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Abstract. We continue our examination of absolute CR -epic spaces, or spaces with
the property that any embedding induces an epimorphism, in the category of commu-
tative, rings between their rings of continuous functions. We examine more closely the
deleted plank construction, which generalizes the Dieudonné construction, and yields
absolute CR -epic spaces which are not Lindelöf. For the Lindelöf case, an earlier paper
has shown the usefulness of the countable neighbourhood property, CNP, and the Alster
condition (where CNP means that the space is a P-space in any compactification and the
Alster condition says that any cover of the space by Gδ spaces has a countable subcover,
provided each compact subset can be covered by a finite subset.) In this paper, we find
further properties of Lindelöf CNP spaces and of Alster spaces, including constructions
that preserve these properties and conditions equivalent to these properties. We explore
the outgrowths of such spaces and find several examples that answer open questions in
our previous work.

1. Introduction

Unless explicitly stated otherwise, all spaces in this paper are assumed to be Tychonoff
(completely regular Hausdorff) and all functions are assumed continuous. We denote by
C(X) the commutative unitary ring of real-valued continuous maps on X, with pointwise
addition and multiplication and by C∗(X) the subring of C(X) consisting of the bounded
functions.

There is a functor β that is left adjoint to the inclusion of the category of Tychonoff
spaces into all spaces. For any space X the inner adjunction X // βX is a topological
embedding if and only if X is Tychonoff. Since the unit interval [0, 1] is compact, it follows
from the adjunction that Hom(βX, [0, 1]) // Hom(X, [0, 1]) is an isomorphism from which
one easily sees, from C∗(X) = colim Hom(X, [−n, n]), that C∗(βX) // C∗(X) is an
isomorphism. The book [Gillman & Jerison (1960)] is devoted to studying the properties
of the C and C∗ (contravariant) functors. We recall that a subset of X is called a zeroset
(respectively, cozeroset) if it is the set of all points on which some real-valued function
vanishes (respectively, is non-zero).

Before continuing, it will be useful to have some definitions. If a space X is embed-
ded into a space Y , we say that X is C-embedded (respectively C∗-embedded) in Y

The first and third authors would like to thank NSERC of Canada for its support of this research.
We would all like to thank McGill and Concordia Universities for partial support of the middle author’s
visits to Montreal.

2000 Mathematics Subject Classification: 18A20, 54C45, 54B30.
Key words and phrases: absolute CR-epics, countable neighbourhood property, Alster’s condition

Dieudonné plank.
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provided every function (respectively bounded function) on X extends to Y . These def-
initions are equivalent to saying that C(Y ) // C(X) (respectively C∗(Y ) // C∗(X)) is
surjective. An embedding X // Y is called CR -epic if the induced map C(Y ) // C(X)
is an epimorphism in the category of commutative unitary rings. A space is called abso-
lute CR -epic if every embedding into a larger space is CR -epic. If X // K is a dense
embedding and K is compact, we say that the inclusion X Â Ä //K (or, by abuse of notation,
K alone) is a compactification of X.

We will see in 2.4 below that a necessary and sufficient condition that a space be
absolute CR -epic is that every compactification, that is every dense embedding into a
compact space is CR -epic.

We have explored in several earlier papers the concept of CR -epic embeddings and
absolute CR -epic spaces, [Barr, et al. (2003), Barr, et al. (2005), Barr, et al. (2007)].
In this paper we explore several classes of such spaces that generalize examples from
the earlier paper. For example, in [Barr, et al. (2007)], we looked at the Tychonoff
plank. In this paper, we consider the more general notion of deleted planks, see Section
3. These deleted planks give us further examples of absolute CR -epic spaces which are
neither Lindelöf nor almost compact. Before outlining the other topics we consider, we
will review the definition of CNP spaces, and note that Alster spaces proved very useful
in our previous paper as reviewed in Section 2.

A space X is said to satisfy the Countable Neighbourhood Property (CNP) if a
countable intersection of βX-neighbourhoods of X is a neighbourhood of X. We saw in
[Barr, et al. (2007), Corollary 3.4] that every Lindelöf CNP space is absolute CR -epic.
Since a locally compact space is open in any compactification [Gillman & Jerison (1960),
3.15D], it follows immediately that every locally compact Lindelöf space has the CNP and
hence, if Lindelöf, is absolute CR -epic.

Section 3 deals with several generalizations of [Barr, et al. (2007), 7.15] in which
it was shown that the Dieudonné plank was absolute CR -epic, even though it was not
Lindelöf. Section 4 deals with properties of Alster spaces that were derived in [Barr, et al.
(2007)] under additional, unnecessary, conditions. Section 5 shows that countable unions
of Lindelöf absolute CR -epic spaces are absolute CR -epic. Section 6 describes counter-
examples to certain plausible conjectures. Sections 7 and 9 give alternate characterizations
of the CNP property, while Section 8 looks at spaces of the form βX −X.

1.1. Errata. We would like to mention two errors, one significant one not, in [Barr, et
al. (2007)]. We claimed in the introduction to that paper that a perfect quotient of an
absolute CR -epic space was absolute CR -epic. But we proved only that a perfect quotient
of a Lindelöf CNP space is Lindelöf CNP. In Section 6 we give an example that shows
that the claim is false.

The second is that we stated a weaker form of the converse part of Theorem 2.8,
Smirnov’s theorem ([Smirnov (1951)]), than is true or that we actually proved. The
correct statement should have been:
If a Tychonoff space X is Lindelöf, then in any compactification K of X any open sub-
set of K that contains X contains a cozeroset containing X. Conversely, if there is a
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compactification K of X with the property that every open subset of K that contains X
contains a cozeroset containing X, then X is Lindelöf (and then the property holds for
every compactification).

The proof of the converse part is correct if you replace every instance of βX by K.

2. General results

This section consists partly of material from [Barr, et al. (2007)]. The reason we have
included it is that its contents, both definitions and theorems, are called upon frequently
in the present paper. Since length is no longer a consideration in electronic publications,
it seems like a good idea to make it as self-contained as feasible. See the original paper
for proofs.

2.1. Standard definitions and notation. It is shown in [Gillman & Jerison (1960),
Chapter 6] that βX is characterized as the unique compact space in which X is dense and
C∗-embedded. We denote by υX the Hewitt realcompactification of a Tychonoff space
X; see Chapter 8 of [Gillman & Jerison (1960)] or 5.5(c) and 5.10 of [Porter & Woods
(1988)]. A space X is called realcompact if X = υX. This space is characterized as
the largest subspace of βX to which every real-valued function (including the unbounded
ones) can be extended.

A continuous map θ : X // Y is said to be perfect if it is closed and for all p ∈ Y ,
θ−1(p) is compact. It can be shown that whenever K ⊆ Y is compact, so is θ−1(K). The
properties of perfect maps are explored in detail in [Porter & Woods (1988)]. However,
be warned that they do not invariably assume that their functions are continuous, while
we do.

In any topological space, a countable intersection of open sets is called a Gδ-set. A
cover by Gδ sets will be called a Gδ-cover. A subset A of a space X will be called a
P-set in X provided every Gδ-set that contains A contains an open set containing A. If
A = {x} is a singleton, then we will say that x is a P-point. If every element of X is a
P-point, then X is called a P-space. We say that a cover of a space by not-necessarily-
open sets is ample if each compact subset of the space is covered by finitely many of the
sets. We say that a space is amply Lindelöf if every ample Gδ cover contains a countable
subcover. We have subsequently discovered that an equivalent condition was first defined
and exploited by K. Alster, [Alster (1988), Condition (∗)] in connection with the question
of which spaces have a Lindelöf product with every Lindelöf space. Accordingly, we will
rename this as Alster’s condition. (It must be admitted that we were never happy with
“amply Lindelöf” in the first place.) A space that satisfies Alster’s condition will be called
an Alster space. We will continue to call a cover of a space ample if every compact set
is finitely covered. Since Gδ sets are closed under finite unions, we may and often will
assume, without loss of generality, that our Gδ covers are closed under finite unions. For
an ample Gδ cover, this means that every compact set is contained in some element of
the cover.
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We have studied Alster spaces in a related paper that concentrated on Alster’s original
context, namely that the product of an Alster space and a Lindelöf space is Lindelöf. See
[Barr, et al. (2007a)].

2.2. Notation. If θ : B //A is a function, then we use the same θ for the direct image
function P (B) // P (A). This has a right adjoint θ−1 : P (A) // P (B) and θ−1 itself has
a right adjoint θ# : P (B) // P (A) that takes a set T ⊆ B to θ#(T ) = A − θ(B − T ). It
follows that if θ is a closed mapping between topological spaces, then θ# takes open sets
to open sets, a fact that will turn out to be important. Here are some properties of the
adjunctions. Assume that S ⊆ A and T ⊆ B. Then

1. θ(T ) ⊆ S if and only if T ⊆ θ−1(S);

2. θ−1(S) ⊆ T if and only if S ⊆ θ#(T );

3. θ preserves unions, θ# preserves intersections and θ−1 preserves both;

4. θ−1(θ#(T )) ⊆ T , with equality when θ is injective;

5. θ#(θ−1(S)) ⊇ S with equality when θ is surjective;

6. θ(θ−1(S)) ⊆ S, with equality when θ is surjective;

7. θ−1(θ(T )) ⊇ T with equality when θ is injective;

8. θ#(T ) ⊆ θ(T ) if and only if θ is surjective;

9. θ−1(θ(θ−1(S))) = θ−1(θ#(θ−1(S))) = θ−1(S);

10. θ(θ−1(θ(T ))) = θ(T );

11. θ#(θ−1(θ#(T ))) = θ#(T ).

Incidentally, θ# is called the universal image in topos theory and usually denoted ∀θ.
In contrast, the direct image is called the existential image and denoted ∃θ.

We can use this to give an efficient proof of the following well-known folklore.

2.3. Proposition. A perfect preimage of a Lindelöf space is Lindelöf.

Proof. Let θ : Y //X be a perfect map and suppose that X is Lindelöf. Let U be an open
cover of Y . We can suppose without loss of generality that U is closed under finite unions.
If p ∈ X, then θ−1(p) is compact, hence there is some U ∈ U with θ−1(p) ⊆ U , whence
p ∈ θ#(U). Thus {θ#(U) | U ∈ U} is an open cover of X and has a countable refinement,
say {θ#(Un)}. Then {θ−1(θ#(Un))} is an open cover of Y . Since θ−1(θ#(A)) ⊆ A for any
A ⊆ Y , we see that {θ−1(θ#(Un))} refines U.
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If {Xi | i ∈ I} are disjoint open subspaces of X for which X =
⋃

i∈I Xi we will say that
X is the sum of the Xi and write X =

∑
i∈I Xi. We will also write X = X1 + · · ·+Xn for

a finite sum. This is the sum in the category of topological spaces and continuous maps.
The sum is called “free union” be topologists.

2.4. Theorem. A space is absolute CR -epic if and only if every dense embedding into
a compact space is CR -epic.

Proof. Suppose σ : X Â Ä // Y is an embedding. We have a commutative diagram of
embeddings

clβY (X) βY
ψ

//

X

clβY (X)

τ

²²

X Yσ // Y

βY

ϕ

²²

Apply the contravariant functor C to a commutative diagram

C(clβY (X)) C(βY )oo
C(ψ)

C(X)

C(clβY (X))

OO

C(τ)

C(X) C(Y )oo C(σ)
C(Y )

C(βY )

OO

C(ϕ)

The map C(ϕ) is always an epimorphism since Y // βY is a C∗-embedding ([Barr, et al.
(2003), Proposition 2.1(i)]) and C(ψ) is surjective (hence an epimorphism) since clβY (X)
is a closed subspace of the normal space βY . Then from elementary category theory, we
see that C(σ) is epic if and only if C(τ) is.

2.5. Quotients. Since every Hausdorff compactification of a space X is a quotient
space of βX modulo a closed equivalence relation, we will begin by looking at equiva-
lence relations. Although the results are stated for βX, they are actually valid for any
compactification of X.

2.6. Definition. Let X be a space. An equivalence relation E ⊆ βX × βX will be
called admissible if it is a closed subspace of βX × βX and if (X × βX)∩E = ∆X (the
diagonal of X in X ×X).

Throughout this paper, E will denote an admissible equivalence relation on the Stone-
Čech compactification of a space, usually X, and θ : βX // βX/E = K will denote the
induced quotient map. The map θ, being continuous between compact sets, is closed. It
is an immediate consequence that θ# (see 2.2) takes open sets to open sets. Since θ is
surjective, θ#(U) ⊆ θ(U), so that when U is a βX-neighbourhood of X, both θ#(U) and
θ(U) are K-neighbourhoods of θ#(X) and the admissibility of E implies that θ#(X) = X.
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2.7. Proposition. For any equivalence relation E on βX, the induced map θ : X //K =
βX/E is an embedding into a Tychonoff space if and only if E is admissible.

For the proof, see [Barr, et al. (2007), Proposition 2.5].
Central to our studies is the following theorem, which is essentially [Barr, et al. (2005),

Corollary 2.14].

2.8. Theorem. A Lindelöf space X is absolute CR -epic if and only if, for every com-
pactification K of X, every function in C(X) extends to a K-neighbourhood of X.

2.9. Lemma. Suppose E is an admissible equivalence relation on βX. Then for any
f ∈ C(βX) and any n ∈ N, the set

Un = {p ∈ βX | (p, q) ∈ E ⇒ |f(p)− f(q)| < 1/n}

is open in βX and contains X.

For the proof, see [Barr, et al. (2007), Lemma 2.7].
We will require both halves of the following result from general topology. Although it

is well known, we did not find a readily accessible proof and so we sketch one.

2.10. Theorem. [Smirnov] If a Tychonoff space X is Lindelöf, then in any compactifi-
cation K of X any open subset of K that contains X contains a cozeroset containing X.
Conversely, if every open subset of βX that contains X contains a cozeroset containing
X, then X is Lindelöf.

3. Some (punctured) planks are absolute CR -epic

In [Barr, et al. (2007), 7.15], we showed that the Tychonoff plank was absolute CR -epic.
In this section, we extend this result to certain “generalized planks”.

3.1. Oscillation. We begin with a more detailed look at what is needed in order to
extend a real-valued function from a subspace to a point of the containing space. Suppose
X is densely embedded in Y , p ∈ Y −X, and f ∈ C(X). If U is a subset of Y , define

O(f, U) = sup{|f(x)− f(x′)| | x, x′ ∈ U ∩X}

called the oscillation of f on U . Define

O(f, p) = inf{O(f, U) | U is a Y -neighbourhood of p}

called the oscillation of f at p.

3.2. Proposition. Let X be dense in Y , f ∈ C(X) and p ∈ Y −X. A necessary and
sufficient condition that f be extendible continuously to p is that O(f, p) = 0.
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Proof. The necessity of that condition is obvious. So suppose that O(f, p) = 0. For
each positive integer n, there is a neighbourhood Un of p such that x, x′ ∈ U ∩X implies
that |f(x) − f(x′)| < 1/n. Choose an arbitrary element xn ∈ Un. It is clear that the
sequence f(xn) is Cauchy and converges to a t ∈ R. Define f(p) = t. The proofs that
this construction does not depend on the choice of the xn and continuously extends f to
p are routine and are left to the reader.

3.3. Proposition. Let X be dense in Y . Let A = {y ∈ Y | f extends to y}. Then the
extension is continuous on A.

Proof. Let us continue to call the extension f . The construction of the preceding propo-
sition implies that if U is a Y -open neighbourhood of y ∈ A, then for any x ∈ X ∩ U ,
|f(x)−f(y)| ≤ O(f, X∩U). Thus if y′ ∈ U , we also see that |f(x)−f(y′)| ≤ O(f, X∩U).
Thus |f(y) − f(y′)| ≤ 2O(f, X ∩ U). It follows that O(f,A ∩ U) ≤ 2O(f, X ∩ U). Then
O(f, X ∩ U) can be made arbitrarily small for appropriate choice of U and hence so can
O(f, A ∩ U). This implies that the extended function is continuous on A.

A topological space that is a product of two spaces, often total orders, is sometimes
called a plank. Sometimes the word is used to denote what we call a punctured plank, a
product with one point removed. For example, let L denote the one-point Lindelöfization
of the first uncountable ordinal, that is ω1 ∪ {ω1} with the points of ω1 isolated and a
neighbourhood of ω1 consisting of any set containing it whose complement is countable.
The Dieudonné plank is the space (ω + 1) × L − {(ω, ω1)}. In [Barr, et al. (2007),
7.14, 7.15] we showed that the Dieudonné plank and certain other punctured planks are
absolute CR -epic. Here we extend that result.

We will be dealing with complete lattices that are products of a finite number of
complete chains (total orders). Each such lattice has a top and a bottom element that we
will denote by > and ⊥, respectively. The topology on a chain is given by letting closed
intervals be a subbasis of closed sets and the product topology is used for products.

3.4. Proposition. A complete chain is compact Hausdorff.

Proof. If X is a complete chain, then for any two elements x < y, suppose first that
the open interval (x, y) is empty. In this case [⊥, x] and [y,>] are disjoint clopen sets
containing x and y respectively. If there is a p ∈ (x, y), then [⊥, p) and (p,>] are disjoint
open neighbourhoods of these points. It follows from [Kelley (1955), Theorem 5.6] that to
establish compactness, it is sufficient to show that any family of closed intervals with the
finite intersection property has non-empty intersection. Suppose we have such a family
{[xα, yα]}. Let x = sup xα and y = inf yα. It will suffice to show that x ≤ y. If not,
there will be some α for which x 6≤ yα and similarly, some γ with xγ 6≤ yα. But then
[xγ, yγ] ∩ [xα, yα] = ∅, a contradiction.

A space X is almost compact if βX −X has at most one point. This is equivalent
to the fact that of any pair of disjoint zerosets, at least one is compact. A space is pseu-
docompact if every real-valued is bounded. An almost compact space is pseudocompact
(see [Gillman & Jerison (1960), Exercise 6J]).
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3.5. Proposition. Suppose X and Y are compact spaces and x0 ∈ X and y0 ∈ Y are
such that X − {x0} and Y − {y0} are almost compact. Then X × Y − {(x0, y0)} is
almost compact.

Proof. According to [Gillman & Jerison (1960), 9.14] the product of a compact space
and a pseudocompact space is pseudocompact. In particular, X × (Y − {y0}) is pseudo-
compact. According to [Glicksberg, 1959, Theorem 1], this implies that

β(X × (Y − {y0})) = X × Y

Since the β-compactification of any space between Z and βZ is βZ, we conclude in this
case that

β(X × Y − {(x0, y0))} = X × Y

3.6. Proposition. Suppose that x and y are P-points in X and Y , respectively. Then
(x, y) is a P-point of X × Y .

Proof. If {Wn} is a countable family of neighbourhoods of (x, y), there are for each n,
neighbourhoods Un and Vn of x and y, respectively, such that Un × Vn ⊆ Wn and then⋂

Un ×
⋂

Vn ⊆
⋂

Wn, which is thereby a neighbourhood of (x, y).

We will say that a complete chain X has (respectively lacks) a proper countable
cofinal subset when X − {>} does. Clearly X lacks a countable cofinal subset if and
only if X − {>} is countably complete.

3.7. Theorem. Let X be a finite product of complete chains, each which lacks a proper
countable cofinal subset. Then X − {>} is almost compact and > is a P-point of X.

Proof. First suppose X is a chain that lacks a proper countable cofinal set. We claim that
β(X − {>}) = X. Since the β-compactification of a space is characterized as the unique
compactification in which X is C∗-embedded, this amounts to showing that every bounded
function on X−{>} extends continuously to >. Suppose f : X − {>} // [0, 1]. We must
show that O(f,>) = 0. If not, there is some ε > 0 such that for every neighbourhood U of
>, there are elements x, x′ ∈ U−{>} for which |f(x)−f(x′)| > ε. A neighbourhood base
at > consists of sets of the form (x,>]. Choose one such neighbourhood, say (x0,>] and
choose x1, x′1 ∈ (x0,>) so that f(x1)−f(x′1) > ε. Now choose elements x2, x

′
2 ∈ (x1∨x′1,>)

so that f(x′2) − f(x2) > ε and so on by induction. We get two increasing sequences
x1 < x2 < · · · < xn < · · · and x′1 < x′2 < · · · < x′n < · · · such that xn < x′n+1, x′n < xn+1

and f(xn) − f(x′n) > ε. We see, in particular, that xn−1 < x′n < xn+1 for all n, which
implies that x = sup xn = sup x′n. The fact that X lacks a countable cofinal subset
implies that x 6= >. Next we claim that the open intervals containing a point constitute
a neighbourhood at that point. In fact, the complement of an open interval consists of
at most two closed intervals and is therefore open. On the other hand, the complement
of a finite union of closed intervals is the union of a finite set of open intervals, at most
one of which will contain any given point. If there were a neighbourhood (x, x′) that
contained none of the x′n, then x′ would be a smaller upper bound for the sequence of xn
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and similarly for the x′n. Thus the fact that f(xn) − f(x′n) > ε contradicts the fact that
f is well-defined and continuous at x.

If {Un} is a countable family of neighbourhoods of >, we can assume they have the
form (xn,>], whose intersection is [sup xn,>]. Since sup xn < >, we see that (sup xn,>]
is a open neighbourhood of >.

An obvious induction based on the previous two propositions extends the conclusion
from chains to finite products of them.

Now we turn to the case of spaces that do have countable cofinal sets.

3.8. Theorem. Suppose that X =
∏

Xi is a product of finitely many complete chains,
each of which has a countable cofinal set. Then X − {>} is locally compact and σ-
compact.

Proof. The local compactness is obvious. It is obvious that a complete chain with a
countable cofinal subset is σ-compact, so it suffices to show that if X and Y are spaces
and x ∈ X and y ∈ Y are such that X − {x} and Y − {y} are σ-compact then the same
is true of X × Y − {(x, y)}. Since the product and finite sum of σ-compact spaces is
σ-compact, the conclusion follows from

X × Y −{(x, y)} = ((X −{x})× (Y −{y}))∪ ({x}× (Y −{y}))∪ ((X −{x})×{y})
A space is said to be weakly Lindelöf if from every open cover a countable subset

can be found whose union is dense. Obviously a Lindelöf space is weakly Lindelöf and so
is any space with a dense Lindelöf subspace.

3.9. Theorem. Suppose that Y is a space and y0 is a non-isolated P-point. Suppose Z
is a space with a point z0 such that Z − {z0} is weakly Lindelöf. Then Y ×Z − {(y0, z0)}
is C-embedded in Y × Z.

Proof. The case that z0 is isolated is immediate from 3.7. Otherwise, let f ∈ C(Y ×Z −
{(y0, z0)}). For each z ∈ Z − {z0}, f is continuous at (y0, z). Thus for each n ∈ N, there
is a neighbourhood V (z, n) of y0 in Y and a neighbourhood W (z, n) of z in Z − {z0}
such that O(f, V (z, n) ×W (z, n)) < 1/n. Suppose z(1, n), z(2, n), . . . is a countable set
of points of Z − {z0} such that W (n) =

⋃
m∈N W (z(m,n), n) is dense in Z − {z0}. Let

V (n) =
⋂

m∈N V (z(m,n), n). It follows that O(f, V (n) × W (n)) ≤ 1/n. Since y0 is a
P-point, V (n) is a neighbourhood of y0. For any y ∈ Y −{y0} both functions f(y,−) and
f(y0,−) are continuous on Z − {z0} and hence, for any z ∈ Z − {z0} and any m ∈ N,
there is a neighbourhood T (m) of z such that the oscillation in Tm of both f(y,−) and
f(y0,−) is at most 1/m. There is some p ∈ W (n) ∩ T (m) and we have

|f(y, z)− f(y0, z)| ≤ |f(y, z)− f(y, p)|+ |f(y, p)− f(y0, p)|+ |f(y0, p)− f(y0, z)|
< 1/m + 1/n + 1/m = 2/m + 1/n

Since the left hand side does not depend on m this implies that |f(y, z)− f(y0, z)| ≤ 1/n.
Finally, let V =

⋂
n∈N V (n). Then for y ∈ V , we have f(y, z) = f(y, z0) and we can

extend f by f(y0, z0) = f(y, z0) for any y ∈ V .
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This works, in particular, if Z − {z0} is Lindelöf or if it contains a dense Lindelöf
subspace.

From this, we get the following generalization of [Barr, et al. (2007), Theorem 7.14].

3.10. Theorem. Suppose the Lindelöf space Y is the union of a locally compact subspace
and a non-isolated P-point y0. Suppose Z is a compact space that has a proper dense
Lindelöf subspace and z0 is a point not in that subspace. Then Y × Z − {(y0, z0)} is
absolute CR -epic.

Proof. Since D = Y × Z − {(y0, z0)} is C-embedded in Y × Z, it follows that the
realcompactification υ(D) = Y × Z. Since Y × Z is the union of a locally compact space
and a compact space, the result follows from [Barr, et al. (2007), Theorem 7.11].

3.11. Theorem. Suppose that X =
∏n

i=1 Xi is a finite product of complete chains.
Assume that > is not an isolated point of any of the chains. Then X − {>} is absolute
CR -epic.

Proof. Divide the spaces into two classes, Y1, Y2, . . . , Yk that lack proper countable cofinal
sets and Z1, Z2, . . . , Zl that have them. Let Y =

∏
Yi and Z =

∏
Zj. We know that >

is a non-isolated P-point of Y . We know that Z − {>} is σ-compact, hence Lindelöf. It
follows that Y × Z − {(>,>)} is absolute CR -epic.

4. Alster’s condition

Recall from the introduction that a space is an Alster space if every ample cover by Gδ-sets
has a countable refinement.

Most of the following theorem was proved as [Barr, et al. (2007), Theorem 4.7] under
the additional hypothesis that the spaces satisfied the CNP. That condition was not used
in the proofs; it was simply that we never studied Alster’s condition separately.

4.1. Theorem.

1. The product of two Alster spaces is Alster space.

2. A closed subspace of an Alster space is Alster space.

3. If t : Y // X is a continuous surjection and Y satisfies Alster’s condition, so does
X.

4. A union of countably many Alster spaces is an Alster space.

5. A Lindelöf space is an Alster space if every point has a neighbourhood that satisfies
Alster’s condition.

6. A cozero-subspace of an Alster space is an Alster space.

7. If θ : Y // X is a perfect surjection (see 2.1) and X satisfies Alster’s condition so
does Y .
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Proof. We will mention briefly what, if any changes are needed from the proofs in [Barr,
et al. (2007), Theorem 4.7].

1. This is just [Barr, et al. (2007), Theorem 4.5].

2. See [Barr, et al. (2007), proof of 4.7.2]

3. Let U be an ample Gδ cover of X. Since θ−1 preserves open sets and commutes
with meets, it follows that θ−1(U) = {θ−1(U) | U ∈ U} is a Gδ cover of Y . It is also
ample since if K is a compact subset of Y , θ(K) is a compact subset of X and is
therefore finitely covered by U. But then θ−1(θ(K)), which contains K, is finitely
covered by θ−1(U). It follows that Y is covered by some countable subset {θ−1(Un)}
and it is clear that {Un} covers X.

4. A countable sum Alster spaces is obviously an Alster space and a union is a contin-
uous image of a sum, so the preceding item finishes it.

5. Immediate from the preceding item.

6. Immediate from the second item and the preceding one since cozerosets are Fσ.

7. The proof of [Barr, et al. (2007), 4.7.5] does not use the CNP condition. However
the first part of the proof contains an unneeded gap, so we give a complete proof
here. Suppose that θ : Y // X is perfect and X satisfies Alster’s condition. Let V
be an ample cover of Y . We may assume that V is closed under finite unions. If
K ⊆ X is compact—possibly a singleton—then θ−1(K) is compact and hence there
is a V ∈ V with vθ−1(K) ⊆ V and hence K = θ#(θ−1(K)) ⊆ θ#(V ). This implies
that U = {θ#(V ) | V ∈ V } is an ample cover of X and hence contains a finite
subcover, say U0. Clearly V0 = {θ−1(U) | U ∈ U0} is a countable cover of Y . Since
θ−1(t#(V )) ⊆ V , we see that V0 refines V .

4.2. Theorem. Suppose that the Lindelöf space X has the property that, for each p ∈ X,
whenever V is a Gδ set of βX that contains p, then V ∪X is a βX-neighbourhood of p.
Then X is a CNP space that satisfies Alster’s condition.

Proof. CNP is immediate. Let U be an ample cover of X by Gδ sets of βX. We
can suppose, without loss of generality, that U is closed under finite union. Let p be a
point of X. We will show that there is a βX-neighbourhood of p that is covered by a
countable subset of U. Let p ∈ U ∈ U. We claim there is a continuous f : βX // [0, 1]
such that p ∈ Z[f ] ⊆ U . In fact, this is immediate when U is open and it follows for
Gδ sets since a countable intersection of zerosets is a zeroset. Since V = Z[f ] is a Gδ

of βX containing p, the hypothesis implies that X ∪ V is a βX-neighbourhood of p.
Thus there is a compact βX-neighbourhood W of p with W ⊆ X ∪ V . It follows that
W ∩ coz(f) ⊆ X. But W ∩ coz(f) is σ-compact and hence there are U1, U2, . . . ∈ U
such that W ∩ coz(f) ⊆ ⋃

Un and then W ⊆ U ∪⋃
Un. Having done this for each point

p ∈ X, the Lindelöf property implies that there are countably many points for which the
corresponding sets of W cover X and then so do the corresponding sequences of Un.
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For example, this theorem implies that when p ∈ βN−N is a P-point, then N ∪ {p}
is absolute CR -epic. See also [Barr, et al. (2007), Theorem 5.4].

5. Countable unions of Lindelöf absolute CR -epic spaces

5.1. Proposition. A countable union of Lindelöf absolute CR -epic subspaces whose
interiors cover it, is absolute CR -epic.

Proof. Let X =
⋃

Xn =
⋃

intX(Xn). Since X is a countable union of Lindelöf spaces,
it is Lindelöf. Let K be a compactification of X and f ∈ C∗(X). Let Un = intX(Xn) and
Kn = clK(Xn). Since Kn is a compactification of Xn, f |Xn extends to a Kn-open subset
Wn ⊆ Kn that contains Xn. Since Un is open in X there is a K-open set Vn such that
X ∩ Vn = Un. It is well known, as X is dense in K, that Vn ⊆ clK(Un) ⊆ clK(Xn) = Kn.
We claim that Wn ∩ Vn is open in K. In fact, Wn ∩ Vn is open in Kn, hence open in the
subset Vn, while Vn is open in K. Since f |Xn extends to Wn, the conclusion follows from
3.3.

5.2. Theorem. The classes of Lindelöf absolute CR -epic spaces, Lindelöf CNP spaces,
and Alster spaces are all closed under countable open unions.

Proof. The first case is included in the preceding proposition. The second is essentially
[Barr, et al. (2007), Theorem 4.7.3] once we note that a countable union of Lindelöf spaces
is Lindelöf. The case of Alster spaces follows from Theorem 4.1.4.

It is trivial to extend these conclusions to covers whose interiors also cover. We omit
the details.

5.3. Theorem. A countable, locally finite union of closed Lindelöf CNP (respectively
Alster) spaces is Lindelöf CNP (respectively Alster).

Proof. By [Barr, et al. (2007), Theorem 4.7.4], a countable sum of Lindelöf CNP spaces
is Lindelöf CNP and we show in [Barr, et al. (2007a)] that CNP spaces are closed under
perfect image (and it is well known that being a Lindelöf space is as well.) Thus it is
sufficient to show that the map from the sum to the union is perfect. The inverse image of
each point is finite, hence compact. Let A =

∑
An be a closed subset of the sum with An

closed in Xn. If p /∈ ⋃
An there is a neighbourhood U of p that meets only finitely many of

the Xn, say X1, X2, . . . , Xm. For each n ≤ m, the set An is closed in Xn, which is closed
in X and hence

⋃m
n=1 An is closed in X. Since p /∈ ⋃m

n=1 An, there is a neighbourhood V
of p which misses that union. Since U does not meet any Xn for n > m, neither does
V ∩ U so there is a neighbourhood of p that does not meet A. Since p was an arbitrary
point not in A, we conclude that A is closed.



13

By contrast, we will see in the next section that even a finite union of closed Lindelöf
absolute CR -epic, but not CNP spaces, need not be absolute CR -epic.

6. Three counter-examples

In this section we show by example that a Lindelöf absolute CR -epic space need not
satisfy the CNP, that a perfect quotient of a Lindelöf absolute CR -epic space need not
be absolute CR -epic, and that a Lindelöf space need not be absolute CR -epic even if it is
the union of two closed absolute CR -epic subspaces.

6.1. The space X. Let {Xn} be any countable family of non-compact absolute CR -
epic Lindelöf spaces. We can picture the space β (

∑
Xn) as the union of three disjoint

subspaces:

B =
∑

Xn C =
∑

(βXn −Xn)

A = β(
∑

Xn)−∑
βXn

We let X be the space A∪B. Since X lies between
∑

Xn and its β-compactification, we
see that βX = β (

∑
Xn) and therefore βX − X = C.

Since Xn is a summand of
∑

Xn, βXn is a summand of β (
∑

Xn), so that
∑

βXn is
open in β (

∑
Xn) which implies that A is compact. But then X is the union of a Lindelöf

space and a compact space and is therefore Lindelöf.

6.2. X is absolute CR -epic, but does not satisfy the CNP. We define the level
function ` : βX // N ∪ {∞}, the one point compactification of N, as the continuous
extension of the function that has the value n on Xn. It is clear that `(p) = n if and only
if p ∈ βXn and `(p) = ∞ otherwise.

Let E be an admissible equivalence relation on βX. This means that βX/E is Haus-
dorff and that X is embedded in it, see 2.6. Let θ : βX // βX/E be the canonical
projection. We will say that an element p is E-equivalent to an element q if (p, q) ∈ E,
which is the same as θ(p) = θ(q).

6.3. Lemma. There is an N ∈ N such that whenever p is E-equivalent to q, then either
p = q or `(p), `(q) < N .

Proof. Suppose we can find elements of arbitrarily high level that are E-equivalent to
elements other than themselves. We will consider two cases. First suppose we can find a
sequence of elements (pn, qn) ∈ E such that the levels of the pn are unbounded while those
of the qn are bounded. Restricting to a subsequence, if necessary, we can assume that for
some N ∈ N we have `(qn) ≤ N for all n, while N < `(p1) < `(p2) < · · ·. The sequence
{(pn, qn)} ⊆ E thus constructed is discrete since the βX`(pn) × βX`(qn) are a family of
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disjoint open sets of βX × βX each containing one element of the set. But the sequence
has a limit point (p, q) and it is clear that `(p) = ∞, which implies that p ∈ X, while
`(q) ≤ N . The result is that an element of X is E-equivalent to some other element of βX
(which might or might not belong to X) which contradicts the fact that E is admissible.

In the other case, there are pairs (pn, qn) ∈ E in which pn 6= qn and both `(pn) and
`(qn) are unbounded. In that case, proceed as above, but assume that we have chosen
subsequences so that `(pn−1) ∨ `(qn−1) < `(pn) ∧ `(qn). Again the sequence {(pn, qn)} is
discrete and hence has a limit point (p, q) but now both elements belong to X and we
must show that p 6= q. We do this as follows. Since p1 6= q1, there is a function f1, defined
on all the elements

∑
βXn of levels up to `(p1)∨`(q1) such that f1(p1) = 0 and f1(q1) = 1.

Since the levels of both p2 and q2 are above those of both p1 and q1, this function can be
extended to a function f2 defined on the summands of levels up to `(p2)∨ `(q2) in such a
way that f2(p2) = 0 and f2(q2) = 1. Continuing in this way, we define a function f on the
sum of the finite levels such that f(pn) = 0 and f(qn) = 1. This function has a unique
extension to the elements at infinite level and it is clear that f(p) = 0, while f(q) = 1.
Again, this contradicts the admissibility of E.

6.4. Theorem. The space X is absolute CR -epic, but does not satisfy the CNP.

Proof. We will use [Barr, et al. (2007a), Theorem 2.4]. Let E be an admissible equiv-
alence relation on βX so that K = βX/E is a compactification of X with canonical
projection θ : βX // K. For a fixed integer N , let LN = {p ∈ βX | `(p) ≤ N} and
UN = {p ∈ βX | `(p) > N}. Then βX is the topological sum LN +UN . Let N be as in the
preceding lemma. This forces θ to respect the decomposition so that K = θ(LN)+ θ(Un).
Let f : X // [0, 1] be a given continuous function. We must show that f extends to
an open subset of K by showing that it extends to an open subset of θ(LN) and to an
open subset of θ(UN). Since

∑N
n=1 Xn is absolute CR -epic the restriction of f to that set

extends to an open set in
∑N

n=1 βXn, which is open in
∑∞

n=1 βXn. Since there are no pairs
of distinct E-equivalent elements in

∑
n>N βXn, the restriction of f to elements of X of

level above N extends to that open set. Thus f extends to an open set in K = βX/E
that contains X. Since X is Lindelöf, it follows that X is absolute CR -epic.

To see that X is not CNP, choose a sequence of elements S = {pn} such that pn ∈
βXn −Xn ⊆ βX −X. Let Un = βX − {pn}. Then each Un is a neighbourhood of X in
βX. But

⋂
Un is not a neighbourhood of X since no point in the set D = clβX(S) − S

has a neighbourhood in the intersection. Note that since ` is continuous, each point in D
is at level ∞ and is therefore an element of X.

6.5. A perfect quotient of X need not be absolute CR -epic. Let S and D be
as in the preceding paragraph. Each pn has a neighbourhood, namely βXn, that contains
no other element of S so that D is closed and, as shown above, D ⊆ X. We then show
that:

6.6. Proposition. If D is as above, the quotient space Y = X/D gotten by identifying
the points of D to a single point is Tychonoff and the quotient map θ : X // Y is perfect.
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Proof. The set D is compact in βX, hence also closed in X. Let W ⊆ X be closed
(possibly a single point) and p ∈ X be a point such that θ(p) /∈ θ(W ). If W ∩ D = ∅,
there is a function f : X // [0, 1] that vanishes on D∪{p} and is 1 on W . If W ∩D 6= ∅,
there is a function f that vanishes at p and is 1 on W ∪D. In either case, f is constant
on D and so descends to Y . Since every point not in θ(W ) can be separated from it by a
function, θ(W ) is closed. Applied to a single point, we see that Y is Hausdorff.

6.7. Corollary. The space Y is not absolute CR -epic.

Proof. Let K be the space βX with the points of D identified to a point. There is an
obvious dense embedding of Y in K. The sequence {pn}, considered as sequence in K−Y ,
converges to the point θ(D). The conclusion follows from [Barr, et al. (2005), Theorem
2.22].

This gives a second argument that X is not CNP, since a perfect quotient of a CNP
space is CNP, [Barr, et al. (2007), Theorem 3.6.5].

6.8. A Lindelöf space that is the union of two absolute CR -epic closed
subspaces need not be absolute CR -epic. To get this example we use the space X
of 6.2, with the additional assumption that all the Xn are locally compact. That implies
that

∑
Xn is locally compact and hence open in β (

∑
Xn). We will use u to denote a

disjoint union of subspaces that is not necessarily a topological sum. As above, we let
X = A u B, whence βX = A u B u C. Since A is compact and since each Xn is locally
compact, it readily follows that B is open in βX. Since Xn is a topological summand of∑

Xn, βXn is a topological summand of β (
∑

Xn) and it follows that B uC =
∑

βXn is
open in β (

∑
Xn). Now let X ′ denote a space disjoint from and homeomorphic to X and

let A′, B′, and C ′ be the subspaces of βX ′ corresponding to A, B, and C, respectively.
We begin with:

6.9. Lemma. Suppose A can be embedded as a closed subset of the (Tychonoff) spaces
X and Y . Then the pushout space Z = X +A Y is Tychonoff provided either X = Y or
one of X and Y is normal.

Proof. We begin with a closed subset B of Z and a point p /∈ B. We divide the proof
into three cases. The first case, that p /∈ A, uses neither subsidiary hypothesis. We can
suppose, without loss of generality that p ∈ X. Then p /∈ A ∪ (B ∩ X) so that there is
a function f ∈ C(X) such that f(p) = 0 and f = 1 on A ∪ (B ∩ X). We can extend
f to all of Z by letting f = 1 on all Y . Since f = 1 on A this is compatible with the
previous values. Then f |X is continuous and f |Y is even constant. If θ : X + Y // Z is
the quotient mapping, θ−1(X) = X ∪ A which is closed in X + Y and hence X is closed
in Z. Similarly, Y is closed in Z and hence f is continuous on Z.

If p ∈ A and X = Y , then let ϕ0 and ϕ1 be the two maps of X // Z, using the first
summand and the second. Then one readily sees that p /∈ ϕ−1

0 (B) ∪ ϕ−1
1 (B) and hence

there is an f ∈ C(X) such that g(p) = 0 and g = 1 on ϕ−1
0 (B) ∪ ϕ−1

1 (B). Let f ∈ C(Z)
be the function such that f |X = g and f |Y = g. Since g is the same on both copies of
X, this function is well defined and clearly is 1 on B.
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Finally, suppose that p ∈ A and Y is normal. Let f ∈ C(X) such that f(p) = 0 and
f = 1 on B∩X. Extend this to a continuous function on X ∪B by letting f = 1 on all of
B. Since this is 1 on B ∩X the extension is continuous as above. Since Y is normal, the
function f |(A ∪ (B ∩ Y )) can be extended continuously to all Y (see [Gillman & Jerison
(1960), Exercise 3D]) and, as above, the total function is also continuous and is 1 on B.

Define Y = X +A=A′ X
′, that is the sum X + X ′ with each point of A identified with

the corresponding point of A′. The square

X ′ Y//

A ∼= A′

X ′
²²

A ∼= A′ X// X

Y
²²

is a pushout in the category of topological spaces. From the preceding lemma, we see that
the facts that A is closed and X is Lindelöf, hence normal, imply that Y is Tychonoff.
Now we can show that Y is not absolute CR -epic. Define f : Y // [0, 1] by f(x) = 1/n if
x ∈ Xn while f vanishes on all of X ′. This is clearly continuous on the closed sets X and
X ′ and agrees on X ∩ X ′ = A and so is continuous on Y . But it is clear that if f were
to extend to a single y ∈ C =

∑
(βXn −Xn), then for βXn −Xn we would have to have

f(y) = 1/n on the one hand and f(y) = 0 on the other. Thus the maximal extension of f
on K is to Y , which is not open in βY because any sequence of points of increasing level
in C has all its limit points in A.

7. Characterizations of Lindelöf CNP spaces

In the following theorem, L denotes the convergent sequence 1, 1/2, 1/3, . . . , 0.

7.1. Theorem. A Lindelöf space satisfies the CNP if and only if its product with L is
absolute CR -epic.

Proof. The product of a Lindelöf CNP space with a compact space is Lindelöf CNP
([Barr, et al. (2007), Theorem 4.6]) and therefore absolute CR -epic, so that direction is
trivial. Conversely, assume that X ×L is absolute CR -epic. Suppose {Un} is a countable
family of βX-open neighbourhoods of X. We may assume, without loss of generality,
that Un ⊇ Un+1. We must show that U =

⋂
Un is a βX-neighbourhood of X. Define

an equivalence relation E on βX × L as follows. Let An = βX − Un and En be the
equivalence relation generated by ((p, 1/n), (p, 0)) ∈ En whenever p ∈ An. Then let E be
the equivalence relation generated by

⋃
En.

7.2. Lemma. The set E is closed in (βX × L)× (βX × L).
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Proof. The map βX×L×L // (βX×L)× (βX×L) that sends (p, s, t) to ((p, s), (p, t))
is clearly a closed embedding. Let D denote the subset consisting of the elements of the
form (p, t, t). It is then readily verified that E is the direct image under this map of the
set B that is the union of the following four sets (in which we denote the usual inf in Z
by ∧):

1. {(p, 1/n, 1/m) | p ∈ An∧m};

2. {(p, 1/n, 0) | p ∈ An};

3. {(p, 0, 1/n) | p ∈ An};

4. D

It suffices to show that B is a closed subset of βX × L × L. It is easily verified
that t = (q, 1/n, 1/m) ∈ B if and only if n = m or q ∈ An∧m. It follows that if
t = (q, 1/n, 1/m) /∈ B, then Un∧m×{1/n}×{1/m} is a neighbourhood of t that misses B.
Similarly, s = (q, 1/n, 0) ∈ B if and only if q ∈ An, so that if s /∈ B then Un×{1/n}×Hn

is a neighbourhood of s which misses B where Hn = {0}∪ {1/k | k > n}. A similar proof
works for (q, 0, 1/n) and, since D is obviously closed, it readily follows that B is closed.

Proof of 7.1, concluded. Assume that X × L is absolute CR -epic. We see that
(βX × L)/E is a compactification of X × L, see 2.7. Let f : X × L // R be the second
projection (recall that L ⊆ [0, 1]). Since X ×L is absolute CR -epic, f extends to an open
set W where W ⊆ (βX × L)/E. Consider the map βX // βX × L which sends p to
(p, 0). Let V be the inverse image of W under this map. Clearly V is an open subset of
βX which contains X. It suffices to show that V is contained in

⋂
Un . But if (p, 0) ∈ V

then p must be in
⋂

Un otherwise p ∈ An for some n and so ((p, 0), (p, 1/n)) ∈ E which
shows that f cannot extend to (p, 0) as f(p, 0) = 0 but f(p, 1/n) = 1/n.

7.3. Remark. Since a closed subspace of a Lindelöf absolute CR -epic space is absolute
CR -epic (use [Barr, et al. (2007), Theorem 6.1] in conjunction with the fact that a
Lindelöf space is normal and hence any closed subspace is C∗-embedded in it), one readily
sees that if L is any space that contains a proper convergent sequence and X×L is Lindelöf
absolute CR -epic, then X is Lindelöf CNP.

A space X is said to have the sequential bounded property or SBP at the point
p if for any sequence {fn} of functions in C(X) there is a neighbourhood of p on which
each of the functions is bounded. A space has the SBP if it does so at every point. For
example, every locally compact space has this property. So does every P-space. The
easiest way to see this is to let p ∈ X and let Un = {x ∈ X | |fn(p)− fn(x)| < 1}. Then⋂

Un is a Gδ containing p and in a P-space, every Gδ is open. Since both of these classes
of spaces have the CNP, the following characterization comes as no surprise.

7.4. Theorem. A Lindelöf space is CNP if and only if it has the SBP at every point.
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Proof. Suppose X is Lindelöf with the CNP. Let f1, f2, . . . be a sequence of functions
in C(X). We can replace each fn by 1 + |fn| and assume that they are all positive and
bounded away from 0. Then the functions gn = 1/fn are all bounded and hence extend
to βX. Let Un be the cozeroset of the extension of gn to βX. The CNP implies that⋂

Un is a neighbourhood of X. Now let p ∈ X. There is a closed, hence compact,
βX-neighbourhood V of p inside

⋂
Un. Since every gn is non-zero on V , it follows that

every fn is bounded there. In particular, every fn is bounded in V ∩ X, which is an
X-neighbourhood of p.

Conversely, suppose X satisfies the SBP. Let {Un} be a sequence of K-neighbourhoods
of X. By Smirnov’s theorem 2.10, the Lindelöf property allows us to choose, for each n,
a function gn : K // [0, 1] such that X ⊆ coz(gn) ⊆ Un. Define fn : K // [1,∞] by
fn(p) = 1/gn(p) when gn(p) 6= 0 and fn(p) = ∞ otherwise. Then X ⊆ fin(fn) ⊆ Un,
where fin(fn) = coz(gn) is the set on which fn is finite. For each p ∈ X, there is an X-
open set Vp on which each fn is bounded, from which it is clear that each fn is bounded
on Wp = clK(Vp), which is a K-neighbourhood of p. Since fn is bounded on Wp, it follows
that Wp ⊆ fin(fn) ⊆ Un for each p and each n, so that W =

⋃
p∈X Vp is a K-neighbourhood

of X contained in
⋂

Un.

7.5. Definition. If f, g ∈ C(X) let us say that g surpasses f and write f ≺ g if there
is a real number b > 0 such that f < bg.

7.6. Theorem. A Lindelöf space has CNP if and only if whenever f1, f2, · · · is a se-
quence of functions in C(X), there is a g ∈ C(X) that surpasses them all.

Proof. ⇐: Every fn will be bounded on any neighbourhood on which g is bounded.
⇒: Let f1, f2, . . . be a sequence. We may assume, without loss of generality, that each
fn > 1. Using the SBP and the Lindelöf property, there is a countable cover U1, U2, . . .
of X such that for all n, m ∈ N each fn is bounded on each Um. Since a Lindelöf space is
paracompact, there is a partition of unity {tn} subordinate to the cover. In fact, we may
refine the cover and suppose that Un = coz(tn) (see [Kelley (1955), 5W and 5Y]). Let bn

be the sup of fn on U1∪U2∪· · ·∪Un−1. Define hn = f1 +f2 + · · ·+fn and g =
∑

n∈N hntn.
The local finiteness guarantees that this sum is actually finite in a neighbourhood of each
point, so continuity is clear.

We next claim that x ∈ coz(tm) implies that fn(x) ≤ bnhm(x) for all n and m. In fact,
if m < n, then f(x) ≤ bn ≤ bnhm on U1 ∪ U2 ∪ · · ·Un−1 ⊇ Um = coz(tm). If m ≥ n, then
fn is one of the summands of hm so that fn ≤ hm ≤ bmhm. Note that the fact that each
fn ≥ 1 everywhere implies the same for every hn and bn.

We can now finish the proof. Given a point x ∈ X, let N(x) denote the finite set of
indices n for which tn(x) 6= 0. Then for all m,

bng(x) =
∑

n∈N

bnhn(x)tn(x) =
∑

n∈N(x)

bnhn(x)tn(x)

≥
∑

n∈N(x)

fm(x)tn(x) =
∑

n∈N

fm(x)tn(x) = fm(x)
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7.7. Example. Here is a nice application of Theorem 7.4. Say that a space satisfies
the open refinement condition or ORC if the finite union closure of every ample Gδ

cover has an open refinement. We explored this condition in some detail in [Barr, et al.
(2007a)]. All P-spaces and all locally compact spaces satisfy the ORC and the class of
spaces satisfying it is closed under finite products, closed subspaces and perfect images and
preimages.

7.8. Theorem. For Lindelöf spaces, ORC implies CNP.

Proof. Let X be Lindelöf and satisfy the ORC and let f1, f2, . . . be a sequence of func-
tions in C(X). For each compact set A ⊆ X and each n ∈ N, let bn(A) = supx∈A |fn(x)|.
Let Un(A) = {x ∈ X | |fn(x)| < bn(A) + 1} and U(A) =

⋂
n∈N Un(A). Then U(A) is a

Gδ containing A. The cover by the set of U(A), taken over all the compact subsets of X,
is an ample Gδ cover. Each fn is bounded on each U(A) and hence is bounded on the
union of any finite number of them. Therefore each fn is bounded on each set in an open
refinement of {U(A)}.

8. Outgrowths

The outgrowth of a Tychonoff space X is the space βX − X. In this section, we
explore some of the ways a space and its outgrowth influence each other. By a reduced
outgrowth of a Tychonoff space, we mean any space of the form K − X where K is a
compactification of X. Obviously a reduced outgrowth is a quotient of the outgrowth,
but not every quotient is a reduced outgrowth.

8.1. Lemma. Let K be a compactification of X. Then K − X is countably compact if
and only if βX − X is.

Proof. Let θ : βX // K be the canonical quotient map. If βX − X is countably
compact, then its image, K − X clearly is too. To go the other way, we have from
[Kelley (1955), 5E(a)] that if βX − X is not countably compact, there is a sequence
S = {p1, p2, p3, . . .} that has no cluster point in βX − X. But then every cluster point in
βX of the sequence lies in X. Either S has an infinite subsequence all of whose images
in K are the same or S has an infinite subsequence all of whose images in K are distinct.
We can suppose, without loss of generality that either θ(S) is a single point or that θ|S
injective. The first case contradicts the fact that S is disjoint from X but has a cluster
point in X . In the second case, θ(S) must have a cluster point in K − X. Let V be a
non-principal (i.e, non-constant) ultrafilter on θ(S) which converges to a point of K −X.
Then V = θ(U) where U is a non-principal ultrafilter on S, which must converge to a
point in X, leading to a contradiction.

The proofs of the following are exercises.
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8.2. Theorem. Of the following conditions on a space X and a compactification K,

1. X is a P-set in K;

2. The closure in K − X of every σ-compact subset of K − X is compact;

3. The closure in K − X of every countable subset of K − X is compact;

4. K − X is countably compact;

5. K − X is pseudocompact.

we have 1 ⇔ 2 ⇒ 3 ⇒ 4 ⇒ 5.

8.3. Theorem. If Y is a reduced outgrowth of a Lindelöf (respectively Alster) space,
then any outgrowth of Y is Lindelöf (respectively Alster). Conversely, if some reduced
outgrowth of Y is Lindelöf (respectively Alster), then Y is a reduced outgrowth of a Lindelöf
(respectively Alster) space.

Proof. Suppose X is a Lindelöf space and K is a compactification of X with Y = K − X.
Then L = clK(Y ) is a compactification of Y and L − Y = L∩X is closed in X and hence
Lindelöf. Since L − Y is a perfect image of βY − Y (see 2.1), it follows that βY − Y is
Lindelöf (2.3) and hence the same is true for any compactification of Y . The Alster case
goes the same way.

For the converse, suppose L is a compactification of Y with L − Y Lindelöf. Let N∗

be the one point compactification of N and K = N∗ × L. Embed Y as {∞} × Y and let
X = K − Y . Clearly K is a compactification of X with reduced outgrowth Y . Finally,
X = (N × L) ∪ {∞} × (L − Y ) is the union of countably many Lindelöf spaces and is
therefore Lindelöf. The argument with Alster’s condition is similar.

8.4. Theorem. A space with a locally compact reduced outgrowth is the union of a
compact subset and a locally compact subset.

Proof. Let X ⊆ K be a compactification such that Y = K −X is locally compact. Let
L = clK(Y ). Since Y is locally compact it is open in L and hence L − Y is a compact
subset of X. If p /∈ L−Y , then p has a K-neighbourhood that does not meet Y and a K-
closed K-neighbourhood inside it. Such a neighbourhood is a compact K-neighbourhood
of p inside X.

8.5. Theorem. A locally Alster reduced outgrowth of a Lindelöf CNP space is locally
compact.
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Proof. Suppose that X is a Lindelöf CNP space, K is a compactification of X and
Y = K − X. Assume that each p ∈ Y has an Alster neighbourhood. Let F denote the
family of all f ∈ C(K) that vanish nowhere on X. Then {Z[f ] | f ∈ F} is readily seen
to be an ample Gδ cover of Y , since for each compact set A ⊆ Y there is an f ∈ F that
vanishes on A (Theorem 2.10). If p ∈ Y , there is a neighbourhood U of p that is covered
by a countable family of Z[f ]. This means that U ⊆ ⋃

Z[fn]. But then
⋂

coz(fn) is a Gδ

that contains X and, by the CNP, there is an open V ⊆ K such that X ⊆ V ⊆ ⋂
coz(fn)

and then K − V ⊇ U is a compact neighbourhood of p.

9. SCZ spaces

We will say that a space satisfies the SCZ condition if every σ-compact subset is contained
in a compact zeroset. This can be usefully broken into two separate conditions:

SCZ-1. The closure of any σ-compact subset is compact;

SCZ-2. Every compact subset is contained in a compact zeroset.

The following claim is immediate.

9.1. Proposition. A reduced outgrowth of a space satisfies SZC-1 if and only if the
space satisfies the CNP.

9.2. Proposition. A reduced outgrowth of a Lindelöf space satisfies SCZ-2.

Proof. If X is Lindelöf and K is a compactification, let Y = K − X. If A is a compact
set in Y , then K − A is an open set that contains X. Since X is Lindelöf, there is a
cozeroset U ⊆ K such that X ⊆ U ⊆ K − A (Theorem 2.10). Then K − U is a zeroset,
hence compact, in K and evidently A ⊆ K − U ⊆ Y .

9.3. Proposition. A reduced outgrowth of a space that satisfies SCZ-1 satisfies the
CNP.

Proof. Suppose X satisfies SCZ-1 and K is a compactification of X. Let Y = K−X and
L = clK(Y ). Then L is a compactification of Y and hence L−Y is a reduced outgrowth of
Y . But L−Y is a closed subspace of X and hence also satisfies SCZ-1. Let U =

⋂
n∈N Un

(each Un open in L), be a Gδ set in L that contains Y . It follows that for each n, L−Un

is a compact subset of L − Y . According to SCZ-1, there is a compact set A ⊆ L − Y
with L− Un ⊆ A for all n ∈ N. But then L− A is an open set with Y ⊆ L− A ⊆ U .

9.4. Proposition. A space that satisfies SCZ-1 is pseudocompact.

Proof. Suppose Y satisfies SCZ-1. If f were an unbounded function in C(Y ) we could
choose points p1, p2, . . . , pn, . . . such that |f(pn)| > n. The set {p1, p2, . . .} is discrete and
not compact, but its closure is compact. If p is any point in its frontier, it is clear that
f(p) cannot be defined.
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9.5. Proposition. A reduced outgrowth of any space that satisfies SCZ is Lindelöf.

Proof. Let X satisfy SCZ. We will begin by showing that Y = βX − X is Lindelöf. By
Smirnov’s Theorem (see 2.10), it will suffice to show that any open subset of clβX(Y ) that
contains Y contains a cozeroset containing Y . It will be sufficient to show the same with
βX replacing clβX(Y ). If U is an open subset of βX containing Y , βX − U is closed
in βX and hence compact and βX − U ⊆ X. Then there is a function f : X // [0, 1]
such that Z[f ] is compact and βX − U ⊆ Z[f ]. The function f extends to a function

f̂ : βX // [0, 1]. We claim that Z[f̂ ] does not meet Y . For suppose that p ∈ Y with

f̂(p) = 0. Since Z[f ] is compact and therefore closed in βX, there is a function g :

βX // [0, 1] such that g(p) = 0 and g(Z[f ]) = 1. Then f̂ + g vanishes nowhere on X

since g = 1 wherever f = 0. The previous proposition implies that 1/(f̂ + g) is bounded

on X and hence bounded on βX. Thus f̂ + g cannot vanish anywhere on Y , in particular
at p. It follows that Z[f̂ ] is a compact zeroset in βX that does not meet Y and then

Y ⊆ βX − Z[f̂ ] ⊆ U .
In the general case of a reduced outgrowth, any space of the form K − X, for a

compactification K of X, is a quotient of βX −X.

In the next two propositions, X denotes a space that satisfies the SCZ, K is a compact-
ification of X, Y = K − X, and L = N∗×K. Embed K into L as {∞}×K and similarly
embed X and Y into the infinity slice. Let Z = (N×K)∪ ({∞}×Y ) = L − ({∞}×X).

9.6. Proposition. The space Z is Lindelöf.

Proof. The Since X satisfies the SZC, Y is Lindelöf by the preceding proposition. Ob-
viously N×K is Lindelöf and hence so is Z.

9.7. Proposition. If Y satisfies the CNP, so does Z.

Proof. Suppose Z ⊆ U =
⋂

Un with each Un open in L. Then Y ⊆ ⋂
(K ∩ Un) and

each K ∩ Un is open in K. Since Y satisfies the CNP, there is an open V ⊆ K such that
Y ⊆ V ⊆ U ∩K. But then N∗ × V and N×K are open in L and

Z ⊆ (N∗ × V ) ∪ (N×K) ⊆ U

9.8. Theorem. A reduced outgrowth of a Lindelöf CNP space satisfies SCZ; a space
that satisfies the SCZ is the reduced outgrowth of a Lindelöf CNP space.

Proof. Propositions 9.1 and 9.2 give one direction. The previous proposition gives the
converse.
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