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By a coalgebra over the commutative ring K or a K-coalgebra, we under- 
stand a cocommutative, coassociative K-coalgebra with counit. More explicitly 
we mean a K-module C equipped with maps 

&C+C&C, 
E: C-+ K, 

subject to the requirement (where we write @ for OK) that the following 
diagrams commute: 

CLC@C 

where the vertical arrow is the one which switches the factors; 

CAC@C 

1 CC38 

C@C e@‘CtC@C@C, 

where we have, as usual, eliminated from this diagram an isomorphism 
between C @ (C 0 C) and (C @ C) @ C; 

C 

C@K +==CxC=K@C, 0 

where the diagonal arrows are the canonical isomorphisms. 
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A. homomorphism between K-coalgebras is a K-module homomorphism 
which commutes with the structure maps E and 8 in an obvious way. 
these definitions we get a category which we denote by K-Coalg. We d 
by K-Mod the category of K-modules and homomorphisms. All mod&es will 
be considered simultaneously right and left modules with the same operations 
on both sides. This category of K-coalgebras has been studied extensively in 
[Sweedler], for the case in which K is a field. 

It is a Cartesian closed category, there are cofree coalgebras, many nice 
categories are enriched over it, etc. The proofs there rely heavily on the 
duality of finite dimensional vector spaces and to some extent on the partial 
duality in the infinite dimensional case. Here we establkh many of the same 
results when K is an arbitrary commutative ring. 

% do not give here any direct applications of these results, but 1 would like 
to mention, by way of example, one of the possibilities. We show that the 
category of associative K-algebras is enriched over K-Coalg. This means 
that if A and B are algebras there is a coalgebra [A, B] representing the 
enriched om. This coalgebra includes all the ordinary homomorphisms 
as its group-l&e elements (those p for which 6(p) = p @ p); for a given 
bomomorphism p it includes all the p derivations as its p-primitive elements 
(those d for which 6(d) = p @ d f d @ p) and similarly for higher derivations. 
The existence of cofree coalgebras allows a cosimplicia? inject& resolution of 
[A, B]. Cohomotopy and cohomology theories can now be constructed by 
applymg various functors to this resolution. 

From now on, we will usually omit explicit mention of the ring K, speaking 
of modu!es, coalgebras, linear maps, etc. 

If M’ C M and N’ C N are pairs of modules and submodules, we let 
134’ . N’ C M @ N denote the image of the induced map M’ @ N’ + M @ N. 

1. PURE SUBMODULES 

If M’ C M are a module and submodule, we say that M’ is a pure submodule 
of M provided that for any module N, M’ @ A!--, M @ M is mono. 

THEOREM 1.1 (P. M. Cohn). Let M’ C M be a Adele and s~b~od~le. 
Then M’ is pure if and only if every finite system of linear equations 

with all mj’ E M’, Aij E K has a solution in M’ whenever it has one in M. (E&z 
K = Z or any other PID, the possibility of diagonalizing such a system allows 
reduction to the better known relative divisibility criteerion.) 
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Proof. See [Cohn], Theorem 2.4. 

PROPOSITION 1.2. Given M’ C M, there is an M” C M such that M’ C M”, 
such that every system of the type (1) which has a solution in M has one in M”, 
and such that #(M”) < max(#(M’), #(K), X,). Here, of course, #(*) denotes 
cardinality. 

Proof. The set of equations of type (1) is 

u K= x M’“, 

where the union is over all finite sequences of K, . The number of such 
systems is < C #(K)” x #(M’)nz, where the sum may be taken over all 
pairs of integers n, and ns . For each system of type (1) which does have a 
solution in M, choose one set of elements m, ,..., m, , which satisfy it. The 
number of such elements is < C #(K)nl x #(M’>“s x #(M’)np, again the 
sum taken over all 3-tuples of integers n r , na , ns . Let M” be the submodule 
generated by all those elements together with the elements of M’. If both 
#(K) and #(M’) are finite, then #(M”) < X, , while if either is infinite, it is 
clear that #(NY) < max(#(M’), #(K)). 

PROPOSITION 1.3. Given M’ C M, there is an M* C M such that M’ C M*, 
such that M* is a pure submodule of M, and such that 

#CM*) < m=(#(M’), #W, %J. 

Proof. Apply the previous proposition to get a countable sequence 

M’CM”CM”C...CM(“tC... 

such that each family of equations of type (1) with right-hand side in n/r(%) 
which has a solution in M has one in M(“+l) and such that #(M(%+l)) is small. 
Now let M* = u MC”). 0 ne checks immediately that M* satisfies Cohn’s 
criterion and hence is pure. The cardinality limit is clear. 

2. INVARIANT SUBMODULES 

Let C be a coalgebra. A submodule MC C will be called invariant under 6, 
or simply invariant, provided S(M) C M . M. 

PROPOSITION 2.1. Let C be a coalgebra and M a submodule of C. Then 
there is a submodule M’ C C such that M C M’, such that S(M) C M’ . M’, and 
such that #(M’) < max(#(M), #(K), K,). 
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ProoJ. For each m E M, choose a representation 8(m) = 
Let M’ be the submodule generated by all these elements m,(II 1 micz) and the 

elements of M. Now all the claims of the conclusion are clear. 

ROPQSITION 2.2. Let C be a coalgebra and 134 a sub~od~~e of C. Then 
there is a submod& M! C C such that M C M!, such tizut A@ is ~~~~~,~a~~, and 

such that #(M) < max(#(M), #(K), NJ. 

PYQO~. Iterate the above proposition to get a sequence 

&fCM’CM”C . ..CAq/f(“)C 1.. 

such that 8(IW)) C M(n+r) . M(“+r). l[f M! = IJ AI(“), it clearly has all the 
claimed properties. 

3. &J%~OALGE%RhS 

THEOREM 3.1. Let C be a coalgebra, M a submodule of C. Then there is a 
s~bcoa~geb~a C’ C C such that MC C’ and #(C’) < Ax@#(M)t #(a), 

hoof. Let M’ = M*, M” = (M’)!,..., M(“) = (AI(+l when n 
and M(“) = (IW7z-1))! when n is even. Then let C’ = u M(Q. It is clear that 
6’ satisfies Cohn’s criterion and hence is pure while it is also clearly invariant. 
Hence 6(C) C C’ . Cl while C’ @ C’ + C @ C’ --f C @ C are 
which implies that C’ @ c’ = C . C, so 6(C’) C C’ @ C’. A similar argument 
implies that C’ @ C’ @ C’ - C @ C @ C is also mono, which means that 
the coassociativity law in C’ can be deduced from that of C. Similar observa- 
tions are valid for the cocommutativity. Needless to say, the E of C’ is just the 
composite C’ C C +-t PT. ‘The cardinality conclusion is clear. 

COROLLARY 3.2. The coalgebras whose cardinality is < max(#(K): 

generate the category KY-coalg. 

Proof. Let C, *i C, be maps of coalgebras with f # g. a’hen there is 

some c E Cr with f (c) # g(c). Let M be the submoduie of C, generated by c. 
Then #(M) < #(K) and the result follows easily from the previaus theorem. 

4. COFREE GOALGEBRAS 

THEOREM 4.1. The obvious underlying functor U: K-Coalg ---f K-Mocl has 
a right adjoint and is cotTipleable. 
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Proof. It is a straightforward exercise to show that U creates all colimits. 
It is based primarily on the fact that @ preserves colimits. To show that U 
has a right adjoint, we invoke the special adjoint functor theorem. The only 
missing ingredient is that K-Coalg is co-well-powered. But that follows 
easily from the facts that 77 preserves epis (U preserves colimits), that 
K-Mod is co-well-powered, and that a given K-module can underlie only a 
small set of coalgebras. To see that it is cotripleable, we resort to the criterion 
of [Duskin], (3.2) and consider a pair of maps C, 32 Ca which constitute a 
coequivalence relation on C, . All we really require is that d,, and di are 
coreflexive, i.e., have a common left inverse. We also suppose that 

is a split equalizer diagram in the category K. (We have suppressed the U to 
simplify matters). Since M --+ C, is split, it is certainly pure. Now each row 
and each column of the diagram 

M@M-----+ C,@M;C,@M 

I 

M@C,------+ Cl 0 Cl ___j -C,@M 

is an equalizer and always the equalizer of a coreflexive pair from which we 
see, by an easy diagram chase, that the diagonal is also an equalizer. Now by 
considering the diagram 

we see that M is a subcoalgebra. Since U is faithful, it is trivial to see that 

is an equalizer diagram in K-coalg. 
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5. THE CARTESIAN CLOSED STRUCTURE 

If @r and C, are coalgebras, then C, @ ca can be given, in a natural way9 
the structure of a coalgebra by 

C1@C, s@s l c,~c,~c,~c,-tc,~c,~c,~c,, 
Cl@Cz ‘a >K@KrK. 

Moreover there are natural maps 

This leads to the following proposition, whose proof is left as an exercise. 

PROPOSITION 5.1. If C, and C, are coalgebras, then e, @ e, together width 
the maps as described above is the product of C1 and 6, in K-Coalg. 

]PROPOSITION 5.2. If C is a coalgebra, the functor c @ -: K-Coalg * 
K-Coalg commutes with all colimits. 

Proof. This is because colimits are created by the underlying module 
functor and C @ - has that property in K-Mod. 

THEOREM 5.3. The category K-Coalg is a Cartesian closed category. 

Boqf. The special adjoint functor theorem provides each functor C @ - 
with a right adjoint (-)c. 

6. PROPS AND CATEGORIES PROPPABLE OVER K-MOD 

For the definition of a prop we refer to [Mac Lane] Section 24. Tne idea is 
to generalize the notion of a finitary theory by taking a category whose 
objects are natural numbers and whose maps include the permutations 
(required to state commutative laws) but not necessarily other maps between 

I numbers. You also suppose that the prop, 
+- P which at the object level satisfies m @ n m f n. But this 

@ is not assumed to be the product functor on 
so that in particular not everything is determined by the maps to 1. 

ome category with a commutative, associative, unitary product 
algebra in X is a functor P ---f X which preserves the 0. E.g., if 

the prop generated by (assuming that such a notion exists-it 
1 -+ 0 and a map 1 --f 2 and we add suitable identities, then a 
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K-Mod is precisely a K-Coalgebra. Or rather it would be if @ in K-Mod 
were commutative, associative, and unitary. Thus the above description of 
prop represents a substantial simplification. You have to beef up the definition 
by choosing a standard associativity of the @ both in the prop and in K-Mod. 
Then use [MacLane] 15.2 to see that nothing depends on the fixed association 
chosen. (I might add that this difficulty can be avoided when dealing with 
theories because the natural isomorphisms associated with product can all be 
described by universal mapping properties and are consequently unique. Or 
to put it another way, we can say what a product preserving functor is even if 
we have never heard the word “associative.“) I thank C. Auderset for pointing 
out to me the complications that arise in the careful definition of a prop. 
At any rate, once you have a prop P and a tensored category X, you can 
define the notion of a P algebra in X and, in the obvious way, of a morphism 
of P-algebras which results in a category I will denote XP. It comes equipped 
with a natural underlying functor to X which takes an algebra to its value at 1. 
If A is such an algebra, then we must have A(n) be the nth tensor power of 
A( 1) and, in particular, A(0) must be the unit for the tensor algebra. A category 
Y and a functor Y + X are called proppable over X (or, more carefully, over 
(X, 0, ‘, -7 .> .) where the dots stand for the various isomorphisms assumed) 
if Y and the functor are equivalent to Xp and its standard underlying functor 
for some prop P. 

As indicated above, the category of coalgebras is proppable over K-Mod. 
So is the category of algebras. (If P is a prop, then so is Pop. Or, an opprop is 
a prop.) Another example is the category of inner product spaces. Just take 
the free prop generated by a map 2 -+ 0 subject to a symmetry law. That Lie 
algebras are not proppable (How could you state the Jacobi identity ?) 
suggests that there is the notion of an additive prop and no doubt V-props 
for any closed category V. No doubt all the results we give have wide 
generalizations in such directions but we refrain from giving them. 

Among the props we single out two special kinds. 

DEFINITION 6.1. A prop P is said to be of algebra type if all the maps and 
all the commutative diagrams are generated by those with codomain 1. It is 
said to be of coalgebra type if POP is of algebra type. 

Clearly the prop whose algebras are ordinary K-algebras is of algebra type 
and dually for coalgebras. 

DEFINITION 6.2. Let P be a prop, A, B be P-algebras in K-Mod, C be a 
coalgebra. We make the usual abuse of notation and write A for A(l), 
A” = A @ *.. @ A for A(n). If a: m + n is a map in P, then we let 
A@:Am+A n denote the corresponding structure map. Also, define for 
each n 3 0 a map 6,: C + Cn as follows. 6, = E, 6, = C, 6, = 6 while for 
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n > 2, 6, = S @ C”-’ . S,-, . The properties of coalgebras that we suppose 
guarantee that up to the various given natural equivalences there is only one 
natural map C + Cn and this is what we call 6, . Then a map f : A @ C -+ 
is called a measuring if either of the following two equivalent diagrams 
commutes for all cl: m -+ 72 in P: 

A” 
1 

owl” 

A’” i” [C, B]‘Z A [Cm, By m [C, By, 

Here [C, B] is just the K-linear form and fz A + [C, B] is the map which 
corresponds to f under the adjunction. 

The proof that these two definitions are equivalent is not immediate and the 
carrying out of it is an educational experience which we leave to the reader. 

We let Meas (A, C; B) denote the set of measurings of A @ C + B. 

THEOREM 6.3. For any prop P and P-algebras A, B, tiie fzmctoY 

Meas(A, --; B): K-CoalgOD +- S 

is ~epmenta6b. 

Proof. Ignoring the measuring condition, the functor that associates to 
each C the linear maps A @ C -+ B preserves all colimits. In fact it is 
representable by the free -algebra generated by [B, A]. It is trivial to check 
that that imposition of the measuring condition gives a subfunctor which still 
preserves all colimits and hence, once more, the special adjoint functor 
theorem implies that it is representable. 

7. TENSORS AND COTENSORS 

Exactly as in the proof of (6.3), one can easily prove that the functor 
Meas(-, - ; -) preserves colimits as a functor of the first variable and limits 
as a functor of the third. Hence it is natural to enquire whether these functors 
are representable as well. Objects representing them are called tensors and 
cotensors respectively. When a category is enriched over , the corresponding 
constructions are copowers and powers, respectively. 
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In general we do not know, for a category proppable over K-Mod, whether 
tensors and cotensors (over K-Coalg) always exist; even when K is a field, 
I do not think the answer is known. However we shall prove that when the 
prop is either of algebra or coalgebra type, then both tensors and cotensors 
exist. We begin with coalgebra type props. 

PROPOSITION 7.1. Let P be a coalgebra type prop and A be a P-algebra in 
K-Mod. Let C be a K-coalgebra. Then the ordinary tensor product A @ C can 
be endowed with a Z-algebra structure such that Z-a&ebra maps A x C-+ B 
are the same as measures. 

Proof. We need only consider maps in P of the form 01: 1 -+ n. We use the 

map 

Since every diagram that can be buily with the 6, commutes, this makes 
A @ C into a P-algebra. The first definition of a measure makes the last 
statement of the proposition clear. 

PROPOSITION 7.2. Let P be a prop of coalgebra type. Then for any P-algebra 
A and coalgebra C, thefunctor Meas(A, C; -): (K-Mod)P + S is representable. 

Proof. The methods of Sections 1 and 2 can be repeated in any category 
of algebras over a coalgebras type (although the bounds involved would have 
to take into account the size of the homsets P(1, n) as well) to show that the 
category has a set of generators and is co-will-powered and cocomplete. 
Hence the special adjoint functor theorem implies that any limit preserving 
set-valued functor is representable. 

COROLLARY 7.3 (to the proof). If P is a coalgebra type prop, then the 
underlyingfinctor (K-Mod)P -+ K-Mod has a right adj,int and is cotripleable. 

Proof. Just mimic the proof of (4.1). 
Next we turn to algebra type props. By analogy with (7.1) we have 

PROPOSITION 7.4. Let P be an algebra type prop and B be a P-algebra in 
K-Mod. Let C be a K-coalgebra. Then the ordinary vector space Hom[C, B] 
can be endowed with a P-algebra structure such that P-algebra maps A -+ [C, B] 
are the same as measures (or rather as adjoints of measures). 

Proof. Just dualize the proof of 7.1 using, of course, the second definition 
of a measure. 
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PROPQSITION 7.5. Let B be an algebra type $ropp. Then the ~~de~~i~g 
functor (K-Mod)P + K-Mod has a left adjoint. 

Proof- First I claim that this functor preserves limits. E.g., for prod~ts. 
There is always a natural map (I-J Ai)” + Ainp just using the universal 
mapping property of products. Then if K n + 1 is a map in ) we use the 
composite 

to put a -structure on the product. A similar argument applies to equalizers. 
Hence we need only verify the solution set condition. If A is an algebra an 
MC A is a submodule, then let 

M’ = u Im(ll4n-p An + A). 
orEP(vL,l) 

Iterating this construction, we get a sequence 

MCM’CM”C . ..cMc?n.c . . . 

such that for all LX: n -+ 1 in P the image of (III(“))” -+ A% + A is contained 
in IWm+l). From this it easily follows that A’ = IJ Mf”) is a subalgebra 
of A containing M whose cardinality is not too large. Hence each K-module 144 
can only generate a set of algebras so that the ordinary a 
satisfied. 

OPOSXTION 7.6 Let P be an algebra type prop and f : A ---f 
algebras. Then f (A) is a subalgebra of 3. 

qDyoofs Given an 01: n -+ 1 in P, just use the diagonal fill-in in the diagram 

A” F f(A)” 

Aa 
1 1 

A 63” 

1 1 
BE 

f(A) >-------+ B 

~KOPOSITION 7.7. Let P be an algebra type prop alzd f: >-+B’ a 

2-I map of P algebras. Then for any P-algebra A and coalgebra C, G ma. 
A @ C + B is a measure if and only if the composite 

A@C-tB>+B’ 

is. 
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Proof. This follows trivially from the first definition of a measure. 
Let A be a P-algebra, C a coalgebra and F(A @ C) the free P-algebra 

generated by the K-module A @ C. Then there is a K-linear map A @ C --f 
F(A @ C) such that for any P-algebra B any K-linear map A @ C + B has 
unique extension to a P-algebra homomorphism F(A @ C) -+ B. Now 
consider the set r of all P-algebras G = F(A @ C)/- which are quotients of 
F(A @ C) such that the composite A @ C --f F(A @ C) -+ G is a measure. 
I claim that the set of measures A @ C + G of this form is a solution set. 
In fact, let A @ C-+ B be a measure. It extends to a P-algebra map 
F(A @ C) -+ B which factors F(A @ C) -++ G -+ B by (7.6), and by (7.7), 
A @ C -+F(A @ C) -+ G is a measure so that A @ C--t G belongs to r. 
This completes the proof of the following: 

PROPOSITION 7.8. Let P be an algebra type prop. Tken for all P-algebras A 
and coalgebras C, Meas(A, C: -): (K-Mod)P --f S is representable. 

Remark 7.9. The reader may suspect, and my student T. Fox has indeed 
shown, that the results of this paper remain valid when K-Mod is replaced 
by any @-closed locally presentable category (see [Barr], Chapter II or 
[Gabriel, Ulmer]). Of course the main difficulty to overcome is to find a 
satisfactory replacement for Cohn’s criterion. 
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