-value: π(a+ bx) = (sgn a)(a+ bx).
Each element a + bx for which a 6= 0—in particular, each element ≥ 1—has an inverse:
(a + bx)−1 = (1/a)− (b/a2)x; therefore S is convex. Finally, we have πx = 0 6≥ x.
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9.3 Theorem Let A be a ring in which 2x2 = 0 implies x = 0, and suppose that with
each element a ∈ A there is associated an element πa ∈ A such that (1), (2), (3), and
(4) hold. Then A is formally real, and A can be ordered to become a π-ring, with πa the
π-value of a.

Proof. Let P = {a ∈ A: πa = a}; we verify that P is a positive cone. By (1), (π0)2 = 0,
whence, by hypothesis, π0 = 0; so 0 ∈ P . By (2), P + P ⊂ P ; and by (3), PP ⊂ P .
Finally, consider any a ∈ P ∩−P ; then πa = a and π(−a) = −a. By (4), a = −a, that is,
2a = 0; hence by hypothesis, a = 0. Consequently, P ∩ −P = {0}. Thus, P is a positive
cone.

Since π0 = 0, (2) yields π(πa) = πa; therefore each element πa belongs to P and
hence by (1) is a π-value of a. Furthermore, P is quasi-real.

Obviously, A is semi-prime. By 9.1, π-values are unique; therefore A is a π-ring. By
8.3, A is formally real.

9.4. π-ideals. An ideal I in a π-ring is a π-ideal provided that a ≡ b (mod I) im-
plies πa ≡ πb (mod I).

Theorem.Let A be a π-ring. A prime ideal J in A is convex if and only if it is a
π-ideal not containing 2; and when J is convex, A/J is totally ordered.

Proof. If J is convex, then 2 6∈ J , since 2 ≥ 1 ≥ 0. Suppose a − b ∈ J . Then
(πa)2 − (πb)2 = a2 − b2 ∈ J ; hence πa = πb ∈ J or πa− πb ∈ J . In the first case, πa ∈ J
and πb ∈ J , by convexity; hence in either case, πa− πb ∈ J . So J is a π-ideal.

Conversely, suppose that J is a π-ideal not containing 2, and let 0 ≤ a ≤ b ∈ J . Since
a− (a− b) belongs to the π-ideal J ;

2a− b = a− (b− a) = πa− π(a− b) ∈ J .

Therefore, 2a ∈ J , which implies a ∈ J . So J is convex.
Finally, if J is convex, then A/J is partially ordered. Since (a− πa)(a + πa) = 0 ∈ J ,

either a− πa ∈ J or a + πa ∈ J . Hence J(a) = J(πa) ≥ 0 or J(a) = J(−πa) ≤ 0.

Remark. The prime ideal (2) in the π-ring of integers is a π-ideal but is not convex.
However, in most of the rings considered here, 2 is a unit.

9.5 Corollary If A is a convex π-ring and S is a subring containing A∗, then:

(1) S is a convex π-ring.

(2) All residue fields of S are totally ordered; and those of A∗ appear canonically as
(totally ordered) subfields of R.
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Proof. (1). By (1) of Theorem 8.13, S is convex. By (2) of the same theorem, a ∈ S
implies πa ∈ S.

(2) The first statement is immediate from Theorem 9.4; the second follows upon ob-
serving again that the residue fields of A∗ are archimedean.

9.6. Lattice-ordered rings. A lattice-ordered ring is, by definition, a partially or-
dered ring that is also a lattice, i.e., in which a ∨ b (and hence a ∧ b = −(−a ∨−b)) exist
for all a and b. In such a ring, one defines |a| = a∨−a; it satisfies |a| ≥ 0 (for a proof see
[Gillman & Jerison (1960), 5A]). The easily established law (x+ y)∨ (x+ z) = x+(y∨ z)
yields 2(a∨b) = a+b+|a−b|; in particular, 2(a∨0) = a+|a| and (dually) 2(a∧0) = a−|a|.

The next theorem gives a condition that a π-ring be lattice-ordered, with |a| = πa.
(Cf. the example in 9.2.) We remark that a lattice-ordered ring need not be quasi-real
and hence the equation |a|2 = a2 can fail. An example is the direct sum of R with itself,
with P = {(x, y): x ≥ y ≥ 0}; here (0, 1)2 = (0, 1) 6≥ (0, 0) (and |(0, 1)| = (2, 1)). In fact,
we have:

(1) |a|2 = a2 if and only if (a ∨ 0)(a ∧ 0) = 0.

(In the preceding example, (0, 1) ∨ (0, 0) = (1, 1) and (0, 1) ∧ (0, 0) = (−1, 0).) To prove
(1), note first that if x ≤ 0 and nx = 0 for some positive integer n, then x = 0; for, the
least such n satisfies −x = (n− 1)x, whence −x ≤ 0. Applying this result to the identity
a2 − |a|2 = 4(a ∨ 0)(a ∧ 0), noting that (a ∨ 0)(a ∧ 0) ≤ 0, we obtain (1).

9.7 Theorem If A is a semi-simple convex π-ring, then A is a lattice-ordered ring
with |a| = πa (and hence with (a ∨ 0)(a ∧ 0) = 0).

Proof. By 8.9 and 9.4, all residue fields A/M are totally ordered. Hence M(x) =
±M(πx). If M(x) ≥ 0, then M(x) = M(πx); and if this holds for all M , then by semi-
simplicity, x = πx ≥ 0. Since for each M , M(πa ± a) = M(πa) ± M(a) ≥ 0, we get
πa ≥ a and πa ≥ −a.

Next, suppose that u ≥ a and u ≥ −a. Then M(u) ≥ M(a) and M(u) ≥ −M(a), so
that M(u) ≥ M(πa); as before, u ≥ πa. This shows that πa = a∨−a—that is, πa = |a|.
Since 2 is a unit of A, a ∨ b = 2−1(a + b + |a− b|) exists. Thus, A is a lattice.

9.8. Maximal ideal spaces. Recall that the sets Γ(a) = {M : M(a) 6= 0} form a
base for the Stone topology on M(A). When each field A/M ⊂ R, we may define a
function â: M → R by â(M) = M(a). Clearly, the mapping a 7→ â is a homomorphism
from A into RM(A). Its kernel is the radical of A: hence the condition for this mapping
to a monomorphism is that A be semi-simple.

Theorem. If A∗ is a convex π-ring, then â is defined for a ∈ A∗ and is continuous—
that is, the mapping a 7→ â is a canonical homomorphism (with kernel rad A∗) of A∗ into
C∗(M(A∗)).
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Proof. A∗ contains the rationals; by 9.5, each field A∗/M is totally ordered and ⊂ R,
whence â is defined; clearly, for each rational r, M(r) = r. Since A∗/M is totally ordered,
we have for any x ∈ A, M(x) = ±M(πx); hence

(1) M(x) > 0 if and only if M(πx + x) 6= 0.

To prove that â is continuous, it suffices to show that â←(r, s) is open for all rational r
and s. We have

â←(r, s) = {M : M(a− r) > 0} ∩ {M : M(s− a) > 0};

and by (1), this is open.

9.9 Theorem The canonical injection of A into C(M(A)), whenever it exists, has
an extension to a canonical embedding of Q(A) into Q(M(A)).

Proof. Identify A with its image in C(M(A)). According to Corollary 2.7, we must
show that for each dense ideal D in A, coz D is dense in M(A). Consider any basic open
set

Γ(a) = {M : M ∈ coz a} 6= ∅ ;

then a 6= 0. Since D is dense, there exists d ∈ D such that ad 6= 0. Since A is semi-simple,
there exists M ∈ M(A) such that ad 6∈ M . Then M ∈ coz a ∩ coz d, as required.



10. Regular π-rings

10.1. Introduction. Recall that A (commutative, with 1) is regular provided that
for each a, there exists b such that a2b = a. The element ab is idempotent; hence so
is 1 − ab. Since a(1 − ab) = 0, every element is either a zero-divisor or a unit, and
every proper prime ideal is maximal. Regular rings are semi-simple, hence semi-prime. A
rationally complete ring is regular if and only if it is semi-simple. (See 1.11.)

Lemma. If the elements a and b of a ring A satisfy a2b = a, then b2a is the unique
element c satisfying simultaneously a2c = a and c2a = c, so that the idempotents f = ac
and e = 1− f satisfy fa = a, fc = c, and ea = ec = 0. Finally, the element u = e + c is
a unit, and a2u = a.

In particular [Gillman & Henriksen (1956)], if a is regular, then for each element a ∈ A,
there exists a unit u such that a2u = a.

Proof. Direct substitution shows that c = b2a satisfies a2c = a and c2a = c. If a2x = a
and x2a = x, then x = ax2 = a2cx2 = (a2x)cx = (a2c)cx = a2xc2 = ac2 = c, yielding the
uniqueness. Clearly, a2u = a2c = a. Since (e + c)(e + a) = e+ f = 1, u = e+ c is a unit.

10.2 Theorem A regular quasi-real ring is convex.

Proof. Let a ≥ 1. If an element x satisfies ax = 0, then 0 ≤ x2 ≤ ax2 = 0; hence
x2 = 0, and so x = 0. Thus a is not a zero-divisor; therefore it is a unit.

10.3 Corollary If A is a regular π-ring, then: A is convex; A is a lattice, with
|a| = πa and (a∨0)(a∧0) = 0; any subring S containing A∗ is a convex π-ring (hence has
convex radical); A is a ring of quotients of S and the residue fields of A∗ are canonically
embeddable in R.

Proof. The nonparenthetical statements follow from 9.7, 9.5, and 8.13. Since intersec-
tions of convex ideals are convex, a convex π-ring has a convex radical (8.9).

The question now arises when A∗ will be semi-simple—for then it can be represented
as a subring of C(M(A∗)) (9.8). Accordingly, we now examine the radical of A∗.

10.4 Theorem If A is a regular π-ring, then the radical of A∗ consists precisely of
the infinitesimal elements (8.11) of A.
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Proof. Let J denote the radical of A∗. According to (5) of Theorem 8.13, all infinitesi-
mals lie in J .

Conversely, consider any a ∈ J . Put b = πa; then b2 = a2, so that b ∈ J . For each
natural n, 0 ≤ nb ∧ 1 ≤ nb ∈ J ; since J is convex (Corollary 10.3), nb ∧ 1 ∈ J . Therefore
(nb− 1) ∧ 0 = (nb ∧ 1)− 1 is a unit. But (see Corollary 10.3)

[(nb− 1) ∧ 0] · [(nb− 1) ∨ 0] = 0.

Hence (nb − 1) ∨ 0 = 0—that is, nb ≤ 1. This shows that b is infinitesimal. Since
−b ≤ a ≤ b, so is a.

10.5 Corollary Let A be a regular π-ring. If A has no nonzero infinitesimals (for
example, if (1) of 8.12 holds), then A∗ is canonically embedded in C∗(M(A∗)) and A in
Q(M(A∗)).

Proof. By the theorem, A∗ is semi-simple. The first result then follows from 9.8. Since
A is a rational extension of A∗ (10.3), we have A ⊂ Q(A∗), and the second result follows
from 9.9.

10.6. The set E of all idempotents. The set of all idempotents in a ring A (not
necessarily regular) will be denoted by E or E(A). This set may be ordered (whether or
not A is ordered), as follows: e ≤ f if and only if ef = e. Then 0 ≤ e ≤ 1 and E becomes
a complemented distributive lattice, with e ∧ f = ef , e ∨ f = e + f − ef , and 1 − e the
complement of e. The corresponding Boolean ring has the operations u and · defined by
e u f = e + f − 2ef and e · f = ef .

When A is a quasi-real ordered ring, the order on E in A coincides with the lattice
order just described. For in A, we have e = e2 ≥ 0 and 1 − e = (1 − e)2 ≥ 0, so that
0 ≤ e ≤ 1. Hence e ≤ f implies e = e2 ≤ ef ≤ e · 1 = e; and, conversely, ef = e implies
e ≤ e + (f − e)2 = f .

10.7 Theorem If A is a regular ring with a maximal quasi-real order, and if the lat-
tice E of idempotents is complete, then A is a π-ring.

Proof. Consider any a ∈ A. By Lemma 10.1, there is a unit u such that a2u = a. Define

F = {f ∈ E: fu ≤ 0}

and put
f0 = sup F in E.

Then f ∈ F implies f ≤ f0 and hence ff0 = f .
Next, define

(1) p = (1− 2f0)u
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and πa = a2p. Then p2 = u2, so that (πa)2 = a4p2 = a4u2 = a2. It remains to show
that p ≥ 0, yielding πa ≥ 0, so that πa will be a π-value of a. Uniqueness of π-values is
guaranteed by Theorem 9.1.

Consider any e ∈ E with

(2) ep ≤ 0;

we shall show that e = 0. Since the quasi-real order on A is maximal, it will follow from
(3) of Theorem 8.4 that p ≥ 0, q.e.d.

For all f ∈ F , we have efu ≤ 0. On the other hand, (1) yields fp = −fu, so
that efu = −efp ≥ 0, by (2). Therefore efu = 0. Since u is a unit, ef = 0. Hence
f = (1−e)f ≤ (1−e)f0 ∈ E. As this holds for all f ∈ F , we conclude that f0 ≤ (1−e)f0;
therefore ef0 = 0. Now (1) and (2) yield eu = ep ≤ 0. Thus, e ∈ F . So e = ef0 = 0.

10.8. A counterexample. The question was raised in 8.7 whether in a formally real
regular ring, any element that is positive in every maximal quasi-real order is necessarily
a sum of squares. We proposed the following counterexample. Let Fn denote the field
of rational functions, with real coefficients, in the n indeterminates x1, . . . , xn, and let S
be the direct sum of F1, F2, . . .. It is easy to see that S is formally real and regular, and
that E(S) is complete. By Theorem 10.7, S is a π-ring in any maximal quasi-real order.
Consider the element

a = (x2
1, x

2
1 + x2

2, . . .).

Write πa = (p1, p2, . . .); since (πa)2 = a2, we have pn = ±(x2
1 + · · · + x2

n). Consider the
idempotent en whose nth component is 1 and all others 0; since pn = en(πa) ≥ 0, we must
have pn = +(x2

1 + · · ·+ x2
n). It follows that πa = a, so that a > 0.

Suppose now that a were a sum of n− 1 squares:

a = a2
1 + · · · a2

n−1 (ak ∈ S).

Let fk denote the nth component of ak; then the functions f1, . . . , fn−1 would have to
satisfy

f 2
1 + · · · f 2

n−1 = x2
1 + · · ·+ x2

n.

It has since been shown that such a relation is not possible; Davenport [Davenport (1963)]
established this in a special case, and later Cassels [Cassels (1964)] solved the general case.

10.9 Theorem If A is rationally complete and semi-prime (hence regular), then E(A)
is complete.

This will follow from Theorem 11.9. Assuming the result, we have:

Corollary. A rationally complete semi-prime ring with maximal quasi-real order is
a π-ring.

We turn now to maximal ideal spaces.
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10.10 Theorem Let A be regular and let S be a subring containing E(A) and such
that each proper prime ideal in S is contained in a unique maximal ideal in S. Then the
maximal ideal spaces of A, S, and E are homeomorphic.

Remark. If e ∈ E, then e(1 − e) = 0. Hence any given prime ideal in A, S, or E
contains either e or 1 − e. It follows that M(E) and M(A) are Hausdorff and totally
disconnected. Since each ring contains 1, all three spaces have the Heine-Borel property
(see end of 5.3). The result M(A) ≈ M(E) appears in [Morrison (1955)].

Proof. We shall prove that M(S) ≈ M(E). Since proper prime ideals in A are maximal,
the result for S includes that for A.

Given any maximal ideal M in E, let MA denote the ideal generated by M in A. This
is a proper ideal. For if 1 ∈ MA, then 1 =

∑
k ekak for suitable ek ∈ M and ak ∈ A; then

e =
∏

k(1− ek) 6∈ M , whereas e = e · 1 = 0. Next MA is a maximal (hence prime) ideal;
for if a = a2x 6∈ MA, then ax 6∈ MA, whence 1− ax ∈ MA. It follows that MA ∩ S is a
proper prime ideal in S and hence by hypothesis is contained in a unique maximal ideal
M ′ in S. We have thus defined a mapping M → M ′—via

(1) M → MA ∩ S → M ′

—from M(E) into M(S).

This mapping is one-one. For, given two distinct maximal ideals in E, there exists e
such that one contains e and the other 1− e, and no M ′ contains both.

Next, we prove that the mapping is onto. Let N be any maximal ideal in S. For
e ∈ E, either e or 1− e belongs to N and hence to M = N ∩ E; therefore M is maximal
in E. Now consider any s ∈ S, with s 6∈ N . There exists y ∈ A such that s2y = s.
Then sy 6∈ M ; therefore 1 − sy ∈ M ⊂ MA, whence s 6∈ MA. We have shown that
MA ∩ S ⊂ N . By uniqueness, N = M ′. This yields the result—and a byproduct as well:

(2) M ′ ∩ E = M.

It remains to prove that the one-one mapping M → M ′ of M(E) onto M(S) is a homeo-
morphism. Since it carries the basic open set {M : e 6∈ M} in M(E) to the set

Γ(e) = {M ′: e 6∈ M} (e ∈ E)

in M(S), we will complete the proof if we show that the sets Γ(e) form a base in M(S).
Let M ′ ∈ M(S) and let B be any open neighborhood of M ′. For each M ′

α ∈ M(S) − B,
there exists eα ∈ E such that eα ∈ M and eα 6∈ Mα. The open cover (Γ(eα)) of the
quasi-compact set M(S) − B has a finite subcover, say (Γ(ek)). Define e =

∏
k(1 − ek);

then M ′ ∈ Γ(e) ⊂ B.



10.13. RINGS OF CONTINUOUS FUNCTIONS 61

10.11 Lemma If S is semi-simple and M(S) is Hausdorff, then each proper prime
ideal in S is contained in a unique maximal ideal.

Proof. Distinct maximal ideals M1 and M2 have disjoint neighborhoods, say {M : s1 6∈
M} and {M : s2 6∈ M}. Then s1s2 = 0, so that no ideal contained in M1 ∩M2 is prime.
(This result appears in [Gillman (1957)].)

10.12 Theorem If A is a regular π-ring and A∗ is semi-simple, then the maximal
ideal spaces of A, A∗, and E(A) are homeomorphic.

Proof. As we know, E ⊂ A∗ (0 ≤ e ≤ 1). By Corollary 10.3, A∗ is a convex π-ring. By
Theorem 9.8, there is a canonical monomorphism a → â of A∗ into C∗(M(A∗)). Since
the continuous functions â distinguish points, M(A∗) is a Hausdorff space. By Lemma
10.11, each proper prime ideal in A∗ is contained in a unique maximal ideal. Thus S = A∗

satisfies all the assumptions of Theorem 10.10.

10.13. Rings of continuous functions. We now apply some of the preceding re-
sults to Q(X) and its related rings. These rings come equipped with a natural order—the
usual order, defined pointwise. In particular, Q and Q are lattices and π-rings. In ad-
dition, the semi-prime rings Q and Q are rationally complete (4.8) and hence regular
(cf. 2.6, Remark); by Theorem 10.9, the lattices E(Q) and E(Q) (which, by what fol-
lows, coincide) are complete.

Theorem. E(Q(X)) = E(Q(X)).

Proof. We must show that E(Q) ⊂ E(Q). An idempotent of Q is a continuous function
e from a dense Gδ-set S in X into {0, 1}. With each s ∈ S, associate an open neighborhood
Vs of s in X in which e is constant. Consider the open sets

U0 =
⋃{Vs: s ∈ S, e(s) = 0}, U1 =

⋃{Vs: s ∈ S, e(s) = 1}.

Since U0 ∪ U1 contains S, it is dense. Now, evidently, U0 ∩ U1 ∩ S = ∅; since S is dense,
U0∩U1 = ∅. Therefore e can be extended to an idempotent continuous on U0∪U1, hence
belonging to Q.

10.14 Corollary M(Q) ≈ M(Q) ≈ M(E(Q)).

Proof. 10.10 and 10.13.

As we see from (1) and (2) of 10.10, the homeomorphism from M(Q) to M(Q) is given
by M → M = MQ, its inverse by M → M = M ∩Q.
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10.15 Theorem If a subring A of Q(X) contains E(Q) then the natural order ≥ on
A is maximal. In particular, the orders on Q and Q are maximal.

Proof. Let P denote the positive cone of some larger order, and consider any a ∈ P .
Suppose that a � 0. Pick x0 for which a(x0) < 0. Let U be a neighborhood of x0 in
X such that a(x) < 0 for all x ∈ U ∩ dom a. Define e(x) = 1 for x ∈ U , e(x) = 0 for
x ∈ X − cl U . Then e ∈ E(Q) ⊂ A and ea ≤ 0; hence ea ∈ −P . But e ≥ 0, so that
ea ∈ P . Consequently ea = 0, and so a(x0) = 0, a contradiction.

10.16 Corollary Any regular ring A between E(Q) and Q is a sublattice of Q; and
if A∗ is semi-simple, then its maximal ideal space is homeomorphic to those of A and E(A)
(= E(Q)).

Proof. According to Theorem 10.9, E(A) is complete. Since the order on A is maximal,
A is a π-ring, by Theorem 10.7. Hence A is a sublattice of Q. The rest is stated in
Theorem 10.12.

10.17 Corollary The maximal ideal spaces of Q, Q∗, Q, Q
∗
and E(Q) are all home-

omorphic. (Cf. 5.11.)

Proof. We need only check that Q∗ and Q
∗

are semi-simple. Given f 6= 0, it is easy
to find g such that g vanishes on a nonvoid open set and f 2 + g2 is bounded away from
0—so that g belongs to some maximal ideal M while f 6∈ M .

10.18 Theorem Let A be a convex π-ring satisfying πa ≥ a for all a ∈ A (see 9.2,
Example). Let S be a semi-simple subring containing A∗ and such that M(S) is Haus-
dorff. Then M(A) is homeomorphic with M(S) under the mapping σ defined by:

σ(M) = unique maximal ideal in S containing M ∩ S (M ∈ M(A)).

Proof. Since M ∩S is a prime ideal in S, the mapping σ is well defined (Lemma 10.11).
To see that σ is one-one, let M 6= M ′ in M(A). Choose a, a′ ∈ A such that a ∈ M , a′ ∈ M ′,
and a + a′ = 1. Then πa ∈ M , πa′ ∈ M ′, and πa + πa′ ≥ 1. Put b = (πa + πa′)−1 By (6)
of Theorem 8.13, b ≥ 0. Hence 0 ≤ (πa) · b ≤ (πa + πa′) · b = 1; thus (πa) · b ∈ A∗ ⊂ S, so
that (πa) · b ∈ M ∩ S ⊂ σ(M). Likewise, (πa′) · b ∈ σ(M ′). Since (πa) · b + (πa′) · b = 1,
we have σ(M) 6= σ(M ′).

Next, σ is onto. For let N ∈ M(S) be given. Define

N : A = {a ∈ A: aA ⊂ N}.

This is easily seen to be a prime ideal in S; and N is the unique maximal ideal (in S)
containing it. But N : A is also a proper ideal in A and hence is contained in some
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maximal ideal M in A. Thus, N : A ⊂ M ∩ S ⊂ σ(M); by uniqueness, σ(M) = N . This
shows that σ is onto.

Next, we prove that σ−1 is continuous. The problem reduces to this: given a ∈ A
and M0 ∈ M(A), with a 6∈ M0, to find s ∈ S for which s 6∈ σ(M0) and such that for all
M ∈ M(A), a ∈ M implies s ∈ σ(M). Choose h ∈ A and m ∈ M0 satisfying m + ha = 1;
then πm ∈ M0 and πm + π(ha) ≥ 1. Put b = (πm + π(ha))−1. Again b ≥ 0, so that
0 ≤ (πm) · b ≤ 1, whence (πm) · b ∈ S; also, s ∈ S, where

s = π(ha) · b.

Since (πm) · b ∈ M0 ∩ S ⊂ σ(M0) and (πm) · b + s = 1, we have s 6∈ σ(M0). Next, by (3′)
of 9.2, π(ha) = (πh)(πa). Therefore if a ∈ M , then s ∈ M ∩ S ⊂ σ(M).

Next, let M 6= M ′ in M(A). Then σ(M) 6= σ(M ′). Since M(S) is Hausdorff and S
is semi-simple, there exist s, s′ ∈ S such that s 6∈ σ(M), s′ 6∈ σ(M ′), and ss′ = 0. Then
s 6∈ M , s′ 6∈ M ′, and ss′ = 0. Therefore M(A) is Hausdorff.

Finally, since S is a commutative ring with 1, M(S) is compact. Therefore the one-one,
continuous mapping σ−1 from M(S) onto the Hausdorff space M(A) is a homeomorphism.



11. Boolean algebras

11.1 Theorem If A is Boolean then Q(A) is Boolean.

Proof. Let φ ∈ Q(A); then φ ∈ Hom D for some dense ideal D in A. For d ∈ D,

φ2(d) = φ(φ(d)) = φ(φ(d2)) = φ(d.φ(d)) = φ(d)2 = φ(d).

(This result appears in [Brainerd & Lambek (1959)] ).

11.2. Algebra of sets. For any space X, we write

B0(X) = Boolean algebra of all open-and-closed sets,

with set-theoretic intersection and complement as Boolean meet and complement.
Next, recall that an open set is said to be regular if it is the interior of its closure. For

U ⊂ X, let

Uˇ = X − cl U.

It is easy to see that a set V is a regular open set if and only if V = Uˇ for some open
U . Also, Uˇˇ ⊃ U , and T ⊃ U implies T ˇ ⊂ Uˇ. It follows that V is a regular open set
if and only if V ˇˇ = V .

We put

B(X) = Boolean algebra of all regular open sets,

with intersection as meet and V → V ˇ as complementation. It is easily seen that B(X)
is complete. In fact,

(1) B(X) is the completion of B0(X),

as is well known [Halmos (1963), Theorem 11].

11.3 Theorem If A is semi-simple, then E(A) ' B0(M(A)), under the mapping Γ
defined by

Γe = {M ∈ M(A) : e /∈ M}.
Hence the completion of E(A) is B(M(A)).

64
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Proof. This theorem is known in greater generality [Jacobson (1956), p 209] but we
outline a proof for convenience. Clearly, Γ is a homomorphism into B0. By semi-simplicity,
Γ is one-one. Given B ∈ B0, put I =

⋂
B and J =

⋂
(M −B). For M ∈ M, M ⊃ I if

and only if M ∈ B, and M ⊃ J if and only if M /∈ B. Hence A is the direct sum of I
and J , whence B = Γe for some e ∈ E. So Γ is onto. Thus, Γ is an isomorphism. The
final conclusion follows from (1).

11.4 Corollary If A is a semi-simple ring and if M(A) is a totally disconnected
Hausdorff space, then M(A) ' M(E(A)).

Proof. By the well-known duality between Boolean algebras and Boolean spaces [Hal-
mos (1963), Theorem 6], M(A) ' M(B0(M(A))). Theorem 11.3 now yields the conclu-
sion.

11.5 Corollary If A is Boolean, then A ' B0(M(A)); hence the completion of A
is B(M(A)).

The first assertion is the Stone representation theorem.

11.6. Annihilator ideals. Let I be an ideal in a semi-prime ring A. We write

Iˆ = {a ∈ A : aI = 0}.
An annihilator ideal is any ideal of the form Iˆ. Clearly Iˆˆ ⊃ I, and H ⊃ I implies
Hˆ ⊂ Iˆ; it follows that an ideal J is an annihilator ideal if and only if Jˆˆ = J . The
family of all annihilator ideals in A will be denoted by N(A).

We define mappings Γ and ∆, as follows:

ΓI = {M ∈ M(A) : M 6⊃ I} (I an ideal in A);

∆U =
⋂

U (U ⊂ M(A)).

Since cl U = {M : M ⊃ ⋂
U},

(∗) Uˇ = Γ∆U.

11.7 Lemma [Lambek (1961), Theorem 6.6] In a semi-prime ring A:

(1) N(A) is a complete Boolean algebra, with set intersection as meet and J → Jˆ as
complementation.

(2) E(Q(A)) ' N(Q(A)), under the mapping e → eQ(A).

(3) N(Q(A)) ' N(A), under the mapping K → K ∩ A.

If, in addition, A is semi-simple, then

(4) Iˆ = Γ∆I.
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11.8 Lemma If A is semi-simple, then N(A) ' B(M(A)), under the mapping Γ.

Proof. By (4) and (∗), ΓIˆ = Γ∆ΓI = (ΓI)ˇ ∈ B; hence Γ carries N into B. By (∗)
and (4), ∆Uˇ = ∆Γ∆U = (∆U)ˆ ∈ N; so ∆ carries B into N.

We now restrict Γ to N and ∆ to B. Clearly, Γ(I ∩J) = ΓI ∩ΓJ ; and as shown above,
ΓIˆ = (ΓI)ˇ. Therefore Γ is a homomorphism. In fact, Γ is an isomorphism with inverse
∆Γ∆. For, (∗) yields Γ(∆Γ∆)B = βˇˇ = B; and by (4), (∆Γ∆)ΓJ = Jˆˆ = J .

11.9 Theorem If A is semi-simple, then E(Q(A)) is complete. In fact, E(Q(A)) '
B(M(A)), under the mapping

e → Γ(eQ(A) ∩ A).

Hence E(Q(A)) is the completion of E(A).

Proof. The isomorphism is obtained by combining (2) and (3) of 11.7 and 11.8. The
concluding statement follows from 11.3.

11.10 Lemma A space X is extremally disconnected if and only if every regular open
set in X is closed.

Proof. The ususal definition of extremal disconnectedness is that the closure of each
open set be open. (For its equivalence with the condition in 3.5, see [Gillman & Jerison
(1960), 1H].) This implies that each regular open set V is closed: V = int cl V = cl V .
Conversely, if U is open, then Uˇ is regular, so that if regular open sets are closed, then
cl U is open.

11.11 Corollary A necessary and sufficient condition that a semi-simple ring A con-
tain all idempotents of Q(A) (i.e., that E(A) be complete) is that M(A) be extremally
disconnected.

Proof. The mapping Γ of 11.6, when restricted to E(A) (under the identification of e
with (e)), yields the mapping Γ of 11.3. Hence by Theorem 11.9, E(Q(A)) = E(A) if and
only if B(M(A)) = B0(M(A)), that is to say, every regular open set in M(A) is closed.

11.12 Corollary If A is Boolean, then Q(A) ' B(M(A)), the completion of A.

Proof. By Theorem 11.1, Q(A) = E(Q(A)); Theorem 11.9 now yields the isomorphsim
and Corollary 11.5 the comment.
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It is shown in [Brainerd & Lambek (1959)] that the completion of a Boolean algebra A
is Q(A). By Corollary 11.5, this completion is B(M(A)). Hence the present isomorphism
provides a proof of either assuming the other.

11.13 Corollary For any space X,

E(C∗(X)) ' B0(X) ' B0(βX)

and
E(Q(X)) ' B(X) ' B(βX).

Hence C∗(X) contains all idempotents of Q(X) if and only if X is extremally disconnected.
(Cf. 4.12)

Proof. The assertions about E(C∗) are obvious. (Cf. 11.3.) The rest then follow from
11.9 and (1) of 11.2.

We remark that if X is dense in Y , then V → V ∩X is one-one from B(Y ) onto B(X),
with inverse U → intY clY U . The mapping V → V ∩X carries B0(Y ) into B0(X)—and
when Y = βX, onto.

11.14 Corollary If A is semi-simple and contains E(Q(A)), and if M(A) is Haus-
dorff, then M(A) ' M(E(A)).

Proof. By Corollary 11.11, the Hausdorff space M(A) is extremally disconnected, hence
totally disconnected. Apply 11.4.

11.15 Theorem For any space X, M(B(X)) is homeomorphic with the compact ex-
tremally disconnected space K described in Theorem 6.9. Hence Q

∗
(X) ' C(M(B(X)))

and Q(X) ' Q(M(B(X))).

Proof. Applying 11.13, 10.17, 6.9 and the fact that K is compact, we get, successively,

M(B(X)) ' M(E(Q(X))) ' M(Q
∗
(X)) ' M(C(K)) ' K.

The rest follows from 6.9.

11.16 Lemma B(X) is the same for all (completely regular) spaces X without iso-
lated points and having a countable base. In fact, B(X) ' Q(B∞) where B∞ denotes the
free Boolean algebra with countably infinitely many generators.

Proof. This is stated in [Birkhoff (1948), p. 177], except for two modifications. In
[Birkhoff (1948)], X is a T1-space with a countable base of regular open sets; but a
(completely) regular space with a countable base U does have a countable base of regular
open sets—namely, {int cl U : U ∈ U}. In [Birkhoff (1948)], our Q(B∞) is referred to as
the completion of B∞; but by Corollary 11.12, the two are the same.
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11.17 Theorem E(Q(X)) and M(Q(X)) are the same for all spaces X without iso-
lated points and having a countable base. In fact, E(Q(X)) ' Q(B∞) and M(Q(X)) '
M(Q(B∞)).

Proof. By 11.13 and 11.16, E(Q(X)) ' Q(B∞) . And according to 10.14 (or by 11.14),
M(Q(X)) ' M(E(Q(X))).
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