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DUALITY OF BANACH SPACES

by Michael BARR

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DI FFER ENTI EL L E

Vol. XVII - 1 ( 1976 )

INTRODUCTION

In a sense, the genesis of this paper was an offhand remark by Ei-

lenberg many years ago that it was clear that a morphism of Banach spaces

is not a continuous linear map but a norm reducing one. Only then does an

isomorphism preserve norm. Only then does the category allow such impor-
tant constructions as products and sums.

An almost inevitable corollary of this observation is that the real

underlying set of a Banach space is not the set af all the elements but ra-

ther those of its unit ball. Only then does the underlying functor have an

adjoint. Only then does it take the obvious internal hom to the external one.

This raises the possibility of treating the unit ball as the object of

study. There is no particular difficulty in doing this. The unit ball B of a

Banach space is closed under absolutely convex combinations, and is sep-
arated and complete in a norm defined by

Now an interesting thing happens. A morphism of unit balls need on-

ly preserve the convex structure. The fact that it reduces norm ( and is, in

particular, continuous ) is automatic. This suggests, at least, that from a

certain point of view the unit ball of a Banach space is a discrete object
in a certain category.

It is easy to see that finite dimensional Banach spaces are reflexi-

ve. It is mor.e or less standard that to extend a duality from finite things to

infinite ones you must topologize. The most suggestive example is the ex-

tension of the duality theory of finite groups to a duality between compact
and discrete groups and then to a duality of locally compact groups.
* I would like to thank the Canada Council and the National Research Council of Ca-

nada for their support as well as the Forschungsinstitut f5r Mathematik, ETII, Zaricli

for providing a congenial environment.
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This led me to construct a category whose objects are unit balls of

Banach spaces but topologized, not necessarily by the norm. Maps are con-
tinuous and preserve the absolutely convex structure. Among the objects,
the ones which are topologized by the norm play the role of discrete ones.
A duality theory, in fact two, can be constructed and it turns out that for one

of them the discrete objects and compact ones are dual.

To some extent this has been done by Alexiewicz, Semadeni and Wi-

weger ( see [4] and many further references found there ). They studied the

notion of a mixed-topology Banach space which is essentially a Banach spa-
ce equipped with a second topology. They prove many results and deduce

( a result equivalent in their setting to ) the above mentioned duality between

discrete and compact balls. However the entire direction of their work is

different. For one thing, they do not consider the possibility of endowing
the dual with a mixed-topology Banach space structure.

The paper [1] on vector spaces over a discrete field was a para-

digm theory of this type. Many of the arguments used here appeared there,

usually in a much simpler form.

Some remarks on notation and terminology are needed. All topological
vector spaces considered here are locally convex. I use, generally, A , B,

C , ... to denote balls, elements of which are a, b , c , ... ; M , N , P denote

subsets of balls, usually neighborhoods; U, V, W , ... are Banach spaces,

usually with a mixed topology; p , q, r, ... denote seminorms ; O, Y, ... de-

note linear functionals on A , ... (but on A * I have used, faute de mieux,

f, g, ... ) . The letter n is an index set whose elements are w . R denotes

the field of scalars K, 03BC, v, ... either real or complex, I its unit disc, while

J is the closed interval [0, 1] with elements e, 6, .... If 6 e J and A

is a ball, 6 A naturally denotes all things in A of norm  e. If X and 03BC

are real numbers, we write X V /L for the larger and k A 03BC for the smaller.

If p, q are real-valued functions, we write p V q for their pointwise sup and

p A q for their pointwise inf.
A subset of a (real or complex) vector space is called absolutely

convex (AC) provided it is convex and closed under scalar multiplication by
scalars of absolute value 1.
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1. Preliminaries.

By a ball B we mean a subset of a separated locally convex topo-

logical vector space V which is bounded, closed and absolutely convex

(circled convex) and complete in its self-induced norm ( see below). This

has the following structure.

i) If then 

ii) It is a topological space ;
iii) It is a complete metric space.

The third requires an explanation. Define

Using the fact that B is bounded and V is separated, one can easily see

that II b 11 = 0 iff b = 0 . Then the distance between b1 and b2 is

The topology is not that of the metric. The norm and the metric are

lower semi-continuous but not in general continuous. We do suppose, how-

ever, that B is complete in the norm.

There is a partial operation of addition and this is continuous. If

M1 and M2 C B , let M1 + M 2 denote the set of sums, so far as they are de-
fined ( i. e. (Ml+M2)eB). Then for any 0-neighborhood M , there exists a0-

neighborhood N with N + N C M . If M is a neighborhood of h, there is a 0-

neighborhood N with b + N C M .

In the sequel we will describe the structure in i) as the absolutely
convex ( AC ) structure.

If B is a ball, we may retopologize V by the coarsest topology such

that every linear map which is continuous on B i s continuous. This space

is called v B . It is clear that the topology on v B is finer than that of V and

induces the original topology on B . It is in fact the finest such linear to-

pology.

It is possible to begin with a set equipped with the structure defined

above and find conditions that it be a ball. Aside from some obvious ones
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it requires that for all 0-neighborhoods M , there is a sequence N1, N2, ... of

0-neighborhoods such that for all n ,

See [5] , p. 49, for a fuller treatment.

The space v B with its topology and the norm induced by that of B

is an example of mixed topology space (see [4] or [5] ). That is, it is a

topological space vector which is also a normed linear space in such a way

that the norm is lower semi-continuous and the norm topology finer than the

given one. When it has the topology induced by the unit ball ( as v B does),

it is said to have the mixed topology ( of [4] or [5]).

A morphism of balls is a continuous function which preserves the

AC structure.

If B has the norm topology, we call it discrete. This is equivalent
to v R being a Banach space. We call B a compact ball if it is compact in

the topology.

If B is a ball, a semi-norm on B is the restriction to B of a con-

tinuous semi-norm on v B which is bounded by the norm. Explicitly, it is a

continuous map P: B -&#x3E; J such that

and

If V is a locally convex topological vector space and M is an AC 0-neigh-
borhood, then the function p defined by

It is a continuous semi-norm called the gauge of M . Every semi-norm p on V

is the gauge of some set, namely -1 (J). Not every semi-norm on v B is

less than the norm but every one is continuous in the norm topology, hence

bounded, and so some scalar multiple of it is a semi-norm on B . Thus the

topology on B is the weak topology for the semi-norms. We let s B denote

the set of semi-norms on B .

PROPOSITION 1.1. Let B be a ball and b E B. Then
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P ROO F. Let lib 11 = À. If u  À, b e 03BC B and that is closed in v B . For

B is closed in V’ , hence in v B , and then so is uB. Thus there is an AC

0-neighborhood M in v B with (b + M ) n 03BCB = ø, and then ( /2 M+ b) is

di sj oint from (1/2 M + 03BCB). The latter is still an AC 0-neighborhood and

is a semi-norm on B with P ( b) &#x3E; 03BC.

Let pEsB. We will suppose p: v B - R . lfe let ker p be its null

set. It is clearly a closed subspace. The quotient space v B / kerp admits

. For if P ( b) = 0, b’ E B, 

Its completion is a Banach space whose unit ball we call B p . There is a

natural map 7Tp : B "*6 , and P is just the composite

If p  q are semi-norms, then ker q C ker p, and there is induced

and finally a map II pq: Bq - Bp . These satisfy

A subset t C s B is called a base provided the norm is the sup of all

semi-norms in t and if for p E s B , there exist q E t and a k&#x3E; 0 with kp  q.
It is called a subbase if the set of finite sups of semi-norms in t is a base.

It is readily checked that if t is a base (resp. a subbase) for s B , then the

set of all sets

for all

is a base (resp. a subbase) for the neighborhood system of 0 . Of course a
ball is discrete iff there is a semi-norm base with one element.

Note that semi-norms are required to be continuous. The norm is not,

in general, and thus is not a semi-norm. It is, as we have seen, the sup of

all the semi-norms.
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PROPOSITION 1.2. Let A and B be balls. A function f : A -B which pre-
serves the AC structure is continuous iff it transforms s B to s A .

P ROO F. Trivial.

If B is a ball, a subset A of B closed under the AC operations and

complete in its own norm is called a subball. It is called pure if the inclus-

ion preserves norm. This is the same as requiring kb E A =&#x3E; b E A.

If B is a ball, we let I B I be the same point set with the same ab-

solutely convex combinations, topologized by its norm. In other words i B l
is the unit ball of a Banach space.

If f: A -B is a monomorphism of balls, we naturally say that f pre-
serves norm if ll f( a) ll = 11 all . When f is not a monomorph ism, thi s is impos-
sible. Nevertheless there is still a useful notion of being norm preserving.
VGe say that f preserves norm if

This means that if ll f (a) ll = X , then for all E &#x3E; 0 there is an a’ such that:

and

The same definition applies as well to maps of normed linear spaces.

2. Categorical constructions.

Let {Bw}, w E n be a family of balls. Their cartesian product is a

ball when equipped with the sup norm and the product topology. It is obvious

that that is the product in the category. A subbase for the semi-norms are

those of the form

where the first map is a product projection and the second a semi-norm on Bw.
If A =&#x3E; B are two morphisms of balls, the subset E C A consisting

of the set theoretic equalizer is easily seen to be a pure subball. It is then

norm complete and is the equalizer. A base for its semi-norms consists of
the restrictions of those of A . It is seemingly not invariably the case, how-

ever, that these are all the semi-norms on E .
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If f Bw I is a collection of balls, let ZBw denote the subset of

II Bw consisting of all sequences (bw) for which Z ll ball  1 . If

and

then ZP wbw  1 and defines a semi-norm on ZBw. These constitute a

base for a topology and with that topology and Z ll bwll as norm, L B (V is a

ball. It is readily seen to be the categorical sum.

Before dealing with coequalizers, we observe that 1.1 may be rephra-
sed as follows :

PROPOSITION 2.1. Let B be a ball. The natural map B -&#x3E; II Bp, p E sB,

embeds B as a pure subball.

P RO O F . It is a subball because the semi-norms determine a base of 0-neigh-
borhoods. It is pure because 1.1 says that the map preserves the norm.

Let f, g : A -&#x3E; B be a pair of morphi sms . Consider

Let C denote the pure subobject generated by the image of B in

Then

PROPOSITION 2.2. The ball C with obvious map M -&#x3E; C is the coequal izer

of I and g.

PROOF. Suppose h : B -&#x3E; D is a morphism with bf = h g . For a semi-norm

q on n, p = q h E c ( f , g ) . Thus there is induced Bp -&#x3E;Dq and

maps to I1 Dq . The elements of the image of B are mapped to D and since

n is pure ( and the map norm reducing) this map extends to the pure subob-

ject generated by B . The uniqueness is clear since C is generated by the

image of R .

3. Dual ity.

In this section we define the dualities and prove the basic theorem

that every functional on the dual is an evaluation.
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If A and B are balls, hom ( A , B ) denotes the set of continuous

maps A -B which preserve the AC structure. It is clear that hom(A, B )

itself has an AC structure inherited from

There are two reasonable ways of topologizing hom ( A , B ) . We let (A, B)

denote the ball topologized by pointwise convergence. A subbase of 0-neigh-
borhoods i s. given by

where M is a 0-neighborhood in B .

This is called the weak hom . The second one, called the strong hom, is the

topology of uniform convergence on compact subballs. A base of 0-neighbor-
hoods is given by

where Ao is a compact subball of A and M is a 0-neighborhood in B . We

denote this ball by [ A , B ] .

It is easy to see that both are balls. In the first case, there is a sub-

base of semi-norms given by

for a fixed aEA, pES F3 .

In the second, take

f H sup {p f(a) I a E Ao} where Ao is a compact subball of A .

Both result in global sup norm as the norm of the hom set.

We let

and

There are known as the weak and strong duals, respectiyely.

PROPOSITION 3.1. Let

be maps of normed linear spaces. If the composite preserves norm, so does f.

P ROO F . Let v E V , 11 v 11 = À. Every preimage of v has norm at least À.. If
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the preimages in U of g(v) are the same as those of v , since g is 1-1 .

But we know that some preimage has norm  k in that case, and that is

impossible.

For the purposes of the next proposition, we define, for a mixed to-

pological space V , the dual V * to be the set of maps V - R which are con-

tinuous in the topology and bounded in the norm. The norm of a map is def-

ined as usual, by the sup over the unit ball of V . We are not concerned

with any topology on V *.

PROPOSITION 3. 2. Suppose A is a subball of B . I f B * -&#x3E; A * preserves

norm, its irllagr includes all eleinents of A * of nor?7i  1.

PROOF. Consider vA -&#x3E; V -&#x3E; vB where V is the image of v A in v B , giv-
en the subspace topology. Considered as mixed topological spaces, v A and

u H have the mixed topology. That is not in general the case for V , but sin-

ce A is a subspace of B , vvA= v V , so that v A is the mixed topology
associated to V . Then by [4J, 13.5, (vA)* is the norm closure of V * in

lVl*. Now i f 13 * -&#x3E; A* preserves norm, so does  (vB)* -&#x3E; (v A)* . Now we

have

(vB)*-&#x3E;V*)-&#x3E;(vA)* .

The first map is onto by the Hahn-Banach theorem. The composite preserves
norm and hence the first map does. In particular every element of V * of norm

 1 is the image of an element of vB of norm  1 . We know that

(vB)* = v(B*)

is complete as a normed space and hence so is the quotient V * ([2] , 1.6.3)
in its own norm, which is that of (vA)* . But we know that V * is norm den-

se in (vA)* and thus they are equal.

We remark that this is not really a theorem about B * and A * but

rather their associated discrete spaces. Thus the same statement is true,

for example, of B 
" 

-&#x3E; A ".

PROPOSITION 3.3. Let {Bw}, wE n2, be a collection of balls. Of the /ol-
lowing natural maps, the first is 1-1 and onto and the second is an isomor-

phism: 
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P RO O F . The category is pointed, so there are natural maps

and

These are where the indicated homomorphisms all come from. Also, it is

trivial to see that the maps are 1-1. For example, if a formal sum Zbw in-

duces the 0 map on the product, then by applying it to Bw C II Bw, we see
bw = 0 . Next the fact that ii) is 1-1 and onto follows from the categorical

properties of 2 together with the fact that the underlying set functor pre-
serves products. We now consider the cases separately.

i) If O: B, -1 , let Ow =O l Bw. If Z ll Ow ll &#x3E; 1 ( e. g., if more than

countably many were non-zero), then there would already be a finite subset

such that

summed over w1, .... wn . Supposing the sum is 7 + 6 , we can find bwE Bw
such that

and then defining b to be bw in these coordinates and 0 in the others, we

have

which is impossible. Hence Z ll Ow ll  1 and the sequence

Now it is clear that O and Y agree on the Bw, and hence on the subspace
of the product they generate. But that subspace is dense-.

ii) A subbasic 0-neighborhood on the left is

where 

Let b = Zbw. Choose

such that

summed on the complementary set of indices.
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Now if (Ow) E n B*w has ll Ow ll  E/2n, ú) = w1, ..... , ú) n ’ it is clear that

Those restrictions define a 0-neighborhood on the right.

COROLLARY 3.4. The natural maps

are 1-1 and ont.

We will see later that the first one is an isomorphism (6.5).

There is an obvious map from the underlying set of B to that of its

second dual, b I- evaluation at b . This does not always underlie a morphism
in the category. Nonetheless we will abuse notation and write

In fact, the first of these is continuous while the second is open. What we

wish to do here is show that they are each 1-1 and onto. We know that for

any b / 0 in 13 there is a functional O on v B with qbb # 0 . Since O is

continuous on the Banach space l B l , it is bounded, and there is a k &#x3E; 0

such that X ql : 13 -&#x3E; I . From this we see that the natural map is 1-1.

PROPOSITION 3.5. The natural maps

and

preserve norm.

I’ ROO F. Thi s is just a restatement of 1. I.

CO R 0 L L A RY 3. G. Let 13 be the unit ball of a finite dimensional space. Then

B -&#x3E; B ** and /3 -&#x3E; B 
..... 

are isomorpbisms.

p ROO F. There is only one possible topology on v B , that of Rn . Thus

is the unit ball of R" in some norm and so is v B** . Thus v B -vB** is

an isomorphism and since they have the same norm, so is B -B**. In the

finite dimensional case there is no difference between * and

PROPOSITION 3.7. Let B be discrete. Then B -B** is onto.



26

P ROO F. Let {Bw} range over the finite dimensional subballs of B . Then

the natural map f : ZBw -&#x3E; B is onto and evidently norm preserving. The map

g : B* -&#x3E; II B) embeds B * as a pure subspace of the product. This is one

description of the pointwise convergence topology and sup norm. Taking

duals, we get a commutative diagram

where h is the natural map ( when Bw and B*w* are identified). Now h is

a norm isomorphism and f and k preserve norm, hence g* does and thus

(by 2.2) its image includes all elements of norm  1. Since h is onto, the

image of k includes all elements of norm  1 , but since k is 1-1 and B is

norm complete, that implies it is onto.

PROPOSITION 3.8. Let B be discrete. Then B^ = B * .

PROOF. Let C be a compact subball of B . Then C is totally bounded ( [3 

p. 25 ) as a subspace of B with its natural uniformity inherited from vB.

Hence for any 6 &#x3E; 0 there is a finite set cl , ... , cn of points of (: such

that C C U (ci + EB). A basic open set in B’" is

Now if c1, ... , cn are chosen so that C C U ( ci + 6/ 2 B ) and if

are all

it is clear that l O (C) l  E.
COROLLARY 3.9. When B is discrete, the natural map R - R ^^ is ,)nto.

PROOF. For B "" has the same elements as B^* = B**,

P ROP OSITION 3.10. For any ball B , the natural maps

and

are continuous.

P ROO F. A subbasic open set in either second dual is
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and its inverse image in B is

which is open because O is continuous.

COROLLARY 3.11. Wben C is compact. the natural map C -&#x3E; C 
^^ 

is con-

tinuous, 

PROOF. For C - is topologized by the uniform, i. e. norm, topology and is

thus discrete. Then C^^= C^* -

PROPOSITION 3.12. For any compact ball C. the natural map C -&#x3E; C^^ is

an isomorphism.

PROOF. Since C is compact, we need only show that the image is dense.

The topology on C^^ is that of pointwise convergence, so it is sufficient

to show that for any f : C^ -&#x3E;1 and any O1,...,On E C^ there is a

with

The set (Oi) defines a map C-&#x3E;In whose image is a subball Ia CIn. 

Then D "’ is that subball of C" generated by O1..., On When f is restric-
ted to D^, it follows from ( 3.6) that for some J ED» f is evaluation at d - 

Choose any c which maps to d and then

THEOREM 3.13. For any ball B, the natural maps

and

are onto.

PROOF. The second implies the first. Let {Bw} range over the family of
compact subballs of B . Then by definition B - is topologized as a subball
of n B - . Now exactly the same arguments as in the proof of 3.7 apply.

4. The weak hom.

PROPOSITION 4.1. For a fixed ball A, the functor (A, -) presen-es proj-
ective limits and has a left adjoint - 0A.
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P RO O F . There is no question about the underlying point set. The only ques-
tion is the topology. If B = rl B 6J , a basic 0-neighborhood in ( A. B ) is

where M is a 0-neighborhood in B . We may restrict M to be in a base of

0-neighborhoods and thus suppose M = II Mw, where Mw is a 0-neighborhood
in R CL) and Mw= Fw except for finitely many indices. Then

and that is a 0-neighborhood in the product. An analogous argument shows

that ( A , - ) preserves subspaces and thus equalizers. The disc I is a co-

generator and since, as is easily shown, monomorphisms are 1-1, it follows

that the category is well-powered. Thus the special adjoint functor theorem

applies to give the adjoint.

This means there is a 1-1 correspondence between maps A@ B- C

and maps A -(B, C).

PROPOSITION 4.2. Maps A ØB -&#x3E; C are characteri.zed as the bilinear maps

A X 13 -&#x3E; C which are, for each a E A , continuous on B and for each b E B ,

continuous on A .

PROOF. In order that we have a function F : A -&#x3E; (B, C ) , continuous or not,
the first condition is necessary and sufficient. It is continuous iff for all

b 6 B, 0-neighborhood M of C ,

is open in C. But this is precisely the condition that F ( -, b ) be continu-

ous on A ,

COROLLARY 4.3. There is a natural isomorphism A ® B = B ® A which inter-

rbangcs the arguments in bilinear maps.

P ROO F. Trivial on account of the symmetry of the above characterization.

PROPOSITION 4.4. Composition of functions gives a continuous map

PROOF. Composition is bilinear, so we have only to verify the separate
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continuity. If f: B - C is a fixed continuous function, a E A , M a 0-neigh-
borhood in C , then

and the latter is a 0-neighborhood, since f 1 M is one in A . If g: A - B is

continuous,

is a 0-neighborhood in ( B , C ) by definition.

T H E O R E M 4.5. The category B is, equipped with the weak hom , a s ymme-
tric monoidal closed category.

PROOF. See [2] , 11.3 and 11.4.

5. Weak reflexive spaces.

Recall that B is weak reflexive if the natural map B -&#x3E; B** is an

isomorphism.

PROPOSITION 5 . 1. The natural map B -B** is continuous.

PROOF. See [1] , 3.3.

COROLLARY 5. 2. For any B , B * is re flexive.

PROOF. See [1], 2.6.

PROPOSITION 5.3. I f A is a ball and B a weak re flexive ball, ( A , B) is

weak reflexive.

PROOF. See [1] , 3.3.

THEOREM 5.4. The full subcategory of weak reflexive balls is a reflexive TII EOR EM 5.4. The full subcategory of weak reflexive balls is a reflexive

subcategory of R which is itself a symmetric closed monoidal category.

PROOF. The reflector is given by V -&#x3E; V**, easily seen to be left adjoint
to the inclusion. The horn is the same and (A ® B)** is used for the ten-

sor. The same composition is used and so again the result follows from [2] ,
II. 3.

Thus this category of weak reflexive balls is seen to be very well-
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behaved. The trouble is, no infinite dimensional Banach spaces are inclu-

ded, since a weak reflexive B is a subball of 1 B*and is hence totally boun-
ded while it is well known that that is never true of the unit ball of an infi-

nite dimensional Banach space.

T H E O R E M 5. 5. A ball is reflexive i f f it is totally bounded.

PROOF. Let B be totally bounded. Then it is a subball of a compact ball

C . We have a commutative diagram .

and thus F3 ** -+ B -+ C is continuous and so B** -&#x3E; B is. For the converse,

it is sufficient to observe that every dual space is totally bounded, which

is clear, as B* -&#x3E; 1B .

6. The strong dual.

We say that a ball B is strong reflexive - or simply reflexive, if

the context is clear - if the natural map B - B 
.... 

is an isomorphism.

THEOREM 6.1. Discrete balls and compact balls are reflexive and the two

subcategories are dual to each other by the strong dual.

PROOF. We already know that compact balls are reflexive (3.12) and it is

evident that the dual of a compact ball is discrete. The dual of a discrete

ball f) is compact. This is classically known and described by saying that

the dual of a Banach space is weakly compact. It can also be seen to be

closed in 1 D using 3.8. But then D -&#x3E; D "" is 1-1 and onto, hence norm pre-

serving, and both are discrete, so it is an isomorphism.

PROPOSITION 6.2. For any B , the natural rriap B -&#x3E;B"" isb open. 

PROOF. A basic 0-neighborhood is the inverse image of 8 D under a map

B -&#x3E; D with D discrete. After double dualization this goes to the same set

under B^^-&#x3E;=D and is hence open.
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CO ROL L A RY 6.3. For any ball B , B ^ is re flexive.

P R O P O SIT ION 6.4. Any semi-norm on B^ is sup on a compact subball in B .

PROO F . A semi-norm p is of the form

with D discrete. We may suppose that the image of B " , purified, is dense

in D . Dualizi ng gives us a 1-1 map D " - B with D " compact. It is now a

a matter of tracing through identifications to show that p is sup on D".

COROLLARY 6.5. Let {Bw} be a collection of balls. Then The nutural map
ZBw -+( I1 Bw) " is an isomorphism.

PROOF. We already know it is 1-1 and onto (3.4). A semi-norm y = (pw) on

the sum is defined by p(Zbw)) = Zpwbw where, for each w Pw is a semi-
norm on Bw. If pw is the sup on the compact subball Cw C Bw, then
is sup on rl Cw and hence is a semi-norm on (TI Bw) ".

REMARK. This argument shows why the corresponding statement for weak

duals fails. For at the analogous stage you get a product of finite sets and

that, while compact, is not finite. As an equational variety, compact sets

are generated by products of finite sets ( in fact powers of 2), so that from

a certain point of view this suggests the inevitability of the compact-open

topology.

P RO P O SITION 6.6. An inductive limit of reflexive spaces is reflexive.

PROOF. Let .0 be an index category and B : Q - B be a functor,w-&#x3E;Bw. 
Then we have Bw -&#x3E; indlim Bw gives

and then

That is, the natural map is continuous and hence an isomorphism.

7. Alternative approaches.

There are several alternative approaches to this theory. One is to
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deal with mixed topology spaces as in [4], [5] and further references found

there. A morphism of such spaces must reduce the norm as well as be con-

tinuous in the topology.

Very similar is to consider the category of pairs ( V, B ) where V is

a topological space and B is a closed, bounded absolutely convex set. It is

necessary to suppose that V is complete in the norm defined by the , gauge
of B and that V = vB.

A third possibility is to consider an object as a vector space V equip-

ped with a family s of semi-norms which are pointwise bounded. It is ne-

cessary to suppose that the space is separated and complete in the norm de-

fined by their sup. The topology is defined on the unit ball by the semi-

norms and then extended.
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