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MATHEMATICAL LOGIC

ANUSH TSERUNYAN

These lecture notes introduce the main ideas and basic results of mathematical logic from a fairly modern
prospective, providing a number of applications to other fields of mathematics such as algebra, algebraic
geometry, and combinatorics. They consist of two parts: basic model theory and basic recursion theory.
Basic model theory. Model theory is a study of mathematical structures, examples of which include groups,
rings, fields, graphs, and partial orders. We will first abstractly study structures and definability, theories,
models and categoricity, as well as formal proofs, and this will culminate in proofs of the Gödel Completeness
and Compactness Theorems—two of the most useful tools of logic.

We will discuss applications of the Compactness theorem in combinatorics, deriving finitary analogues
of the infinitary combinatorial statements such as the infinite Ramsey theorem, van der Waerden’s or
Szemerédi’s theorems, graph colorings, etc.

As another application of the Compactness theorem, we briefly discuss nonstandard extensions of the
structure of natural numbers and study some of their properties.

On the algebraic side, we apply the developed techniques to algebraically closed fields, which yields a
rigorous proof of the Lefschetz Principle (a first-order sentence is true in the field of complex numbers if
and only if it is true in all algebraically closed fields of sufficiently large characteristic) and an amusingly
slick proof of Ax’s theorem (if a polynomial function C

n→C
n is injective, then it is surjective).

Finally, we will study quantifier elimination and model-completeness, and, as a quick application, give a
transparent proof of Hilbert’s Nullstellensatz.

Basic recursion theory. At the beginning of the 20th century mathematics experienced a crisis due to the
discovery of certain paradoxes (e.g. Russell’s paradox) in previous attempts to formalize abstract notions of
sets and functions. To put analysis on a firm foundation, similar to the axiomatic foundation for geometry,
Hilbert proposed a program aimed at a direct consistency proof of analysis. This would involve a system of
axioms that is consistent, meaning free of internal contradictions, and complete, meaning rich enough to
prove all true statements. But the search for such a system was doomed to fail: Gödel proved in the early
1930s that any system of axioms that can be listed by some “computable process”, and subsumes Peano
arithmetic, is either incomplete or inconsistent. This is the Gödel Incompleteness theorem. To prove this
theorem, we begin with a robust definition of “computable process” (algorithm), followed by a rather short
investigation of computable functions and sets. The investigation will be short because we will quickly
discover that many interesting functions and sets are not computable, as radiantly illustrated by the Gödel
Incompleteness theorem and Church’s theorem on undecidability of first-order logic.

Credits. These notes owe a great deal to [Mos08] and [vdD10]. The author also used her handwrit-
ten lecture notes from Matthias Aschenbrenner’s model theory course taught at UCLA, as well as
[Mar02] and [End01].
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1. First order logic: the semantic aspect

Like any other field of mathematics, mathematical logic starts with a pile of definitions, the importance
and use of which will become apparent as we go. Right now, our position is analogous to that of an instructor
of geometry who has to define the concept of a differential manifold from scratch without assuming
knowledge of point set topology and differentiability. So one has to patiently make his way through the
definitions keeping in mind that the end goal is worth it. Let the story begin...
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1.A. Structures

Every mathematician recognizes a mathematical structure as such when he sees it. Here are some.

Examples 1.1.

(a) A graph is a pair G = (G,E), where G , ∅ is the set of nodes and E is a binary relation on G, i.e. E ⊆ G2.

(b) A partial ordering is a pair P = (P ,⩽), where P is a set and ⩽ is a binary relation on it satisfying the
following conditions:
(i) (Reflexivity) ∀x ∈ P , x ⩽ x,
(ii) (Antisymmetry) ∀x,y ∈ P , if x ⩽ y and y ⩽ x, then x = y,
(iii) (Transitivity) ∀x,y,z ∈ P , if x ⩽ y and y ⩽ z, then x ⩽ z.

(c) A group is a quadruple Γ = (Γ ,1, ·, ()−1), where Γ is a set, 1 is a fixed element of G (a constant) and ·, ()−1

are binary and unary operations on G, respectively, such that the following conditions hold:
(i) (Associativity) ∀x,y,z ∈ G, x · (y · z) = (x · y) · z,
(ii) (Identity) ∀x ∈ G, 1 · x = x · 1 = x,
(iii) (Inverse) ∀x ∈ G, x · x−1 = x−1 · x = 1.

(d) An ordered field is a 6-tuple F = (F,0,1,+, ·,<), where F is a set, 0,1 are some fixed elements of F, + and ·
are binary operations, and < is a binary relation on F such that certain conditions are satisfied (too many
to list here).

What is common between these examples? Well, they all have an underlying set together with either
relations, operations or constant elements (or all of the above as in Example 1.1(d)) defined on it. Let’s
formalize this and give an abstract definition of a mathematical structure.

Definition 1.2. A structure is a quadruple S = (S,C,F ,R), where S is a set, C is a set of elements from S
(constants), F is a set of operations on S (i.e. each element of F is a function from Sn to S for some n ⩾ 1)
and R is a set of relations on S (i.e. each element of R is a subset of Sn for some n ⩾ 1).

Although this definition covers all of the examples above, it is a bit awkward to use when defining a
class of structures that have the same format, i.e. the same number of constants, functions, and relations
of the same arity. It gets even worse when the structures in that class must also satisfy certain axioms. For
example, when defining the class of groups, we not only have to demand that, in those structures, |C | = 1,
|F | = 2, R = ∅, and one of the operations in F is binary and the other is unary, but we also have to require
that conditions (i)-(iii) of Example 1.1(c) hold. To write these conditions down, we need a coherent system of
naming the constants, functions and relations in these structures, i.e. we have to specify that 1 refers to the
unique element in C and · refers to the unique binary element in F . So why don’t we first fix a set of names
(like

{
1, ·, ()−1

}
) and then include their correspondence with the actual constants, functions and relations in

the definition of a structure? In fact, that is exactly what we will do.

Definition 1.3. A signature is a quadruple

σ = (C,F ,R,a),

where C,F ,R are pairwise disjoint sets (of symbols), which we refer to as the sets of constant, function, and
relation symbols, respectively, and

a : F ∪R→N
+,

which we refer to as the arity function and call P ∈ F ∪R an n-ary symbol if a(P ) = n. We put Const(σ ) ..= C,
Func(σ ) ..= F , Rel(σ ) ..= R, and aσ

..= a (although we write a is σ is clear from the context). Furthermore,
for each n ∈ N

+, we denote by Funcn(σ ) and Reln(σ ) the sets of n-ary symbols in Func(σ ) and Rel(σ ),
respectively.

The sets Const(σ ),Func(σ ),Rel(σ ) should be thought of as names for constant elements, functions (opera-
tions), and relations, and not the actual constant elements, functions, and relations themselves! N.b., any of
these sets can be empty.

Examples 1.4.
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(a) The signature for graphs is
σgr = (∅,∅, {E} , (E 7→ 2)),

However, this is too formal and hard to read, so in order to avoid headache (think of a signature for
ordered fields!) we simply write

σgr = (E),
and then specify that E is a binary relation symbol.

(b) The signature for monoids is
σmon = (1, ·),

where · is a binary function symbol and 1 is a constant symbol.

(c) The signature for groups is
σmon = (1, ·, ()−1),

where · and ()−1 are binary and unary function symbols, respectively, and 1 is a constant symbol.

(d) The signature for rings is
σring = (0,1,+,−, ·),

where +,−, · are binary function symbols and 0,1 are constant symbols.

(e) The signature for arithmetic is
σarthm = (0,S,+, ·),

where 0 is a constant symbol, S is a unary function symbol (S stands for “successor”), and +, · are binary
function symbols.

(f) The signature for sets is
σset = (∈),

where ∈ is a binary relation symbol.

Although in this examples the signatures are finite, it is not required by the definition.
Now we are ready to define a structure in a given signature σ = (C,R,F ).

Definition 1.5. A σ -structure is a pair S = (S, i), where S is a set and i is a map (correspondence) that assigns
• to each c ∈ Const(σ ), an element i(c) of S,
• to each f ∈ Func(σ ) an operation i(f ) : Sa(f )→ S,
• to each R ∈ Rel(σ ), a relation i(R) ⊆ Sa(R).

We call S the universe of the structure S. The choice of the letter i is because we think of i as the
interpretation of the symbols of σ in the structure S. To simplify the notation, we write qS instead of i(q), for
all symbols q in σ , so instead of (S, i), we write

S = (S,
{
cS
}
c∈C

,
{
RS

}
R∈R

,
{
f S

}
f ∈F

).

For finite signatures, we use an even simpler notation as in the following examples.

Examples 1.6.

(a) A complete graph on n vertices is a σgr-structure

Kn = (V ,EKn ),

where V is a set of n elements (vertices) and EKn = V 2 \ IdV , IdV ..= {(v,v) : v ∈ V }.
(b) Z, as a group, is a σgp-structure

Z = (Z,1Z , ·Z ,
(
()−1

)Z
),

where 1Z is 0 ∈ Z, ·Z is the usual addition operation (a,b) 7→ a + b, and
(
()−1

)Z
is the usual additive

inverse operation a 7→ −a.

(c) R, as a field, is a σring-structure:
R = (R,0R,1R,+R,−R, ·R),

where all of the symbols are interpreted in the usual way.
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(d) Here is a useless σring-structure:

Rcrazy = (R,0Rcrazy ,1Rcrazy ,+Rcrazy ,−Rcrazy , ·Rcrazy ),

where 0Rcrazy ,1Rcrazy are equal to π, +Rcrazy is the sin(x + y) function, −Rcrazy is the x + y function and ·Rcrazy

is the x + 4y function. Clearly Rcrazy is far from being a ring although it is a structure in the signature of
rings.

(e) The structure of natural numbers is a σarthm-structure and it will be the central object of this course:

N = (N,0N ,SN ,+N , ·N ),

where 0N ,+N , ·N are defined in the usual way, and SN is the successor operation (i.e. the unary function
of adding 1).

Since it is annoying to keep writing S in the superscript to denote the interpretation of symbols of σ in a
σ -structure S, we will omit it if the interpretation is the usual/expected one (as suggested by the notation),
as long as it is clear that we mean the interpretations rather than the symbols. For example, we will write
R = (R,0,1,+,−, ·) instead of R = (R,0R,1R,+R,−R, ·R) if it is the structure in Example 1.6(c), but we won’t
use this shorthand notation with anything like Example 1.6(d).

In algebra, one of the first things you learn after the definition of a group is the definition of a subgroup,
homomorphism and isomorphism. We do the same with arbitrary structures.

Notation 1.7. For any set S and a⃗ ∈ Sn, let |a⃗| denote the length of a⃗, i.e. |a⃗| ..= n. For i < n, we refer to the ith

coordinate of a⃗ by writing (a⃗)i ; we also simply write ai if there is no ambiguity, so a⃗ = (a0, . . . , an−1). For a
function h defined on S, we write h(a⃗) for

(
h(a0), . . . ,h(an−1)

)
.

For sets Y ⊆ X and a function f : X→ Z, the restrictions f |Y of f to Y is the function f |Y : Y → X defined
by y 7→ f (y). Similarly, for an n-ary relation R on X, its restriction R|Y is the n-ary relation on Y equal to
R∩Y n.

Definition 1.8. For σ -structures A,B, we say that A is a substructure of B, written A ⊆ B, if A ⊆ B and the
interpretations of σ by A and B coincide on A, more precisely:

• cA = cB for each c ∈ Const(σ );
• f A = f B |Aa(f ) for each f ∈ Func(σ );
• RA = RB |A for each R ∈ Rel(σ ).

For example, (N,0,+), (3Z,0,+), and (−6N,0,+), as well as ({0} ,0,+), are substructures of (Z,0,+) and the
reader is invited to characterize all substructures of (Z,0,+). Note that even though (Z,0,+) is a group, its
substructure may not be. Similarly, (R,0,1,+,−, ·) is a field but its substructure (Z,0,1,+,−, ·) is not.

For a σ -structure B and A ⊆ B, we say that A is a universe of a substructure of B if there is a substructure
A ⊆ B whose universe is A. For example, if σ only has relation symbols, then any subset A ⊆ B is a universe
of a substructure. In particular, if (V ,E) is a graph and U ⊆ V , then (U,E∩U2), i.e. the induced subgraph on
U , is a substructure of (V ,E). However, note that being a subgraph is not the same as being a substructure
of a graph: indeed, a subgraph of a graph (V ,E) can be missing some edges between vertices it contains even
though these edges may be present in E and this kind of subgraph isn’t a substructure of (V ,E).

More generally, for a σ -structure B and A ⊆ B, we say that A contains the constants of B if cB ∈ A for each
c ∈ Const(σ ). We also say that A is closed under the functions of B if f B

(
Aa(f )

)
⊆ A for each f ∈ Func(σ ). Here

a useful characterization of when a subset is a universe of a substructure, whose proof is immediate from
the definition of a substructure and is left to the reader.

Lemma 1.9. Let B be a σ -structure and A ⊆ B.
(1.9.a) There is at most one substructure of B with universe A.
(1.9.b) A is the universe of a substructure of B if and only if A contains the constants of B and is closed under the

functions of B.

Proposition 1.10. Any (finite or infinite, even uncountable) intersection of substructures of the same structure is
again a substructure.
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Proof. By (1.9.b), it is enough to check that the intersection still contains all constants and is closed under all
functions, which is immediate. □

Let B be a σ -structure and S ⊆ B. In the light of Proposition 1.10, we define the substructure generated by
S as the smallest substructure A containing S, namely: the intersection of all substructures of B that contain
S; we denote this substructure by ⟨S⟩B . We have the following constructive characterization of the universe
of ⟨S⟩B .

Proposition 1.11. Let B be a σ -structure and S ⊆ B.

(1.11.a) The underlying set of ⟨S⟩B is S∞ ..=
⋃
n∈NSn, where S0

..= S ∪
{
cB : c ∈ Const(σ )

}
and

Sn+1 = Sn ∪
⋃

f ∈Func(σ )

f B
(
S
a(f )
n

)
.

(1.11.b) | ⟨S⟩B | ⩽ |S ×N× σ | = max
{
|S |,ℵ0, |σ |

}
, where ℵ0

..= |N|.

Proof. The fact that ⟨S⟩B ⊇ S∞ is due to (1.9.b). To obtain the converse it is enough to show, again by (1.9.b),
that S∞ is closed under the functions of B. This is immediate because each function of B is finitely based (i.e.
takes finitely-many inputs) and for any vector a⃗ ∈ Sn∞, there is some m ∈N such that a⃗ ∈ Snm. □

For example, the substructure of R = (R,0,1,+, ·) generated by ∅ is (N,0,1,+, ·) (why?).

Definition 1.12. Let A,B be σ -structures. A function h : A → B is called a σ -homomorphism (or just
homomorphism) if h respects the interpretation of σ , more precisely:

• h(cA) = cB , for each c ∈ Const(σ );
• h

(
f A(a⃗)

)
= f B

(
h(a⃗)

)
, for each f ∈ Func(σ ) and a⃗ ∈ Aa(f );

• RA(a⃗)⇒ RB
(
h(a⃗)

)
, for each R ∈ Rel(σ ) and a⃗ ∈ Aa(R).

Denote this by h : A→ B.

Note that in this definition, we only require ⇒ for relations. To realize why, think about when R is
the equality relation: require the reverse implication⇐ to also hold, would be equivalent to requiring all
homomorphisms to be injection. Another justification of this asymmetry is the fact that if we look at the
graphs of functions f A and f B as

(
a(f ) + 1

)
-ary relations RA

f and RB
f , then, putting b = f A(a⃗), the condition

h
(
f A(a⃗)

)
= f B

(
h(a⃗)

)
is equivalent to RA

f (a⃗,b)⇒ RB
f

(
h(a⃗),h(b)

)
.

Corollary 1.13. For any h : A→ B, h(A) is a universe of a substructure of B.

Proof. The following immediately follows from the definition of homomorphism and (1.9.b). □

Definition 1.14. Let A,B be σ -structures. A function h : A→ B is called a σ -isomorphism (or just isomor-
phism) if h is bijective and both h and h−1 are σ -homomorphisms; in this case we write h : A ∼−−→ B. The
structures A,B are called isomorphic if there is an isomorphism between them; denote this by A � B.

Definition 1.15. Let A,B be σ -structures and h : A→ B. Recalling that h(A) is the universe of a substructure
B′ ⊆ B, we call h a σ -embedding (or just embedding) if h is an isomorphism between A and B′ . We denote this
by h : A ↪→ B.

Observation 1.16. A σ -homomorphism h : A→ B is a σ -embedding if and only if it is injective and RA(a⃗)⇔
RB(h(a⃗)) for all R ∈ Rel(σ ) and a⃗ ∈ Aa(R).

Note that if A ⊆ B then the inclusion map is an embedding. This wouldn’t be true if in the definition of
substructure we had⇒ for relations instead of⇔.

Sometimes in algebra we consider the universe of a ring as an abelian group under addition, in other
words, we “forget” the multiplication operation. We make this precise here.

Definition 1.17. Let σ,σ ′ be signatures with σ ⊆ σ ′ , let A be a σ -structure and B be a σ ′-structure. We say
that A is a reduct of B (or B an expansion of A), written A = B|σ , if A and B have the same underlying set and
the same interpretations of the symbols of σ .

For example, (R,0,+) is a reduct of (R,0,1,+, ·), which in its turn is a reduct of (R,0,1,+,−, ·,<).
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1.B. Language and interpretation

Now we have to define the language of First Order Logic (FOL) that will allow us to express statements
about τ-structures, like axioms (i)-(iii) in Example 1.1(c). Although the definitions below are very natural,
they are somewhat annoying to write and even to read. The readers are advised to try to come up with the
definitions themselves before (instead of?) reading.

Let σ denote a signature for the rest of the section.

Definition 1.18. The alphabet FOL(σ ) of the first order language in the signature σ consists of the symbols
in σ and the following additional symbols:

• logical symbols � ¬ ∧ ∨ → ∀ ∃
• punctuation symbols , ( )
• symbols for variables v0,v1,v2, . . .

The symbols ∀ and ∃ are called quantifiers. Below, finite sequences of symbols from FOL(σ ) are referred to
as words in FOL(σ ) or FOL(σ )-words.

Remark 1.19. We use � in FOL(σ ) instead of the regular symbol = for equality to avoid ambiguity and
confusion with the usual equality. More precisely, for FOL(σ )-words w1,w2, we would write w1 = w2 to
mean that these words are equal (are literally the same sequences of symbols); this unambiguously reads as
a statement (for us, humans) about the words w1 and w2 and is not confused with the FOL(σ )-word w1 � w2.

Definition 1.20. A σ -term (or a term in FOL(σ )) is a word formed via the following recursive rules:

(1.20.i) each c ∈ Const(σ ) is a term;
(1.20.ii) each variable is a term;
(1.20.iii) if t1, . . . , tn are terms and f ∈ Funcn(σ ), then f (t1, . . . , tn) is a term.

We let Terms(σ ) denote the set of all σ -terms.

Examples 1.21.

(a) (v0 · 1)−1 · v3 is a term in FOL(σgp). Note that the way this term is written is technically incorrect, we
should have written ·(()−1(·(v0,1)),v3), but the latter is almost impossible to read, so we will keep abusing
notation and write the former way.

(b) S(0 + v2) + S(S(S(v2))) is a term in FOL(σarthm). For each n ∈N (think n ..= 7) and σarthm-term t, we use
abbreviation Sn(t) for S(S(. . .S︸   ︷︷   ︸

n times

(t) . . .)).

(c) Variables v0,v1, . . . are the only terms in FOL(σgr).

We also casually use letters different than v0,v1, . . . to denote variables, e.g. v,u,x,y,z.

We will naturally interpret terms in a structure as functions, but before giving a precise definition, we
recall that one interprets a polynomial p over, say, R as function on R

n, where the inputs are values from
R assigned to the variables that appear in p. However, one can also introduce dummy variables that don’t
appear p and include them as part of the input yielding a function defined on a higher power of R. For
example, the polynomial p ..= x2 + xy − 3 viewed as a polynomial in (x,y) is interpreted as a function on R

2,
but we can also view p as a polynomial in (x,y,z), in which case it would be interpreted as a function on R

3.
To make this distinction clear, we write p(x,y) in the former and p(x,y,z) in the latter cases.

Definition 1.22. Let t be a σ -term and let v⃗ ..= (vk0
,vk1

, . . . ,vkn−1
) be a vector of variables of FOL(σ ), so

(v⃗)i = vki . We call the word t[v⃗] an extended σ -term if v⃗ includes all of the variables that appear in t. We let
ExtTerms(σ ) denote the set of all extended σ -terms.

Definition 1.23. Let A be a σ -structure and t[v⃗] be an extended σ -term. We define the interpretation of t[v⃗]
in A as a function tA[v⃗] : A|v⃗|→ A by induction on the construction of t as follows: for a⃗ ∈ A|v⃗|,
(1.23.i) if t = c, where c ∈ Const(σ ), then tA[v⃗](a⃗) = cA;
(1.23.ii) if t = (v⃗)i , then tA[v⃗](a⃗) = (a⃗)i ;
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(1.23.iii) if t = f (t1, . . . , tn), where t1, . . . , tn are terms and f ∈ Funcn(σ ), then

tA[v⃗](a⃗) = f A
(
tA1 [v⃗](a⃗), . . . , tAn [v⃗](a⃗)

)
.

So one should think of t[v⃗] as a name of the function tA[v⃗] : A|v⃗| → A. Note that if t = v1, then t[v1] is
interpreted as a unary function, while t[v1,v2] as a binary function (although it does not depend on v2).

Example 1.24. Let A ..= (Z,1A, ·A) and B ..= (Z,1B , ·B), where 1A ..= 1 ∈Z and ·A is the usual multiplication,
whereas 1B ..= 0 ∈ Z and ·B is the usual addition. Letting t ..= (v1 · 1) · v3, we see that tA[v1,v3](2,3) = 6,
whereas tB[v1,v3](2,3) = 5. Also, tA[v1,v3] is the map (a,b) 7→ ab from Z

2 to Z, whereas tA[v1,v2,v3] is the
map (a,c,b) 7→ ab from Z

3 to Z.

Definition 1.25. A σ -formula (or a formula in FOL(σ )) is a word formed via the following recursive rules:

(1.25.i) if s, t are terms, then s � t is a formula;
(1.25.ii) if t1, . . . , tn are terms and R ∈ Reln(σ ), then R(t1, . . . , tn) is a formula;
(1.25.iii) if ϕ and ψ are formulas, then ¬(ϕ), (ϕ)∧ (ψ), (ϕ)∨ (ψ), (ϕ)→ (ψ) are formulas;
(1.25.iv) if ϕ is a formula and v a variable symbol, then ∀vϕ, ∃vϕ are formulas.

Let Formulas(σ ) denote the set of all σ -formulas.

The formulas in (1.25.i) and (1.25.ii) are called atomic. Also, if a formula is formed without using (1.25.iv),
it is called quantifier free (or q.f. for short).

According to Definition 1.25,
(
∀x(x � y)

)
∧
(
¬(x � z)

)
is a formula (in any signature), although, as one

may guess, the third occurrence of x has nothing to do with its first two occurrences, where x is used as the
variable of the quantifier ∀. The use of x as the variable for the quantifier is a bad idea because it makes
reading of the formula hard and confusing—imagine writing x

∫ 1
0 xdx instead of x

∫ 1
0 tdt in a calculus course!

Thus, we make a convention to not use such bad notation.

Convention 1.26. We say that the variable v is quantified in the formula ϕ if in its construction rule (1.25.iv)
was used with the variable v, i.e. ϕ contains a subformula of the form ∀vψ or ∃vψ. We make the convention
that each variable v can be used with a quantifier only once, i.e. a subword of the form Qvψ occurs at most
once, where Q is either ∀ or ∃, and if it does appear, then v is not allowed to appear elsewhere other than in
ψ.

This convention disqualifies words like
(
∀x(x � y)

)
∧
(
¬(x � z)

)
as formulas; one should write

(
∀t(t �

y)
)
∧
(
¬(x � z)

)
instead.

A variable v is free in a formula ϕ if it occurs in ϕ and is not quantified. A formula without free variables
is called a sentence. Note that all statements (theorems, conjectures, etc.) in mathematics are sentences (in
the signature of set theory).

Example 1.27. In the formula
(
∀t(t � y)

)
∧
(
¬(x � z)

)
, t is quantified, whereas x,y,z are free. The formula

∀x∀y∀z
((
∀t(t � y)

)
∧
(
¬(x � z)

))
is a sentence.

Below we will abbreviate ¬(t1 � t2) by t1 ̸� t2. Furthermore, for a vector of variables v⃗ ..= (vk0
,vk1

, . . . , vkn−1
),

we write ∀v⃗ to mean ∀vk0
∀vk1

. . .∀vkn−1
and similarly for ∃.

We will naturally interpret formulas in a structure as relations. Just like with terms, the arity of this
relation will depend on the number of additional dummy variables involved in the interpretation.

Definition 1.28. Let ϕ be a σ -formula and let v⃗ of variables of FOL(σ ). We call the word ϕ[v⃗] an extended
σ -formula if v⃗ includes all of the free variables of ϕ and does not contain any variable that is quantified in ϕ.
Let ExtFormulas(σ ) denote the set of all extended σ -formulas.

Proposition 1.29. |ExtFormulas(σ )| = |Formulas(σ )| = max {ℵ0,σ }.

Proof. Follows by simple cardinal arithmetic. The main fact used is that for infinite sets A,B, |A × B| =
max {|A|, |B|}. The proof of this fact uses the Axiom of Choice. □
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Notation 1.30. For any set A, we put A0 ..= {∅}, so A0 has exactly one element and its definition has nothing
to do with A. This allows thinking of the interpretations of constant symbols as 0-ary functions A0 → A.
Also, a 0-ary relation R on A is just a subset of A0 = {∅}, so it is either true (i.e. R = A0) or false (i.e. R = ∅).

Definition 1.31. Let A be a σ -structure and ϕ[v⃗] an extended σ -formula. We define the interpretation of
ϕ[v⃗] in A as a |v⃗|-ary relation ϕA[v⃗] on A by induction on the construction of ϕ as follows: for a⃗ ∈ A|v⃗|,
(1.31.i) if ϕ = t1 � t2, then ϕA[v⃗](a⃗) holds if and only if tA1 [v⃗](a⃗) = tA2 [v⃗](a⃗);
(1.31.ii) if ϕ = R(t1, . . . , tk), then ϕA[v⃗](a⃗) holds if and only if RA(tA1 [v⃗](a⃗), . . . , tAk [v⃗](a⃗)) holds;
(1.31.iii) if ϕ = ¬ψ, then ϕA[v⃗](a⃗) holds if and only if ψA[v⃗](a⃗) fails;
(1.31.iv) if ϕ = ψ ∧θ, then ϕ[v⃗](a⃗) holds if and only if ψA[v⃗](a⃗) and θA[v⃗](a⃗) both hold;
(1.31.v) if ϕ = ψ ∨θ, then ϕ[v⃗](a⃗) holds if and only if ψA[v⃗](a⃗) or θA[v⃗](a⃗) holds;
(1.31.vi) if ϕ = ∀uψ(v⃗,u), in particular u is not in v⃗ and ψ[v⃗,u] is an extended formula, then ϕ[v⃗](a⃗) holds if

and only if for each b ∈ A, ψA[v⃗,u](a⃗,b) holds;
(1.31.vii) if ϕ = ∃uψ(v⃗,u), in particular u is not in v⃗ and ψ[v⃗,u] is an extended formula, then ϕ[v⃗](a⃗) holds

if and only if there exists b ∈ A such that ψA[v⃗,u](a⃗,b) holds.

We also say that A satisfies (or models) ϕ[v⃗](a⃗), written A |= ϕ[v⃗](a⃗), to mean that ϕA[v⃗](a⃗) holds.

Note that the above definition applies when ϕ is a sentence and v⃗ = ∅. In this case, A |= ϕ is a 0-ary
relation on A (see Notation 1.30), so it is true or false and we read A |= ϕ as “ϕ is true (or holds) in A”.

Note that some of the logical symbols we use are redundant: we could restrict to using only ¬,∨,∃ and
the rest would be expressible in terms of these. So what we usually do is the following: we use all of the
symbols when it is convenient, but in our inductive proofs we only take care of the cases with ¬,∨,∃ or
¬,∧,∀ or other equivalent combinations.

Convention 1.32. Instead of writing t[v⃗](a⃗) and ϕ[v⃗](a⃗), we simply write t(a⃗) and ϕ(a⃗) whenever it causes no
ambiguity or confusion. Furthermore, we will drop the word “extended” and simply call t[v⃗] and ϕ[v⃗] a
term and a formula. Lastly, we write t(v⃗) and ϕ(v⃗) for an extended term t[v⃗] and an extended formula ϕ[v⃗]
as the use of round brackets is more familiar from, say, algebra; e.g. for a polynomial p in variables x,y, we
commonly write p(x,y,z) to view it as a polynomial in x,y,z.

Examples 1.33.

(a) For a σarthm-formula ϕ ..= S(S(0)) � v0, N ..= (N,0,S,+, ·) |= ϕ[v0](2). We may also simply write N |=
S2(0) � 2.

(b) In this example we define a σarthm-sentence expressing the Goldbach conjecture. Let:
• x ⩽ y stand for ∃z(z+ x � y); similarly, for ⩾; one also easily defines < and >;
• x|y (divides) stand for ∃z(y � z · x);
• ṅ stand for Sn(0), for each n ∈N; for example, 0̇ and 2̇ stand for 0 and S(S(0)), respectively;
• Even(x) stand for 2̇|x;
• Prime(x) stand for ∀y

(
y|x→ (y � 1∨ y � x)

)
;

• GoldbachConj stand for ∀x
(
x > 2∧Even(x)→∃(y,z)(Prime(y)∧Prime(z)∧ x � y + z)

)
.

As of Feb 7, 2024, we still don’t know whether N |= GoldbachConj or not.

(c) Let N exp
..= (N,0,S,+, ·,exp), where 0,S,+, · are interpreted as usual and exp is the binary exponentiation

function: exp(n,m) ..= nm for nonzero n and exp(0,m) ..= 0. Thanks to A. Wiles, we now know that
N exp |= ∀n∀x∀y∀z[(n ⩾ 3∧ exp(x,n) + exp(y,n) � exp(z,n))→ (x � 0∨ y � 0)], where n ⩾ 3̇ stands for
n ̸� 0̇∧n ̸� 1̇∧n ̸� 2̇.

(d) R |= ∃y(a � y · y) holds for all non-negative a ∈R.

Lemma 1.34. Let A,B be two σ -structures. If h : A→ B is a homomorphism, then for any term t(v⃗) and a⃗ ∈ A|v⃗|,

h(tA(a⃗)) = tB(h(a⃗)).

Proof. We prove by induction on the construction (length) of t.
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• If t = c for c ∈ Const(σ ), then tA(a⃗) = cA and hence we have

h(tA(a⃗)) = h(cA) = cB = tB(h(a⃗))

because h is a homomorphism.
• If t = (v⃗)i , then tA(a⃗) = (a⃗)i and hence we have

h(tA(a⃗)) = h((a⃗)i) = tB(h(a⃗)).

• If t = f (t1, . . . , tn) for f ∈ Funcn(σ ), then

h
(
tA(a⃗)

)
= h

(
f A

(
tA1 (a⃗), . . . , tAn (a⃗)

))
[
h is a homomorphism

]
= f B

(
h
(
tA1 (a⃗)

)
, . . . ,h

(
tAn (a⃗)

))
[
by induction

]
= f B

(
tB1
(
h(a⃗)

)
, . . . , tBn

(
h(a⃗)

))
= tB

(
h(a⃗)

)
. □

Proposition 1.35. Let A,B be two σ -structures. If h : A→ B is an isomorphism, then for any formula ϕ(v⃗) and
a⃗ ∈ A|v⃗|,

A |= ϕ(a⃗) ⇐⇒ B |= ϕ(h(a⃗)).

Proof. We prove by induction on the construction of ϕ. For the induction step, it is enough to consider only
the following cases: ϕ = ¬ψ, ϕ = ψ1 ∧ψ2, and ϕ = ∃vψ.

• If ϕ = t1 � t2, then

A |= ϕ(a⃗) ⇐⇒ tA1 (a⃗) = tA2 (a⃗)[
h is injective

]
⇐⇒ h

(
tA1 (a⃗)) = h(tA2 (a⃗)

)
[
by Lemma 1.34

]
⇐⇒ tB1

(
h(a⃗)

)
= tB2

(
h(a⃗)

)
⇐⇒ B |= ϕ

(
h(a⃗)

)
.

• If ϕ = R(t1, . . . , tn), then the calculation is similar to the previous case, but does not use the injectivity
of h.

• If ϕ = ¬ψ, then

A |= ϕ(a⃗) ⇐⇒ A ⊭ ψ(a⃗)[
by induction

]
⇐⇒ B ⊭ ψ(a⃗)

⇐⇒ B |= ϕ
(
h(a⃗)

)
.

• If ϕ = ψ1 ∧ψ2, then the calculation is similar to the previous case.
• If ϕ = ∃vψ, then

A |= ϕ(a⃗) ⇐⇒ ∃a′ ∈ A,A |= ψ(a⃗, a′)[
by induction

]
⇐⇒ ∃a′ ∈ A,B |= ψ

(
h(a⃗),h(a′)

)
[
use surjectivity of h for⇐=

]
⇐⇒ ∃b′ ∈ B,B |= ψ

(
h(a⃗),b′

)
⇐⇒ B |= ϕ

(
h(a⃗)

)
. □

Proposition 1.36. If a σ -structure A is a reduct of a σ ′-structure A′ , then for every σ -formula ϕ(v⃗) and a⃗ ∈ An,

A |= ϕ(a⃗) ⇐⇒ A′ |= ϕ(a⃗).

Proof. Trivial induction on formulas and possibly also terms. □
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1.C. Definability

A central notion in the study of a structure is that of a definable set. As the name suggests, these are all sets
whose definition can be written in the first-order language.

Definition 1.37. Let A be a σ -structure and P ⊆ A. A set S ⊆Mn is called P -definable (or definable from P ) in
A if there is a σ -formula ϕ(x⃗, y⃗), with |y⃗| = n, and p⃗ ∈ P |x⃗| such that S =

{
a⃗ ∈ An : A |= ϕ(p⃗, a⃗)

}
.

If P = ∅, we say that S is 0-definable, and if P = A, we say that S is definable. We say that an element b⃗ ∈ An

is P -definable if the singleton
{⃗
b
}

is P -definable. For a set D ⊆ A, a function f :Dn→ A is called P -definable if
its graph Graph(f ) ..=

{
(a⃗,b) ∈Dn ×A : f (a⃗) = b

}
is P -definable.

We denote by DA
n (P ) the collection of all P -definable subsets of An and we let DA(P ) denote their union

over n ∈N+.

Observation 1.38. The cardinality of DA(P ) is at most that of |ExtFormulas(σ )× P <N| ⩽max {ℵ0,σ , |P |}.

To show definability of a subset, one has to come up with a definition for it. Sometimes this requires
deep knowledge about the structure, c.f. Example 1.40(c) below. Proving nondefinability of sets is often
much harder and requires advanced tools such as the Compactness and the Completeness theorems, and
quantifier elimination. However, here is a cheap yet very useful tool provided by Proposition 1.35.

For a function h : A→ A and a set S ⊆ A, we say that h fixes S pointwise (resp. setwise) if h(s) = s for any
s ∈ S (resp. h(S) ⊆ S).

Lemma 1.39. Let A be a σ -structure and P ⊆ A. Any automorphism of A that pointwise fixes P , setwise fixes
every P -definable set.

Proof. Immediately follows from P roposition 1.35. □

Examples 1.40.

(a) In R ..= (R,0,1,+, ·), the set of positive numbers is 0-definable by the formula ϕ>0(x) ..= x ̸� 0∧∃y(x � y2),
where y2 is an abbreviation for y · y. Using this, one can define the binary relation <⊆R

2 by the formula
ϕ<(x,y) ..= ϕ>0(y − x) (0-definable). Thus R and R< ..= (R,0,1,+, ·,<) have the same definable sets.

(b) In (Q,<) the set of positive rationals is not definable; this follows from Lemma 1.39 as q 7→ q+ 1 is an
automorphism.

(c) In (Z,+, ·), the set N is definable because by Lagrange’s Four Square theorem that states that any natural
number is a sum of squares of four integers.

(d) The definable sets of N ..= (N,0,S,+, ·) are called arithmetical. It is easy to see that a set is definable in
N if and only if it is 0-definable. We will show later on in the course that all computer-recognizable
(programmable) sets are arithmetical, but these occupy only a tiny corner of the class of arithmetical
sets.

(e) In C ..= (C,0,1,+, ·), the set
{√

2,−
√

2
}

is 0-definable by ϕ(z) ..= z2 � 2̇, where z2 and 2̇ are abbreviations

for z · z and 1 + 1, respectively. However,
√

2 itself isn’t 0-definable! This follows from the fact that C
admits quantifier elimination (as we will see later), so the only definable sets are varieties (i.e. those
defined by polynomials) and Boolean combinations thereof.

(f) In any graph G ..= (V ,E), the set{
(u,v) ∈ V 2 : the edge-distance between u and v is ⩽ 2

}
is 0-definable by the formula

ϕ(x,y) ..= xEy ∨∃z(xEz∧ zEy).
Similarly, one can show that for any n ⩾ 1, the set{

(u,v) ∈ V 2 : the edge-distance between u and v is ⩽ n
}

is 0-definable. However it turns out that the set{
(u,v) ∈ V 2 : u and v are connected

}
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is not even definable in some (actually most) graphs; e.g. for a graph consisting of two disconnected
infinite paths. We will prove this later on in the course using the Compactness theorem.

To understand definable sets better, let’s examine their structure from a set theoretic/geometric point of
view. Clearly all relations of the structure, as well as the equality relation (i.e. the diagonal), are definable.
What set theoretic/geometric operations keep definable sets definable? Here we answer this question.

Notation 1.41. For any set S ⊆ A×B and a ∈ A, we write Sa ..= {b ∈ B : (a,b) ∈ S} and refer to this set as the
fiber of S over a.

Definition 1.42. For a set A and a collection S ⊆
⋃
n⩾1 P(An), put Sn ..= S ∩P(An). For a set P ⊆ A, call S

P -constructively closed if:

(1.42.i) Boolean algebra: Each Sn is a Boolean algebra, i.e. contains ∅ andAn and is closed under complements
and (finite) unions.

(1.42.ii) Symmetry: Each Sn is symmetric, i.e. closed under any permutation of coordinates.
(1.42.iii) Projections: The projection onto the first n coordinates of any set in Sn+1 is in Sn, i.e. ∀S ∈ Sn+1,

proj(0,1,...,n−1)(S) ∈ Sn.
(1.42.iv) Lifts: The Cartesian product of A with any set in Sn is in Sn+1, i.e. S ∈ Sn⇒ A× S ∈ Sn+1.
(1.42.v) P -fibers: The fiber over any element p ∈ P of any set in S1+n is in Sn, i.e. S ∈ S1+n⇒ Sp ∈ Sn.

Proposition 1.43. For any σ -structure A and P ⊆ A, the collection DA(P ) of P -definable subsets of A is the
smallest P -constructively closed collection containing the constant singletons

{
cA

}
, the graphs Graph(f A) of the

functions, and the relations =⊆ A2 and RA, for all c, f ,R ∈ σ .

Proof. Exercise. □

In particular, the set DA
n (P ) is a (Boolean) algebra, i.e. it is closed under finite unions and complements

and contains ∅ and An. Let T A
n (P ) denote the topology on An generated by DA

n (P ); considering this topology
will prove to be very useful later. Because DA

n (P ) is closed under finite intersections, in it is actually a basis
for the topology. Furthermore, because it is closed under complements, each set in it is both open and closed,
i.e. clopen. Thus, the topology T A

n (P ) is zero-dimensional, i.e. admits a basis of clopen sets. However, this
topology might not be Hausdorff as Example 1.40(e) shows. Lastly, whether or not it is compact is tied to a
model-theoretic property called saturation, which we will learn later.

1.D. Theories, models, and axiomatization

Given a signature σ , a set of σ -sentences is called a σ -theory. The sentences in a theory T are often referred
to as axioms.

Definition 1.44. We say that a nonempty σ -structure M satisfies (or models) a σ -theory T , written M |= T , if
M |= ϕ, for every ϕ ∈ T . Equivalently, we also say that M is a σ -model (or just model) of T .

Notation 1.45. For a σ -theory T , let Mσ (T ) denote the class1 of its σ -models, i.e. nonempty σ -structures
that satisfy it.

Definition 1.46. For a class C of σ -structures, a σ -theory T is called an axiomatization of C (or we say that
T axiomatizes C) if Mσ (T ) = C. A class C is called (resp. finitely) axiomatizable if it admits a (resp. finite)
axiomatization. A σ -theory S is called an axiomatization of T if it is an axiomatization of Mσ (T ), and we call
T finitely axiomatizable if it admits a finite axiomatization.

Here are examples of axiomatizations for various classes of structures.

Examples 1.47.

1Mσ (T ) is closed under σ -isomorphism, so it is “too large to be a set”—it is a proper class. Besides, if σ
has an infinite model, then it has a model of each cardinality, see Theorem 3.15.
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(a) For any signature σ and any n ∈ N
+ (think n ..= 7), the class C⩽n of all σ -structures with at most n

elements is axiomatized by the axiom

ϕ⩽n ..= ∃x1 . . .∃xn∀y
n∨
i=1

y � xi .

On the other hand, the class C⩾n of all σ -structures with at least n elements is axiomatized by the axiom

ϕ⩾n ..= ∃x1 . . .∃xn
∧

1⩽i<j⩽n

xi � xj .

Thus, the class C=n of all σ -structures with exactly n elements is axiomatized by the axiom ϕ=n
..=

ϕ⩽n ∧ϕ⩾n.

(b) For any signature σ , the class C∞ of all infinite σ -structures is axiomatized by the theory

T∞ ..=
{
ϕ⩾n : n ∈N+} .

We will see later that T∞ is not finitely axiomatizable (in any signature σ ) because the Compactness
theorem implies that any finitely axiomatizable theory actually contains a finite axiomatization, which
is clearly not the case for T∞.

(c) Graphs (undirected with no loops): Recalling the signature σgr
..= (E), the class of undirected graphs

with no loops is axiomatized by the theory GRAPHS consisting of the following axioms:
(i) (Undirected) ∀x∀y(xEy→ yEx),
(ii) (No loops) ∀x(¬xEx).
In particular, this class is finitely axiomatizable. Below, by a graph, we mean an undericted graph with
no loops.

(d) Bipartite graphs: A graph G ..= (V ,E) is called bipartite if V admits a partition V1⊔V2 such that there are
no edges between two vertices that are both in V1 or both in V2. Note that this definition asks for an
existence of subsets V1,V2 of V , which is not first-order expressible. However, by basic graph theory,
being bipartite is equivalent to not containing any cycle of odd length, which is axiomatized by the
theory

Tbp
..=

{
ψ2n : n ∈N+} ,

where ψk states the nonexistence of a cycle of length exactly k (write this down explicitly).

(e) Partial orderings: Letting σpo
..= (⩽), the class of partial orderings (σpo-structures) is axiomatized by the

theory PO consisting of the following axioms:
(PO1) (Reflexivity) ∀x(x ⩽ x).
(PO2) (Antisymmetry) ∀x∀y(x ⩽ y ∧ y ⩽ x→ x � y),
(PO3) (Transitivity) ∀x∀y∀z(x ⩽ y ∧ y ⩽ z→ x ⩽ z).

(f) Groups: Recalling the signature σgp
..=

(
1, ·, ()−1

)
, the class of groups is axiomatized by the theory

GROUPS consisting of the following axioms:
(G1) (Associativity) ∀x∀y∀z[x · (y · z) � (x · y) · z],
(G2) (Identity) ∀x(1 · x � x · 1 � x),
(G3) (Inverse) ∀x(x · x−1 � 1 � x−1 · x).
The reader is invited to find an axiomatization for the class of (·)-structures that are groups under ·.

(g) Rings and fields: Similarly, one defines the theory RINGS of rings in the signature σring
..= (0,1,+,−, ·)

(too many axioms to write, but still finitely-many), and then the theory FIELDS of fields is defined as
RINGS together with the following three axioms:
(F1) (Nonzero) 0 ̸� 1,
(F2) (Commutativity) ∀x∀y[x · y � y · x],
(F3) (Multiplicative inverse) ∀x∃y[xy � yx � 1],
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(h) Characteristic p fields: Here is a σring axiomatizing the class of fields of characteristic p, for a prime
number p:

FIELDSp ..= FIELDS∪

1 + 1 + . . .+ 1︸         ︷︷         ︸
p

� 0

 .
(i) Characteristic 0 fields:

FIELDS0
..= FIELDS∪

1 + 1 + . . .+ 1︸         ︷︷         ︸
p

̸� 0 : p prime

 .
(j) Algebraically closed fields: The following σring-theory axiomatizes the class of algebraically closed fields:

ACF ..= FIELDS∪
{
∀a0∀a1 . . .∀an∃r[anrn + an−1r

n−1 + . . .+ a1r + a0 � 0] : n ∈N
}
.

(k) Algebraically closed fields of fixed characteristic: Letting n be either 0 or prime, the following is an
axiomatization for a class of algebraically closed fields of characteristic n:

ACFn ..= ACF∪FIELDSn.

As we see, many interesting classes of structures admit a (first-order) axiomatization. However, we will
show later on in the course that many other very interesting classes of structures are not axiomatizable, e.g.
connected graphs, disconnected graphs, cyclic groups, torsion groups, nontorsion groups, etc.

Given a σ -structure A, we put Th(A) ..= {ϕ : ϕ is a σ -sentence and A |= ϕ}. It can often be very hard to tell
whether a given σ -sentence is in Th(A). For example, for the structure N ..= (N,0,S,+, ·) of natural numbers,
we still don’t know whether the sentence expressing Goldbach’s conjecture belongs to Th(N ). Thus, it is
desirable to find a simpler axiomatization for Th(A) for a structure A of interest. The following is Peano’s
attempt to do so for N .

Example 1.48. The theory PA of arithmetic, called Peano Arithmetic, in the signature σarthm
..= (0,S,+, ·),

consists of the following (infinitely-many) axioms:
(PA1) ∀x[¬S(x) � 0]
(PA2) ∀x∀y[S(x) � S(y)→ x � y]
(PA3) ∀x[x+ 0 � x]
(PA4) ∀x∀y[S(x+ y) � x+ S(y)]
(PA5) ∀x[x · 0 � 0]
(PA6) ∀x∀y[x · S(y) � x · y + x]
(PA7) (Axiom schema of induction) For each σarthm-formula ϕ(x, y⃗), where x is a variable and y⃗ is a vector

of variables, the following is an axiom:(
ϕ(0, y⃗)∧∀x

[
ϕ(x, y⃗)→ ϕ(S(x), y⃗)

])
→∀xϕ(x, y⃗).

It should be emphasized that PA is an infinite theory: (PA7) is not one axiom, rather it is a collection of
infinitely-many axioms, one for each extended formula ϕ(x, y⃗), so we call it an axiom schema.

Clearly, N |= PA, where N ..= (N,0,S,+, ·). However, as we will see later on, it is a consequence of Gödel’s
Incompleteness theorem that PA doesn’t axiomatize Th(N ).

We end this section with perhaps the most important theory in mathematics.

Example 1.49. The Zermelo-Fraenkel set theory, ZFC, is a theory in the signature σset
..= (∈), in which all of

the mathematics is derived. Its list of axiom schemas (again, infinitely-many axioms) is a little too long to
be listed here, so it is enough to mention that they express some basic facts about sets such as existence of
unions, definable subsets, an infinite set, etc.

1.E. Semantic versions of implication, consistency, and completeness

Definition 1.50. We say that a σ -theory T satisfies a σ -sentence ϕ, written T |= ϕ, if every model of T satisfies
ϕ, i.e. ∀M |= T (M |= ϕ). Equivalently, we say that T semantically implies ϕ.
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Examples 1.51.

(a) We know from group theory that GROUPS |= ∀x∀y∀y′(yx � e � xy′→ y � y′).

(b) One can easily show that for any n ⩾ 0 and p prime,

FIELDSp |= 1 + 1 + . . .+ 1︸         ︷︷         ︸
n

� 0

if and only if p divides n.

(c) It is also easy to see that for all n ⩾ 1, FIELDS0 |= 1 + 1 + . . .+ 1︸         ︷︷         ︸
n

̸� 0.

Definition 1.52. A σ -theory T is said to be

• satisfiable (or semantically consistent) if it has a model.
• semantically σ -complete (or just semantically complete if σ is understood) if for every σ -sentence ϕ,
T |= ϕ or T |= ¬ϕ. Call a σ -theory T̄ ⊇ T a semantic completion if it is satisfiable and semantically
complete.

Let ⊤ denote the sentence ∀x(x � x) and set ⊥ ..= ¬⊤. The following explains the term semantically
consistent.

Observation 1.53. For a σ -theory T , the following are equivalent:

(1) T is satisfiable.
(2) T ⊭⊥.
(3) T ⊭ ϕ for some σ -sentence ϕ.

Definition 1.54. Let A and B be σ -structures. We say that A and B are elementarily equivalent2, written
A ≡ B, if Th(A) = Th(B).

By Proposition 1.35, isomorphic structures are elementarily equivalent. However, the converse is false!
For example, it is a homework problem to show that (Q,<) and (R,<) are elementarily equivalent, but they
clearly cannot be isomorphic, having different cardinalities.

The following is a convenient rephrasing of semantic completeness in terms of elementary equivalence.

Proposition 1.55 (Semantic completeness, rephrased). A σ -theory T is semantically complete if and only if for
any A,B |= T , A ≡ B.

Proof. Left as an exercise. □

In the light of this, it is easy to see that most of Examples 1.47 are semantically incomplete; indeed, for
example, the theory GROUPS is semantically incomplete because there is a group that has an element of
order 3, hence satisfies the sentence ∃x(x · x · x � e), and there is a group that does not. However, we will
show later that the theory ACFn, for n either prime or 0, is semantically complete, making model theory
highly applicable in algebraic geometry.

Definition 1.56. A σ -theory T is said to be maximally σ -complete (or just maximally complete if σ is un-
derstood) if for every σ -sentence ϕ, ϕ ∈ T or ¬ϕ ∈ T (both hold if and only if T is not satisfiable). Call a
σ -theory T̄ ⊇ T a maximal completion of T if it is maximally complete.

Observation 1.57.

(1.57.a) For any σ -structure M , Th(M) is satisfiable and maximally complete.
(1.57.b) Thus, every satisfiable theory admits a satisfiable maximal completion.

2The author does not understand the choice of the term elementary; if she had to choose, it would perhaps
be first-order equivalent.
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1.F. Elementarity

For σ -structures A ⊆ B, it is an interesting question as to which formulas A and B agree on. The following is
all we can say for general A ⊆ B.

Proposition 1.58. Substructures agree on quantifier free formulas; more precisely, for σ -structures A ⊆ B, any
quantifier free σ -formula ϕ and a⃗ ∈ An, we have

A |= ϕ(a⃗) ⇐⇒ B |= ϕ(a⃗).

Proof. Easy induction on the construction of ϕ. The step only consists of the cases ϕ = ¬ϕ and ϕ = ϕ ∧ψ,
whereas the base cases (i.e. when ϕ is atomic) follow from Lemma 1.34 and the fact that the inclusion map
A ⊆ B is a homomorphism. □

However, the calculations of a structure and a substructure of the validity of formulas with quantifiers
may differ. Typically, a formula of the form ∃xϕ(x) may be valid in the bigger structure but may not be in
the substructure simply because the objects for which ϕ holds (which we refer to as witnesses to ∃xϕ(x)) may
all be outside of the universe of the substructure. For example, in the signature σmon

..= (1, ·), a substructure
of a group may not be a subgroup because not all elements might have inverses in the substructure. Even
if it was a subgroup, it might disagree with the ambient group about the truth of statements like “being
abelian” or “a particular element commutes with everybody” (they may be true in the subgroup, but false in
the ambient group). The best we can say is the following.

Definition 1.59. A σ -formula is called universal (resp. existential) if it is of the form ∀x1∀x2...∀xnψ (resp.
∃x1∃x2...∃xnψ), where ψ is quantifier free and n ⩾ 0; in particular, quantifier free formulas are both universal
and existential.

Proposition 1.60. Let A,B be σ -structures with A ⊆ B and let ϕ(v⃗) be a σ -formula. For any a⃗ ∈ A|v⃗|,
(1.60.a) if ϕ is universal, then B |= ϕ(a⃗) =⇒ A |= ϕ(a⃗);
(1.60.b) if ϕ is existential, then A |= ϕ(a⃗) =⇒ B |= ϕ(a⃗).

Proof. Exercise. □

The following definitions isolate those substructures which agree with the ambient structure on all of the
statements about the elements of the substructure.

Definition 1.61. Let A,B be σ -structures.

• A homomorphism h : A→ B is called an elementary embedding, written h : A ↪→e B, if for all formulas
ϕ(v⃗) and tuples a⃗ ∈ A|v⃗|,

A |= ϕ(a⃗) ⇐⇒ B |= ϕ(h(a⃗)).

• We say that A elementarily embeds into B, written A ↪→e B, if there is h : A ↪→e B.
• We call a substructure A ⊆ B elementary, written A ⪯ B, if the inclusion map A ⊆ B is an elementary

embedding.

Observation 1.62. If A ⪯ B, then A ≡ B.

Caution 1.63. The converse of Observation 1.62 is false; in fact, there are graphs H ⊆G such that H �G (in
partcular, H ≡G), but H ⪯̸G. The reader is invited to construct such graphs.

What does it take for a substructure to be elementary? Recall that for a subset of a structure to be a
universe of a substructure, it has to contain all the constants and be closed under all the functions of the
structure, see (1.9.b). For a substructure to be elementary, a stronger closure condition is needed: it has to
contain a witness to every formula of the form ∃xϕ(x). This is stronger than just asking to contain constants
and values of functions. The following makes all this precise.

Proposition 1.64 (Tarski–Vaught test). Let A be a substructure of a σ -structure B. A is an elementary substructure
of B if and only if for every formula ϕ(x⃗, y) and a⃗ ∈ A|x⃗|,

B |= ∃yϕ(a⃗, y) ⇐⇒ ∃a′ ∈ A such that B |= ϕ(a⃗, a′).
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Proof. ⇒: Supposing A ≺ B, we check the Tarski–Vaught condition:

B |= ϕ(a⃗) ⇐⇒ B |= ∃yϕ(a⃗, y)[
elementarity

]
⇐⇒ A |= ∃yϕ(a⃗, y)[

definition of |=
]
⇐⇒ ∃a′ ∈ A such that A |= ϕ(a⃗, a′)[

elementarity
]
⇐⇒ ∃a′ ∈ A such that B |= ϕ(a⃗, a′).

⇐: Suppose the Tarski–Vaught condition holds and show by induction on the construction of formulas that
for every σ -formula ϕ and a⃗ ∈ A|x⃗|, we have

A |= ϕ(a⃗) ⇐⇒ B |= ϕ(a⃗).

Proposition 1.58 takes care of the atomic formulas and the cases ϕ = ¬ψ and ϕ = ψ0∧ψ2 are straightforward,
so we only consider the case ϕ(x⃗) = ∃yψ(x⃗, y). Fix a⃗ ∈ A|x⃗| and check:

B |= ϕ(a⃗) ⇐⇒ B |= ∃yψ(a⃗, y)[
Tarski–Vaught condition

]
⇐⇒ ∃a′ ∈ A such that B |= ψ(a⃗, a′)[

induction
]
⇐⇒ ∃a′ ∈ A such that A |= ψ(a⃗, a′)[

definition of |=
]
⇐⇒ A |= ∃yψ(a⃗, y) ⇐⇒ A |= ϕ(a⃗). □

Given a σ -structure B and S ⊆ B, we could define a substructure generated by S as the smallest sub-
structure containing S, which exists because intersection of substructures is still a substructure. However,
intersection of elementary substructures may not be elementary (again, there are simple examples with
graphs), so we cannot define “the elementary substructure generated by S”.

Recall the procedure described in Proposition 1.11 of constructing the substructure generated by S, where
we add the constants of B to S and then close under all the functions of B by iteratively adding the values
of these functions ℵ0-many times. According to the Tarski–Vaught test, to be a universe of an elementary
substructure, a set has to also contain a witness to ever formula that claim existence of an object and is true
in B. So in our iterative procedure, at every step, we have to additionally throw in a witness to every such
formula—that’s all. In fact, only throwing witnesses will also add the values of functions because for every
f ∈ Func(σ ) and a⃗ ∈ Ba(f ), the value f B(a⃗) is the (unique) witness to the formula ∃yf (a⃗) � y. Same is true for
constant symbols.

To “throw in a witness to every such formula”, we need to make a choice of a witness for every such
formula.

Definition 1.65. Let B be a σ -structure and ϕ(x⃗, y) be an extended σ -formula. A Skolem function for ϕ(x⃗, y)
is a partial function3 fϕ(x⃗,y) : B|x⃗|⇀ B such that, for each b⃗ ∈ B|x⃗|, if B |= ∃yϕ(⃗b,y), then fϕ(x⃗,y)(⃗b) witnesses

this, i.e. b⃗ ∈ dom(fϕ(x⃗,y)) and B |= ϕ
(⃗
b,fϕ(x⃗,y)(⃗b)

)
.

Remark 1.66. Skolem functions exist due to the Axiom of Choice, so, in general, they are not definable.

The following theorem summarizes the above discussion.

Theorem 1.67 (Downward Löwenheim–Skolem). Let B be a σ -structure and S ⊆ B. There exists A ⪯ B with
A ⊇ S such that |A| ⩽max(|S |, |σ |,ℵ0).

Proof. Using the Axiom of Choice, we let fϕ(x⃗,y) be a Skolem function for each extended σ -formula ϕ(x⃗, y).
As in Proposition 1.11, we recursively construct an increasing sequence (Sn)n∈N of subsets of B as follows:
put S0

..= S, and assuming Sn is defined, let

Sn+1
..= Sn ∪

⋃
ϕ(x⃗,y)

fϕ(x⃗,y)

(
S |x⃗|n

)
,

3A partial function f : X ⇀ Y is a function whose domain dom(f ) is a (possibly empty) subset of X.
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where ϕ(x⃗, y) ranges over all extended σ -formulas and fϕ(x⃗,y)

(
S |x⃗|n

)
means fϕ(x⃗,y)

(
S |x⃗|n ∩dom(fϕ(x⃗,y))

)
. Letting

A ..=
⋃
n∈NSn and it is now straightforward to check that A is a universe of a substructure, which passes the

Tarski–Vaught test and is thus elementary. □

Remark 1.68. It is possible that the same formula has multiple witnesses and the Axiom of Choice makes a
choice of one of them. Depending on this (highly noncanonical) choice, the resulting substructures may be
different, and this is why there is no notion of “the elementary substructure generated by S”.

Theorem 1.69 (Weak Downward Löwenheim–Skolem). Any satisfiable σ -theory T has a model of cardinality at
most max |σ |,ℵ0.

Proof. Let M |= T and apply the Downward Löwenheim–Skolem theorem to S ..= ∅. □

1.G. The Skolem “paradox”

The Weak Downward Löwenheim–Skolem theorem has the following at first striking consequence: if ZFC is
satisfiable (which we really hope it is), then it has a countable model. This may seem strange because this
countable model M satisfies the sentence that there is an uncountable set since Cantor’s theorem that the
reals are uncountable is true in M . Does this imply that ZFC is not satisfiable? Of course not and here are
the two reasons why (second being the main reason).
(1) Replacing the universe of M with N, we may assume that M = N, so ϵM is just a binary relation on N,

i.e. a subset of N2. So what if somehow M satisfies the statement that reads as “there is an uncountable
set”? It is just some statement about this binary relation ϵM and it does not imply anything about the
actual sets and the cardinality of M.

(2) Even if M was a set of sets and ϵM was the true ∈, then the countability of M would simply imply that
M ’s version of the real numbers, RM , is indeed countable (for us), i.e. there is a bijection f : RM →N.
This bijection is a set, namely a subset of R

M ×N, but it may not be an element of M—the latter
doesn’t contain all sets, only countably-many of them. In fact, since M satisfies the statement “RM is
uncountable”, we conclude that f <M for sure! In other words, M does not “see” the countability of RM

and thus thinks that RM is uncountable. It’s like how people thought the world was endless before they
discovered it was round since all they could see was the ocean up to the line of the horizon and for all
they knew it continued forever. The only difference is that we eventually obtained the knowledge that
Earth is round and finite, while M never will.

2. First order logic: the syntactic aspect

So far, we have been dealing with the semantic (model-theoretic) aspect of FOL, i.e. structures/models,
satisfiability, definability, etc. In this section we turn to the syntactic aspect, namely proof systems and
formal proofs.

We fix a signature σ for this section and everything below is assumed to be in this signature.

2.A. The axioms and the rule of inference of FOL(σ )

Here we define the set Axioms(σ ) of the default axioms of, as well as a rule of inference of FOL(σ ). These
axioms would be satisfied by every σ -structure and the rule of inference would preserve satisfiability.

Unlike the definition of a σ -theory, Axioms(σ ) includes formulas with free variables. This is necessary as
in the course of a proof, even if our goal is to prove a sentence, we often make quantified variables free. For
example, when proving

∀f : [0,1]→R, f is continuous⇒ f is bounded, (∗)
we start the proof by letting the variable f denote a function and this variable stays free until the end of the
proof, where we generalize by saying “but f is arbitrary, so (∗) is true”.

We need the following technical definition in order to state the axioms that involve variables.

Definition 2.1. Let ϕ be a formula and t be a term. We say that t is free for v in ϕ (or t is OK to be plugged-in
for v in ϕ) if neither v nor any variable in t is quantified in ϕ. If t is free for v in ϕ, we define ϕ(t/v) to be the
formula obtained from ϕ by replacing all occurrences of v by t.
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Convention 2.2. Below, whenever we write ϕ(t/v), it is assumed that t is free for v in ϕ.

Convention 2.3. From now on, we treat ϕ ∨ψ;ϕ ∧ψ;∃vϕ as abbreviations for ¬ϕ→ ψ;¬(ϕ→¬ψ);¬∀v¬ϕ.

We use an axiom schema to describe an infinite set of axioms that have the same form, so each of the
schemas below, defines an infinite set. The set Axioms(σ ) consists of the union of the sets of axioms defined
via the following axiom schemas.

Propositional axioms. Letting ϕ,ψ,χ range over all σ -formulas, the following are in Axioms(σ ).

(1) If-true-then-implied: ϕ→ (ψ→ ϕ).
(2) Implication-is-transitive: (ϕ→ ψ)→

[
(ϕ→ (ψ→ χ))→ (ϕ→ χ)

]
.

(3) Proof-by-contradiction: (¬ϕ→ ψ)→
[
(¬ϕ→¬ψ)→ ϕ

]
.

Quantifier axioms. Letting

• ϕ,ψ,χ range over all σ -formulas,
• v range over all variable symbols,
• t range over all σ -terms that are OK to be plugged in for v in ϕ,
• u range over all variable symbols that are OK to be plugged in for v in ϕ,

the following are in Axioms(σ ).

(4) Instantiation: ∀vϕ→ ϕ(t/v).
(5) Generalization: ϕ→∀uϕ(u/v).

Remark 2.4. What we really want to write here is ϕ→∀vϕ(v), but if v is free ϕ (which is exactly when
this axiom is most likely to be used), ϕ→∀vϕ(v) is not a formula according to Convention 1.26.

Equality axioms. Letting

• n range over N+,
• u,v,w range over all variable symbols,
• f range over Funcn(σ ),
• R range over Reln(σ ),
• x⃗, y⃗ range over all vectors of variables of length n,

the following are in Axioms(σ ).

(6) Equality-is-equivalence:
(6.a) Equality-is-reflexive: u � u.
(6.b) Equality-is-symmetric: u � v→ v � u.
(6.c) Equality-is-transitive: (u � v ∧ v � w)→ u � w.

(7) Functions-respect-equality: (x⃗ � y⃗)→
(
f (x⃗) � f (y⃗)

)
.

(8) Relations-respect-equality: (x⃗ � y⃗)→
(
R(x⃗)→ R(y⃗)

)
.

We now state the only rule of inference we need to derive new statements from axioms.

Rule of inference. For any σ -formulas ϕ,ψ, we say that ψ is obtained from ϕ and ϕ→ ψ via Modus Ponens.

(9) A cartoon of Modus Ponens: ϕ,ϕ→ ψ
MP
⇝ ψ .

Definition 2.5. Let ϕ(v⃗) be an extended σ -formula, so ∀v⃗ϕ is a sentence. We say that ϕ is satisfied/true in a
σ -structure A, written A |= ϕ, if A |= ∀v⃗ϕ.

The following better be true.

Observation 2.6. Every σ -structure A satisfies each σ -formula in Axioms(σ ) and Modus Ponens preserves the
satisfiability of σ -formulas in A.
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2.B. Formal proofs

Definition 2.7. Let T be a set of σ -formulas (not necessarily sentences) and let ϕ be a σ -formula. A proof 4

of ϕ from T is a finite sequence ϕ1,ϕ2, . . .ϕn of σ -formulas such that ϕn = ϕ and for each i = 1, . . . ,n,
• either: ϕi ∈ Axioms(σ )∪ T ,
• or: ϕi follows from the previous ϕj-s by Modus Ponens, i.e. for some j,k < i (not necessarily j < k),
ϕk = ϕj → ϕi ; in this case, we say that ϕi is obtained by Modus Ponens from ϕj ,ϕk .

We say that T proves ϕ, written T ⊢ ϕ, if there exists a proof of ϕ from T . When T = ∅, we just write ⊢ ϕ.

The following better be true.

Proposition 2.8 (Soundness). Our proof system is sound, i.e. for any σ -theory T , if T ⊢ ϕ then T |= ϕ.

Proof. This follows by induction on the length of the formal proof of ϕ and Observation 2.6. □

The converse is also true and it is exactly the content of Gödel’s Completeness Theorem 3.2, which is
much harder to prove, just wait.

The following illustrates formal proofs and how tedious (even hard) it can be to find formal proofs of
statements that are “obviously” true.

Proposition 2.9 (Basic provable facts). Let χ,θ be a σ -formulas.
(2.9.a) Self-implication: ⊢ θ→ θ.
(2.9.b) Everything-implies-an-axiom: χ ⊢ θ→ χ.

Proof. (2.9.a) Here is a (very) formal proof:
(i) (θ→ (θ→ θ))→ [(θ→ ((θ→ θ)→ θ))→ (θ→ θ)] [Axiom (2) for ϕ ..= χ ..= θ and ψ ..= (θ→ θ)],
(ii) θ→ (θ→ θ) [Axiom (1) for ϕ ..= ψ ..= θ],
(iii) (θ→ ((θ→ θ)→ θ))→ (θ→ θ) [Modus Ponens (i), (ii)],
(iv) θ→ ((θ→ θ)→ θ) [Axiom (1) for ϕ ..= θ and ψ ..= (θ→ θ)],
(v) θ→ θ [Modus Ponens (iii), (iv)].

(2.9.b) By the if-true-then-implied axiom (1), ⊢ χ→ (θ→ χ). We also trivially have χ ⊢ χ, so an application
of Modus Ponens finishes the proof. □

The following lemma makes coming up with proofs much easier.

Lemma 2.10 (Deduction theorem). For a set T of σ -formulas and σ -formulas χ,ϕ,

T ,χ ⊢ ϕ if and only if T ⊢ χ→ ϕ.

Proof. ⇐: Follows by an application of Modus Ponens.
⇒: Letting ϕ1, . . . ,ϕn with ϕn = ϕ be a proof of ϕ from T ∪ {χ}, we show that T ⊢ χ→ ϕ by induction on n.
Case 1: ϕ ∈ Axioms(σ )∪ T . Then T ⊢ χ→ ϕ by (2.9.b).
Case 2: ϕ = χ. Then T ⊢ χ→ ϕ by (2.9.a).
Case 3: ϕ = ϕn is obtained by Modus Ponens from ϕi and ϕj for some i, j < n. Then ϕj = ϕi → ϕ. By the
induction hypothesis, T ⊢ χ→ ϕi and T ⊢ χ→ (ϕi → ϕ). By Axiom (2),

T ⊢ (χ→ ϕi)→
[
(χ→ (ϕi → ϕ))→ (χ→ ϕ)

]
so applying Modus Ponens twice gives T ⊢ χ→ ϕ. □

The Deduction theorem makes life much easier in proving that a formula is provable from T . The
following illustrates this.

Proposition 2.11 (Further provable facts). For any σ -formulas ϕ,ψ, variable symbol v, and a σ -term t that is
OK to be plugged in for v in ϕ, the following σ -formulas are provable from the empty theory.
(2.11.a) Double-negation-elimination: ¬¬ϕ→ ϕ.
(2.11.b) Double-negation-introduction: ϕ→¬¬ϕ.
(2.11.c) If-false-then-implies: ¬ϕ→ (ϕ→ ψ).

4The author thanks Itay Neeman for explaining how to apply this concept when doing mathematics.
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(2.11.d) Forward-contrapositive: (ϕ→ ψ)→ (¬ψ→¬ϕ).
(2.11.e) Truth: ⊤ ..= ∀v(v � v).
(2.11.f) Contradiction-implies-everything: (¬ϕ ∧ϕ)→ ψ.
(2.11.g) Falsity-implies-everything: ⊥→ ψ, where ⊥ ..= ¬⊤.
(2.11.h) Witness-implies-existence: ϕ(t/v)→∃vϕ.

Proof. (2.11.a) The Deduction theorem reduces to proving ¬¬ϕ ⊢ ϕ. The following instance of the proof-by-
contradiction axiom (3) is our driving statement:

⊢ (¬ϕ→¬ϕ)→
[
(¬ϕ→¬¬ϕ)→ ϕ

]
. (2.12)

(2.9.a) gives ⊢ ¬ϕ→¬ϕ and (2.9.b) gives ¬¬ϕ ⊢ ¬ϕ→¬¬ϕ, so a couple of Modus Ponenses applied to (2.12)
yield ¬¬ ⊢ ϕ.

(2.11.b) Very similar to the proof of double-negation-elimination (2.11.a) and is left to the reader.
(2.11.c) The Deduction theorem reduces to proving ¬ϕ,ϕ ⊢ ψ. By the proof-by-contradiction (3) axiom,

⊢ (¬ψ→ ϕ)→
[
(¬ψ→¬ϕ)→ ψ

]
and by everything-implies-an-axiom (2.9.b) ϕ ⊢ ¬ψ→ ϕ and ¬ϕ ⊢ ¬ψ→¬ϕ, so a couple of Modus Ponenses
finish the proof.

(2.11.d) Again, the Deduction theorem reduces to proving ϕ → ψ,¬ψ ⊢ ¬ϕ. The driving statement is
again given by the proof-by-contradiction (3) axiom:

⊢ (¬¬ϕ→ ψ)→
[
(¬¬ϕ→¬ψ)→¬ϕ

]
. (2.13)

Using the implication-is-transitive axiom (2), the facts ⊢ ¬¬ϕ→ ϕ (by (2.11.a)) and ⊢ ϕ→ ψ (by (2.9.a)), a
couple of Modus Ponenses yield ϕ→ ψ ⊢ ¬¬ϕ→ ψ. (2.9.b) gives ¬ψ ⊢ ¬¬ϕ→¬ψ, so a couple of Modus
Ponenses applied to (2.13) yields ϕ→ ψ,¬ψ ⊢ ¬ϕ.

(2.11.e) Recalling that ⊤ stands for ⊢ ∀v(v � v), this follows from the equality-is-reflexive (6.a) and
generalization axioms (5) topped with an application of Modus Ponens.

(2.11.f) ϕ ∧¬ϕ is the abbreviation of ¬(¬ϕ→¬ϕ), so, denoting χ ..= (¬ϕ→¬ϕ), the driving statement is
the following instance of the proof-by-contradiction axiom (3):

⊢ (¬ψ→ χ)→
[
(¬ψ→¬χ)→ ψ

]
.

The rest of the proof is left to the reader.
(2.11.g) Recall that ⊥ stands for ¬⊤ and, by (2.11.e), we have ⊢⊤. It remains to put these two together

and apply contradiction-implies-everything (2.11.f).
(2.11.h) Recall that ∃vϕ stands for ¬∀v¬ϕ, so, using forward-contrapositive (2.11.d) and double-negation-

introduction (2.11.b), our task reduces to proving ⊢ ∀v¬ϕ→¬ϕ(t/v), which is an instance of the instantiation
axiom (4). □

Lemma 2.14 (Constant Substitution). Let c be a symbol that is not in σ and let v be free in a σ -formula ϕ. For a
set T of σ -formulas,

T ⊢ ϕ(c/v) if and only if T ⊢ ϕ,
where in the first statement c is treated as a constant symbol and T is viewed as a (σ ⊔ {c})-theory.

Proof. The direction⇐ follows by applications of the generalization (5) and instantiation (4) axioms, followed
by Modus Ponens. The reverse implication is a straightforward induction on the length of the formal proof.
This comes down to proving that if ϕ(c/v) is an axiom, then so is ϕ, which is only worth checking for the
axioms that explicitly deal with variables, i.e. (4)–(8). □

2.C. Syntactic versions of consistency and completeness

In this subsection, we define analogues of the notions defined in Subsection 1.E using ⊢ instead of |=.

Definition 2.15. A σ -theory T is said to be
• (syntactically) consistent if there is no σ -sentence ϕ such that T ⊢ ϕ ∧¬ϕ;
• (syntactically) σ -complete (or just complete if σ is understood) if for any σ -sentence ϕ, T ⊢ ϕ or T ⊢ ¬ϕ.
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Note that a satisfiable theory is consistent by the Soundness of the proof system. We also have the
analogue of Proposition 2.16 for ⊢.

Proposition 2.16. For a σ -theory T , the following are equivalent:

(1) T is syntactically consistent.
(2) T ⊬⊥.
(3) T ⊬ ϕ for some σ -sentence ϕ.

Proof. Follows from (2.11.f) and (2.11.g). □

Proposition 2.17 (Compactness for ⊢). A σ -theory T is consistent if and only if every finite subset of T is
consistent.

Proof. A proof of ⊥ is finite, so it uses only a finite subset of T . □

Lemma 2.18 (Modifying consistent theories). Let T be a σ -theory.

(2.18.a) For any σ -sentence χ, T ∪ {χ} is inconsistent if and only if T ⊢ ¬χ.
(2.18.b) If T is consistent, then for any σ -sentence χ, at least one of T ∪ {χ} and T ∪ {¬χ} is consistent.
(2.18.c) For any extended σ -formula ϕ(v), if T ∪ {∃vϕ(v)} is consistent and c is a constant symbol that does not

appear in T ∪ {∃vϕ}, then T ∪ {ϕ(c/v)} is consistent.

Proof. (2.18.a) The right-to-left direction is immediate so we show the other direction. Assume T ∪ {χ} is
inconsistent and hence T ,χ ⊢⊥. By the Deduction theorem, T ⊢ χ→⊥, and hence, by forward-contrapositive
(2.11.d), double-negation-elimination (2.11.a), and Modus Ponens, we get T ⊢⊤→¬χ. But ⊢⊤ by (2.11.e),
so applying Modus Ponens again yields T ⊢ ¬χ.

(2.18.b) We prove the contrapositive. Assume both T ∪{χ} and T ∪{¬χ} are inconsistent. Then by (2.18.a),
T ⊢ ¬χ and T ⊢ ¬¬χ. Thus T ⊢ χ∧¬χ and hence T is inconsistent.

(2.18.c) Here too, we prove the contrapositive. Assume T ∪ {ϕ(c/v)} is inconsistent. Then by (2.18.a),
T ⊢ ¬ϕ(c/v). By the Constant Substitution Lemma 2.14, T ⊢ ¬ϕ(v), and by the generalization axiom (5),
T ⊢ ∀v¬ϕ(v), so T ⊢ ¬∃vϕ(v). Thus, by (2.18.a) again, T ∪ {∃vϕ(v)} is inconsistent. □

The compactness statement of Proposition 2.17 is actually equivalent to the fact that the following
topological space is compact: let T be the set of all consistent maximally complete theories and take the
topology generated by the sets of the form

〈
ϕ
〉 ..= {T ∈ T : T ⊢ ϕ}, where ϕ ranges over all σ -sentences.

Although, it is not as immediate as with semantic consistency, the analogue of (1.57.b) is also true for
syntactic consistency:

Lemma 2.19. Any syntactically consistent σ -theory T has a consistent maximal completion, i.e. there exists a
(nonunique, in general) syntactically consistent maximally complete σ -theory T ⊇ T .

Proof. We give two proofs: one for countable σ and one for arbitrary σ ; the first one is a (seemingly) more
hands on construction and the readers not familiar with Zorn’s lemma may find it more helpful.

Case: σ is countable. In this case there are only countably-many σ -formulas, so we can enumerate all
σ -sentences (χn)n∈N. Put T0

..= T , and recursively construct an increasing sequence (Tn)n∈N of consistent
theories as follows. Assuming that Tn is defined and is consistent, put Tn+1

..= Tn ∪ {χn} if Tn ⊬ ¬χn, and
put Tn+1

..= Tn ∪ {¬χn}, otherwise. It follows from (2.18.a) that Tn+1 is consistent. Putting T ..=
⋃
nTn, note

that T ⊇ T and T is consistent: indeed, if it was inconsistent, then, by 2.17, some finite subset F ⊆ T would
be inconsistent, but this F would be trapped in some Tn, i.e. F ⊆ Tn, making Tn inconsistent, which is a
contradiction. Lastly, it is immediate from the construction that T is maximally complete.

Case: σ is arbitrary. By 2.17, inconsistent theories have inconsistent finite subsets (i.e. inconsistency has
finite base), so arbitrary increasing unions of consistent theories are consistent. Thus, by Zorn’s lemma, there
is a ⊆-maximal consistent theory T ⊇ T and it remains to show that it is maximally complete. Indeed, for
any σ -sentence χ, one of T ∪ {χ} or T ∪ {¬χ} is consistent by (2.18.b) of Lemma 2.18, so, by ⊆-maximality, T
must already contain χ or ¬χ. □
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3. Completeness of the proof system and its consequences

The soundness of the proof system 2.8 says that if we have a “syntactical certificate” that something is
true (i.e. is a syntactic consequence of T ), then it is indeed true (in every model of T ). What about the
converse: is the validity of ϕ in every model of T witnessed by an actual formal proof from the axioms of T ?
If the answer to this question was no, mathematicians would appear in a pretty rough shape since it would
be possible that some (first order) statement was true in every model of T (e.g. Hilbert’s Nullstellensatz for
algebraically closed fields), but we would have no (first order) way of proving it. Fortunately, the answer is
YES and that is the content of the Completeness Theorem to which we devote this section.

3.A. Syntactic-semantic duality, completeness and compactness

We have already defined some syntactic and semantic notions for a theory T , and, in this subsection, we
draw analogies between them. Finally, we state the Completeness theorem, which in my opinion should
have been called the Syntactic-Semantic Duality theorem. It is called Completeness because it shows that
the proof system defined in the previous section is “complete” in the sense that the axioms that we threw in,
together with the rule of inference, are enough to prove any statement that is true in every model of T (i.e.
semantically implied by T ).

The following table compares the notions we have defined.

Table 3.1. Syntactic-semantic duality

Notions Syntactic (Proof-theoretic) Semantic (Model-theoretic)
Consistency T ⊬⊥ T ⊭⊥, i.e. T is satisfiable
Implication T ⊢ ϕ T |= ϕ

Completeness ∀ϕ, T ⊢ ϕ or T ⊢ ¬ϕ ∀ϕ, T |= ϕ or T |= ¬ϕ
Compactness T ⊢ ϕ =⇒ ∃ finite T0 ⊆ T , T0 ⊢ ϕ T |= ϕ =⇒ ∃ finite T0 ⊆ T , T0 |= ϕ

Although the statements in each row are clearly analogous, there is no immediate reason to think that
they may be equivalent. For example, it is not clear at all whether the semantic version of the compactness
statement is true. This is why one should appreciate the following.

Theorem 3.2 (Completeness of FOL; Gödel, 1929). Every consistent σ -theory T is satisfiable. In fact, it has a
model of cardinality at most max {|σ |,ℵ0}.

Remark 3.3 (silly). The completeness of FOL should NOT be confused with the completeness of a theory;
these are two completely different notions, they just use the same adjective (unfortunate terminology). I put
this remark here because I have had students ask me whether Gödel’s Completeness theorem contradicts his
Incompleteness theorem. The first one means Completeness of the FOL proof system, whereas the second
means Incompleteness of the theory PA.

Before proceeding with a proof of this theorem, let us mention a couple of very important immediate
corollaries.

Corollary 3.4 (Syntactic-semantic duality). For a σ -theory T and a σ -sentence ϕ,

T ⊢ ϕ ⇐⇒ T |= ϕ.
In particular, the statements in each row of the above table are equivalent.

Proof. We only prove that T |= ϕ implies T ⊢ ϕ since the rest easily follows from it. We show the contra-
positive. Suppose T ⊬ ϕ, in particular T is consistent (inconsistent theories prove everything). Moreover,
T ∪ {¬ϕ} is consistent by (2.18.a), so the Completeness theorem gives a model M |= T ∪ {¬ϕ}, and hence,
T ⊭ ϕ. □

Remark 3.5. If one somehow manages to prove a first-order statement ϕ about all models of T using non-
first-order methods, the syntactic-semantic duality implies that there is a first-order proof of ϕ from T and
using external methods was unnecessary.
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A theory is called finitely satisfiable if every finite subset of it is satisfiable. Rephrasing the semantic
version of the compactness statement above, we get (probably) the most useful theorem of logic:

Theorem 3.6 (Compactness). If a σ -theory T is finitely satisfiable, then it is satisfiable. In fact, it has a model of
cardinality at most max {|σ |,ℵ0}.

Proof. Because T is finitely satisfiable, every finite subset of it is consistent. Hence T is consistent and the
Completeness theorem applies. □

The Compactness theorem has a wide range of applications and we will mention some of them in the
upcoming lectures.

3.B. Henkin’s proof of Gödel’s Completeness Theorem

In this subsection we give a proof of Gödel’s Completeness theorem that is due to Henkin.
We start with a consistent theory T in a signature σ and our goal is to build a model for it. To appreciate

the difficulty of this task, think of the following particular case: given a set of (first order) conditions together
with the field axioms, how hard would it be to construct a field satisfying those conditions? In this example
at least, our knowledge of algebra may help finding or constructing such a field, but to build a model for T ,
it’s not even clear where to start.

The first question we need to address is what underlying set we should take for our future model. In
general, the objects in the underlying sets of different structures are of different nature; for example, the
objects in the group GLn(R) are matrices, whereas those in the group Sn are permutations. But of course, we
can always take isomorphic copies of these structures whose underlying sets are build of the same “material”,
such as names or symbols. More precisely, given a σ -structure A ..= (A,σ ), we can give a name ca to each
element a ∈ A, obtaining a new underlying set CA ..= {ca : a ∈ A} and a σ -structure A′ ..= (CA,σ ) isomorphic
to A, but the objects in the underlying set of A′ are just names (i.e. symbols). It’s like taking GLn(R) and
replacing the matrices with their pictures (JPEG images if you will).

We can use this idea of naming the elements of a given structure even further. Given Th(A), we usually
cannot recover the structure A even if we know the underlying set A. However, we can upgrade our signature
σ by adding names for elements of A and then the theory of the natural expansion of A to a structure in this
upgraded signature would completely determine the structure A.

Definition 3.7. For a σ -structure A, define a new signature

σA ..= σ ∪ {ca : a ∈ A} ,

where the ca are treated as (distinct) constant symbols in σA. Let A′ ..= (A,σA) denote the expansion of A to a
σA-structure, where the constant symbols ca are interpreted as one expects: cA

′
a

..= a, for every a ∈ A. Call
this structure A′ the natural σA-expansion of A. Call Th(A′) the elementary diagram of A, and denote it by
ElDiag(A). Also, denote by Diag(A) the set of all quantifier free sentences in Th(A′) and call it the diagram
of A.

Now the structure A′ ..= (A,σA) is such that every element in its underlying set A has a name (i.e.
a corresponding constant symbol) in the signature σA, so Th(A′) will tell us exactly how the constant
symbols, function symbols and relation symbols in σ are interpreted in A; for example, if a1, a2, a3 ∈ A and
f A
′
(a1, a2) = a3, then Th(A′) would contain the σA-sentence f (ca1

, ca2
) = ca3

; for groups this would correspond
to the multiplication table. Moreover, ElDiag(A) also includes quantified statements about the elements
of A. In particular, A |= ∃vϕ if and only if ∃vϕ ∈ ElDiag(A). Furthermore, the latter holds if and only if
ϕ(c/v) ∈ ElDiag(A), for some constant symbol c ∈ σA. We refer to this c as a Henkin witness below.

Why is this useful for us in proving the Completeness theorem? Well, we are to build a model of T , so we
have to define interpretations of the symbols in σ so they agree with T . Therefore, it would be really nice if
T could tell us exactly how to define those interpretations because if we do exactly as T says, then we would
naturally end up with a σ -structure modeling the quantifier free sentences of T . It would be even better, if
T could tell us which formulas of the form ∃vϕ our future model should satisfy. In other words, we would
like our T to “look like” an elementary diagram of some σ -structure, so we can take that σ -structure as our
model. The following definition makes all this precise.
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Definition 3.8. For a signature σ , a σ -theory H and a σ -formula ∃vϕ, we say that H admits a Henkin witness
for ∃vϕ if H ⊢ ϕ(c/v) for some c ∈ Const(σ ). A σ -theory H is called a σ -Henkin theory (or just a Henkin
theory) if H is consistent, maximally complete, and admits a Henkin witness for every σ -formula of the form
∃vϕ that it proves.

Observation 3.9. For any σ -structure A, ElDiag(A) is a σA-Henkin theory.

Note that the existence of a σ -Henkin theory implies that σ has at least one constant symbol. Our initial
signature σ may not contain enough constants to be used as Henkin witnesses, so we artificially create them
and throw them into σ ; more precisely, we define increasing sequence (σn) of signatures as follows: take
σ0

..= σ and, for each n ∈N, let

σn+1
..= σn ∪

{
c∃vϕ : ϕ ∈ Formulas(σn)

}
,

where symbols in the last set are treated as constant symbols in σn+1. Lastly, let σ ..=
⋃
↑ nσn.

Lemma 3.10 (Constructing a Henkin theory). Any consistent σ -theory T admits a σ -Henkin extension H ⊇ T .

Proof. The proof is very similar to that of the Downward Löwenheim–Skolem theorem 1.67, but instead of
structures we build theories and instead of adding Tarski–Vaught witnesses we add Henkin witnesses. We
define an increasing sequence (Tn) of extensions of T , where each Tn is a consistent maximally complete
σn-theory. Let T0 be a consistent σ0-completion of T and suppose that Tn is defined. Putting

Hn ..=
{
ϕ(c∃vϕ/v) : ∃vϕ ∈ Tn

}
,

it follows from (2.18.c) (or rather its proof) that Tn∪Hn is still consistent because for each ϕ(c∃vϕ/v) ∈Hn \Tn,
∃vϕ ∈ Tn and the symbol c∃vϕ does not appear in Tn. Let Tn+1 be a consistent σn+1-completion of Tn ∪Hn.
Finally taking H ..=

⋃
n∈NTn, it is easy to verify that H is a consistent maximally σ -complete extension of

T . Because every σ -sentence ∃vϕ is actually a σn-sentece for some n ∈N (once again, formulas are finite),
it follows by our construction that H contains ϕ(c∃vϕ/v) whenever it contains ∃vϕ, so H is a σ -Henkin
theory. □

Having constructed a σ -Henkin theory H , we now construct a model of H , i.e. a σ -structure satisfying H
and then take its reduct to the signature σ (i.e. forget the names of Henkin witnesses). Thus, for the rest of
the proof, we let H be a τ-Henkin theory, for some signature τ , and we build a τ-structure that models H .

Lemma 3.11 (Henkin theories calculate terms). Let H be a τ-Henkin theory. For any τ-term t with no variables,
t � c ∈H for some c ∈ Const(τ).

Proof. We aim at getting such c ∈ τ as a Henkin witness to ∃vϕ(v), where ϕ(v) ..= t � v, so it is enough to
show that H ⊢ ∃vϕ. But, by the equality-is-equivalence (6), generalization (5), and instantiation (4) axioms,
H ⊢ t � t, and the latter sentence is precisely ϕ(t/v). Thus, H ⊢ ϕ(t/v), so using witness-implies-existence
(2.11.h), we get H ⊢ ∃vϕ. □

Lemma 3.12 (Constructing a model for a Henkin theory). Any τ-Henkin theory H has a model.

Proof. As our first attempt, we take A ..= Const(τ) as the universe of our future model A with the following
interpretations:

cA ..= c, for each c ∈ Const(τ);
f A(a⃗) = b ..⇔ f (a⃗) � b ∈H , for each f ∈ Func(τ), a⃗ ∈ A|a(f )|, and b ∈ A;

RA(a⃗) ..⇔ R(a⃗) ∈H , for each R ∈ Rel(τ) and a⃗ ∈ A|a(R)|.
This construction almost works except that it may well be that a � b ∈H , for distinct a,b ∈ A. Because of this,
A is not even a τ-structure since the interpretations of the function symbols of τ (second clause above) are
not well defined, but this is a secondary issue and would be fixed once the first is fixed. We fix the first issue
by modding out A by the equivalence relation ∼H on A defined by:

a ∼H b ..⇔ a � b ∈H.

It follows from the equality-is-equivalence axioms and the completeness of H that ∼H is indeed an equiva-
lence relation.
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Put M ..= A/ ∼, so M = {[a]H : a ∈ A}, where [a]H denotes the ∼H -equivalence class of a; for a vector
a⃗ ..= (a1, a2, . . . an) ∈ An, we also write [a⃗]H to mean

(
[a1]H , [a2]H , . . . , [an]H

)
. We define a τ-structure M with

universe M and the following interpretations:
cM ..= [c]H , for each c ∈ Const(τ);

f M ([a⃗]H ) = [b]H ..⇔ f (a⃗) � b ∈H , for each f ∈ Func(τ), a⃗ ∈ A|a(f )|, and b ∈ A;
RA([a⃗]H ) ..⇔ R(a⃗) ∈H , for each R ∈ Func(τ) and a⃗ ∈ A|a(R)|.

Claim 1. M is well-defined.

Proof of Claim. One has to prove that the definitions of RM and f M do not depend on the choice of the
representatives of the equivalence classes, but this immediately follows from the functions-respect-equality
(7) and relations-respect-equality (8). Moreover, for each f ∈ Func(τ), one has to verify that for all a⃗ ∈ Aa(f ),
there does exist b ∈ A with f (a⃗) � b ∈H , but this is just an instance of Lemma 3.11. ⊠

Claim 2. For every τ-term t with no variables and b ∈ A, tM = [b]H if and only if t � b ∈H .

Proof of Claim. We induct on the recursive construction of t. The case of t being a variable is excluded, so the
only base case is t = c for c ∈ Const(τ). But then, by definition,

cM = [b]H ⇔ c � b ∈H.
Now assume that t = f (t1, t2, . . . , tn) for some f ∈ Funcn(τ) and n ∈N. Let a⃗ ..= (a1, a2, . . . , an) ∈ An be such

that tMi = [ai] for all i. By induction, we have that ti � ai ∈H , so by the functions-respect-equality (7) axiom,
we also have that H ⊢ f (t1, t2, . . . , tn) = f (a⃗). But then, by definition,

f M ([a⃗]H ) = [b]H ⇔ f (a⃗) � b ∈H ⇔H ⊢ f (t1, t2, . . . , tn) � b,

where the last equivalence is due to the functions-respect-equality (6) axiom. ⊠

Claim 3. M |=H .

Proof of Claim. We show that for every extended τ-formula θ(x⃗) and a⃗ ∈ A|x⃗|,

M |= θ
(
[a⃗]H

)
⇐⇒ θ(a⃗/x⃗) ∈H,

by induction on the length of θ. The base case of equality is handled by the previous claim, and the base case
of a relation symbol follows from the same claim and the definition of M using the equality-is-equivalence
(6) and relations-respect-equality (8) axioms.

For the step of induction, we consider the cases with connectives ¬ and→ and the quantifier ∃. The case
of ¬ follows easily from the induction hypothesis and the consistency and maximal completeness of H . For
the case θ = ϕ→ ψ, observe:

M |= θ
(
[a⃗]H

)
⇐⇒ M |= ¬ϕ

(
[a⃗]H

)
or M |= ψ

(
[a⃗]H

)
[
induction hypothesis, uses
that ¬ϕ is shorter than θ

]
⇐⇒ ¬ϕ(a⃗/x⃗) ∈H or ψ(a⃗/x⃗) ∈H[

by the if-true-then-implied (1) axiom
and if-false-then-implies (2.11.c)

]
⇐⇒ ϕ→ ψ ∈H.

We now handle the remaining case of θ = ∃vϕ as follows:

M |= θ
(
[a⃗]H

)
⇐⇒ there is [b]H ∈M such that M |= ϕ

(
[a⃗]H , [b]H

)[
induction hypothesis

]
⇐⇒ there is b ∈ A such that ϕ(a⃗/x⃗,b/v) ∈H=⇒ is by witness-implies-existence

(2.11.h) and⇐= is because H admits
a Henkin witness for ∃vϕ(a⃗/x⃗)

 ⇐⇒ ∃vϕ(a⃗/x⃗,v) ∈H. ⊠

The last claim finishes the proof of the lemma. □

Proof of the Completeness Theorem 3.2 (Henkin, 1949). By Lemma 3.10, there is a σ -Henkin theory H ⊇ T .
Now applying Lemma 3.12 to σ and H , we get a model M of H of cardinality at most |σ | and hence at most
κ ..= max {|σ |,ℵ0}. Finally, we take the reduct of M to the signature σ . □
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From now on, we will not differentiate between the syntactic and semantic notions in Table 3.1.

3.C. Upward Löwenheim–Skolem theorem

One of the numerous consequences of the Compactness theorem is the following general statement about
cardinalities of models.

Theorem 3.13 (Weak Upward Löwenheim–Skolem). For a σ -theory T the following are equivalent:
(1) T has an infinite model.
(2) For every n ∈N, T has a model of cardinality at least n.
(3) T has a model of any cardinality κ ⩾max {|σ |,ℵ0}.

Proof. We prove the only nontrivial direction (2)⇒(3). Put σ ..= σ ∪ {cα}α<κ, where cα are constant symbols
that are not in σ . The theory

T ..= T ∪
{
cα ̸� cβ : α , β,α,β < κ

}
is finitely satisfiable by (2). Thus, by the Compactness theorem, T has a model M of cardinality at most κ
since |σ | = κ ⩾ ℵ0. On the other hand, |M | ⩾ κ since cMα , c

M
β for distinct α,β < κ. Thus |M | = κ. □

This theorem implies for example that PA has uncountable models!
Recall that the Downward Löwenheim–Skolem theorem gives us an elementary substructure A of a given

σ -structure B of any cardinality κ ⩽ |B| as long as κ ⩾max {|σ |,ℵ0}. We would like to also get an upward
version of this, i.e. start with a σ -structure A and get an elementary extension B ⪰ A of any cardinality
⩾max {|A|, |σ |,ℵ0}. To achieve this, we may consider applying the previous theorem to Th(A). However, this
would only give us a structure B that is elementarily equivalent to A, i.e. A ≡ B, whereas we want A ↪→e B.
So instead, we apply the previous theorem to the elementary diagram ElDiag(A) of A (see Definition 3.7),
and the following lemma tells us why.

Lemma 3.14. For σ -structures A,B, if an expansion B′ of B is a model of ElDiag(A), then A ↪→e B. In particular,
there is an isomorphic copy of B containing A as an elementary substructure.

Proof. Let h : A→ B be the map a 7→ cB
′

a , i.e. h maps an element a ∈ A to the interpretation in B′ of the
corresponding constant symbol ca. It is straightforward to check that f is an elementary embedding. □

Theorem 3.15 (Upward Löwenheim–Skolem). Any infinite σ -structure A has an elementary extension of any
cardinality κ ⩾max {|A|, |σ |,ℵ0} ; more precisely, there is a σ -structure B such that |B| = κ and A ⪯ B.

Proof. By the weak upward Löwenheim–Skolem, get a model B of ElDiag(A) of cardinality κ and apply the
previous lemma. □

3.D. Nonstandard models of arithmetic

A nonstandard model of Peano Arithmetic is any model of PA that is not isomorphic to the standard model
N ..= (N,0,S,+, ·). As mentioned above, PA has uncountable models and hence they are nonstandard. In this
subsection, we construct a countable nonstandard model of PA using the Compactness theorem.

For the rest of the subsection we work in the signature σarthm
..= (0,S,+, ·).

For each n ∈N, recursively define a σarthm-term ∆(n) by setting ∆(0) ..= 0 and ∆(n+ 1) ..= S
(
∆(n)

)
. Note

that for every n ∈N, N |= ∆(n) � n and hence N =
{
∆(n)N : n ∈N

}
.

Proposition 3.16. The theory Th(N ), and hence also PA, admits a countable nonstandard model.

Proof. Let w be a new constant symbol not in σarthm and consider the signature σ ..= σarthm ∪ {w}. Put

T ..= Th(N )∪ {w ̸� ∆(n) : n ∈N} .
T is finitely satisfiable because for any finite T0 ⊆ T , letting n be the maximum number with w ̸� ∆(n) ∈ T0,
the expansion of N to a σ -structure with w being interpreted as n+ 1 satisfies T0. Thus, by the Compactness
theorem, T has a countable model M .

To see that this M is nonstandard, assume for contradiction that there is an isomorphism h : N →M . Since
h(∆(n)N ) = ∆(n)M , h(N) =

{
∆(n)M : n ∈N

}
. But thenwM < h(N), hence h is not surjective, a contradiction. □
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3.E. From finite to infinite and back

The Compactness theorem provides a transfer principle between finitary and infinitary statements, and we
discuss both directions here.

3.E.1. From finite to infinite. The following instance of Weak Upward Löwenheim-Skolem Theorem 3.13 is a
simple of example of transfer from finite to infinite.

Corollary 3.17. If a σ -theory T has arbitrarily large finite models, then it has an infinite model.

Given that some property P holds for all finite subsets of a given structure, we can often conclude via
the Compactness theorem that P holds for the entire structure. For example, if every finite subgraph of a
graph is k-colorable, then the entire graph is k-colorable. Similarly, if every finite subgraph is contained in a
larger subgraph that admits a perfect matching, then the entire graph admits a perfect matching. In both of
these examples, P asserts existence of some object O (relations or functions) satisfying a certain property Q.
Knowing that for each finite subset F of the structure, such an object OF exists, one might hope to write
the underlying set A our structure as a directed union of finite subsets and build a corresponding directed
sequence of objects OF (e.g. partial k-colorings) that coheres with ⊆ on these finite sets; then, taking the
“union” of these objects OF , one would obtain an object O that is global, i.e. works for the entire structure.
The Compactness theorem asserts the existence of such a coherent sequence, but in our proofs, we don’t
even have to think about it. Here is an example.

Corollary 3.18. If every finite subgraph of a graph G ..= (V ,E) is 3-colorable, then the entire graph G is 3-colorable.

Proof. Extend the signature σgr
..= (E) to σ by adding a set CV of names (constant symbols) for elements

of V as well as unary relation symbols R0,R1,R2 corresponding to the 3 colors. Let T be the σ -theory that
includes ElDiag(G) as well as finitely-many sentences asserting that R0,R1,R2 form a partition, which is
a 3-coloring. Any finite T0 ⊆ T only mentions finitely-many constants from CV , so T0 is satisfiable by the
induced subgraph of G. Thus, the Compactness theorem gives a model G of T , which is 3-colorable and
(elementarily) embeds G, so G is also 3-colorable. □

Observe that in this and many other examples, the Compactness theorem switches (non-first-order)
quantifiers ∀∃ to ∃∀. Indeed, we are given that for all finite subsets F there is a certain object RF that “works”
for F, and what we get is that there is a certain object R that “works” for all F at once.

3.E.2. From infinite to finite. In arithmetic combinatorics and Ramsey theory, it often happens that one
proves an infinitary theorem (e.g. theorems of Ramsey, van der Waerden, Szemerédi, etc.) by infinitary
means (i.e. idealistic tools, without keeping track of ε’s and bounding errors) and then deduces its finitary
version via a so-called compactness-and-contradiction argument. The latter uses the fact that product of finite
topological spaces is compact by Tychonoff’s theorem. Here we give an example of such a proof using the
Compactness theorem rather than a compactness-and-contradiction argument. Our example will be the
deduction of the Finite Ramsey theorem from its famous Infinite counterpart.

For a set V and d ⩾ 1, let [V ]d denote the set of d-element subsets of V . (Think of [V ]2 as the set of edges
of the undirected complete graph on V .) For k ⩾ 0, put k̄ ..= {0,1, . . . , k − 1}. A k-coloring of [V ]d is just a
function χ : [V ]d → k̄. A set E ⊆ [N]d is said to be χ-monochromatic if all elements of E have the same color,
i.e. χ|E is constant. A vertex-set A ⊆N is called χ-monochromatic if [A]d is χ-monochromatic.

Theorem 3.19 (Infinite Ramsey). For any 2-coloring χ of [N]2, N has an infinite χ-monochromatic subset.

Proof. For a ∈ N and A ⊆ N, put [a,A] ..=
{
{a,a′} : a′ ∈ A \ {a}

}
. We inductively define sets a decreasing

sequence (An) of infinite subsets of N such that [an,An+1] is χ-monochromatic, where an ..= minAn. Putting
A0

..= N, suppose that An is defined and infinite. Hence, the set [an,An] is infinite and 2-colored by χ. By the
Infinite Pigeonhole Principle, there is an infinite χ-monochromatic subset En ⊆ [an,An]. Let An+1 ⊆ An be
the set defined by En = [an,An+1].

Let A ..= {an : n ∈N} and define a coloring χ′ : A→ 2̄ by coloring an with the common color of [an,An+1].
By the Infinite Pigeonhole Principle, again, there is an infinite χ′-monochromatic subset B ⊆ A, whose
common χ′-color is, say, 0. We claim that B is also χ-monochromatic with common χ-color of [B]2 also being
0: indeed, for any an, am ∈ B with n < m, am ∈ An+1, so χ

(
{an, am}

)
= χ′(an) = 0. □
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Example 3.20. The Infinite Ramsey theorem can be used to show that every sequence (xn)n∈N of reals has a
monotone subsequence. Indeed, color a pair n < m blue if xn < xm, and red, otherwise.

We now derive the Finite Ramsey theorem from this using the Compactness theorem. The original
combinatorial proof is much messier (look it up).

Theorem 3.21 (Finite Ramsey). For every m ⩾ 1, there exists n ⩾m such that for any 2-coloring χ of [n̄]2, there is
a χ-monochromatic subset of n̄ of size m.

Proof. Let σ be the signature containing constant symbols cn, for every n ∈N, and a binary relation symbol
R. Think of R as a symbol for coloring: the color of {x,y} is 1 if R(x,y) holds, and it is 0, otherwise. Fix m ⩾ 1,
and for each n ⩾ m, let ϕn be a σ -sentence expressing that c0, c1, . . . , cn−1 are pairwise distinct and the set
{c0, c1, . . . , cn−1} does not have a monochromatic subset of cardinality m (there are only finitely-many such
subsets, so the nonexistence of a monochromatic one is expressed by a very big, yet finite, conjunction).

Now suppose towards a contradiction that for any n ⩾m, there is a 2-coloring of [n̄]2 such that n̄ has no
monochromatic subsets of cardinality m. Thus, the theory T ..= {ϕn : n ∈N} is finitely satisfiable, and hence,
has a model M . Let N ..=

{
cMn : n ∈N

}
. By the Infinite Ramsey theorem, N has an infinite monochromatic

subset A, i.e. either for all distinct a,a′ ∈ A, RM (a,a′), or for all distinct a,a′ ∈ A, ¬RM (a,a′). Let n be large
enough so that A∩

{
cMi : i < n

}
has at least m elements. Then it is clear that M ⊭ ϕn, a contradiction. □

3.F. Nonaxiomatizable classes

One can use the Compactness theorem to show that many interesting classes of structures are not axiomatiz-
able.

3.F.1. Bounded classes.

Proposition 3.22. Let C be a class of σ -structures. If the cardinalities of the structures in C are bounded (i.e.
bounded by some, possibly infinite, cardinal κ), then C is not axiomatizable, unless all structures in C have at most
n elements, for some fixed n ∈N.

Proof. Follows from the Weak Upward Löwenheim–Skolem Theorem 3.13. □

Example 3.23. Cyclic groups. By the last proposition, the class of cyclic groups is not axiomatizable.

3.F.2. Infinite conjunctions.

Notation 3.24. For a set T of σ -formulas and a vector x⃗ of variables, we write T (x⃗) for T to imply, in addition,
that the free variables of each formula ϕ ∈ T are among x⃗ (i.e. ϕ(x⃗) is an extended formula). In this case, for
a vector c⃗ of constant symbols with |⃗c| = |x⃗|, we put

T (c⃗/ x⃗) ..=
{
ϕ(c⃗/ x⃗) : ϕ ∈ T

}
.

We also put

∃x⃗T ..=
{
∃x⃗ϕ : ϕ ∈ T

}
∀x⃗T ..=

{
∀x⃗ϕ : ϕ ∈ T

}
¬T ..= {¬ϕ : ϕ ∈ T } .

Lastly, if T is finite, we put
•

∨
T ..=

∨
ϕ∈T ϕ,

•
∧
T ..=

∧
ϕ∈T ϕ.

(Unlike the first three definitions, the latter two denote σ -formulas.)

Proposition 3.25. Let C be a class of σ -structures defined as follows: for some σ -theory T0 and set T (x⃗) of
σ -formulas, we have that for every σ -structure A,

A ∈ C ⇐⇒ A |= T0 and for each a⃗ ∈ A|x⃗| there is ϕ ∈ T such that A |= ϕ(a⃗). (3.26)

Then C is not axiomatizable, unless for some finite T ′ ⊂ T , the theory

T0 ∪
{
∀x⃗

(∨
T ′

)}
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axiomatizes C.

Proof. Suppose for contradiction that there is an axiomatization S of C. Enhance the signature by adding a
vector c⃗ of new constant symbols of length |x⃗| and note that the theory

S ′ ..= S ∪¬T (c⃗/ x⃗)

is finitely satisfiable; indeed, otherwise, by (2.18.a) of Lemma 2.18, for some finite T ′ ⊆ T , S ⊢
∨
T ′(c⃗/ x⃗),

and hence S ⊢ ∀x⃗ (
∨
T ′) by Constant Substitution Lemma 2.14 and the generalization axiom (5). Since every

model of T ′ ∪
{
∀x⃗ (

∨
T ′)

}
is in C, it follows that T0 ∪

{
∀x⃗ (

∨
T ′)

}
axiomatizes C, contrary to our assumption.

Thus, S ′ is finitely satisfiable.
But then the Compactness theorem yields a model M |= S ′, which must be in C even though it violates

(3.26), a contradiction. □

Examples 3.27.

(a) Nonbipartite graphs. Let T ..= {ϕ2k+1 : k ∈N}, where ϕn expresses that there is a cycle of length n. Clearly,
for a graph G ..= (V ,E),

G is nonbipartite ⇐⇒ G |= GRAPHS and there is ϕ ∈ T with G |= ϕ.

Thus, the hypothesis of Proposition 3.25 is met, so this class is not axiomatizable.

(b) Connected graphs. Let T (x,y) ..= {ϕn(x,y) : n ∈N}, where ϕn(x,y) expresses that there is a path between x
and y of length at most n. Clearly, for a graph G ..= (V ,E),

G is connected ⇐⇒ G |= GRAPHS and for each u,v ∈ V there is ϕ ∈ T with G |= ϕn(u,v).

Thus, the hypothesis of Proposition 3.25 is met, so this class is not axiomatizable.

3.F.3. Infinite disjunctions. For this type of nonaxiomatizable classes, we need an observation referred to as
Exists Elimination.

Observation 3.28 (Exists Elimination). For an extended σ -formula ϕ(x⃗), a vector c⃗ of length |x⃗| of constant
symbols that are not in σ , and a σ -formula ψ,

ϕ(c⃗/ x⃗) |= ψ if and only if ∃x⃗ϕ |= ψ,

where on the left side, the theory
{
ϕ(c⃗/ x⃗)

}
is a σ ..= σ ∪

{
c⃗
}
-theory.

Proposition 3.29. Let C be a class of σ -structures defined as follows: for some set T (x⃗) of σ -formulas, we have
that for every σ -structure A,

A ∈ C ⇐⇒ there exists a⃗ ∈ A|x⃗| such that for all ϕ ∈ T , A |= ϕ(a⃗). (3.30)

Then, for any σ -sentence χ, if every structure A ∈ C satisfies χ, then there is finite T ′ ⊆ T with ∃x⃗ (
∧
T ′) |= χ. In

particular, C is not axiomatizable, unless the theory{
∃x⃗

(∧
T ′

)
: T ′ ⊆ T finite

}
axiomatizes C.

Proof. The last statement follows from the first by applying it to each sentence χ of a hypothetical axiomati-
zation S of C.

To prove the first statement, let χ as in the hypothesis and enhance the signature by adding a vector c⃗ of
new constant symbols of length |x⃗|. Note that, by (3.30), the σ -reducts of models of T (c⃗/ x⃗) are in C, so in
particular, they all satisfy χ, and hence T (c⃗/ x⃗) |= χ. By the Compactness theorem, there is a finite T ′ ⊆ T
with T ′(c⃗/ x⃗) |= χ, equivalently,

∧
T ′(c⃗/ x⃗) |= χ, so ∃x⃗ (

∧
T ′) |= χ, by Exists Elimination 3.28. □

Example 3.31. Disconnected graphs. Let T (x,y) ..= {ϕn(x,y) : n ∈N}, where ϕn(x,y) expresses that there is no
path between x and y of length n. Clearly, for a graph G ..= (V ,E),

G is disconnected ⇐⇒ there are u,v ∈ V such that for all ϕ ∈GRAPHS∪ T , G |= ϕ(u,v).

Thus, the hypothesis of Proposition 3.29 is met, so this class is not axiomatizable.
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4. Complete theories

As mentioned above, it is easy to see that every consistent theory has a (consistent) completion. So why
don’t we only consider complete theories and not have to deal with the issues that come with incomplete
theories? For example, why don’t we just work with Th(N ) instead of PA? The problem is that it is hard (in a
very precise sense) to check whether a given statement is an axiom of Th(N ) or not. For example, is the Twin
Prime Conjecture in Th(N )? We wish we knew. The whole point of mathematics is to derive complicated
statements from “easy-to-verify” axioms. We will see in the next section that a good rigorous approximation
of “easy-to-verify” is that we can write a computer program that checks whether a given sentence is an
axiom or not. For example, all of the theories in Eq. (1.47) satisfy this criterion.

Now the question is: having defined some reasonable theory, like ACFp, is it complete? In other words,
are these axioms enough to capture the first-order essence of say algebraically closed fields of characteristic
p? In this section we develop a sufficient condition for verifying completeness, using which we show that
ACFp is complete.

4.A. The Łoś–Vaught test

Definition 4.1. Let κ be a cardinal. A σ -theory T is called κ-categorical if any two models of T of cardinality
κ are isomorphic. We say that T is uncountably categorical if it is κ-categorical for some uncountable cardinal
κ.

Examples 4.2.

(a) The theory VEC
Q

of vector spaces over Q is uncountably categorical; in fact, it is κ-categorical, for every
uncountable cardinal κ.

Proof. This is by virtue of the fact that every vector space has a basis and to construct an isomorphism
between vector spaces it is enough to find a bijection between their bases. Details to be added. □

(b) Let DLO be the theory of dense linear orderings without endpoints, i.e. DLO comprises of the following
axioms in the signature σ ..= (<):
(i) Antireflexivity: ∀x(x ≮ x)
(ii) Transitivity: ∀x∀y∀z

[
(x < y ∧ y < z)→ x < z

]
(iii) Linearity: ∀x∀y

[
(x ̸� y ∧ x ≮ y)→ y < x

]
(iv) Density: ∀x∀y

[
x < y→∃z(x < z < y)

]
(v) No endpoints: ∀x∃y∃z(y < x < z)
It is not hard to show that DLO is ℵ0-categorical and hence (Q,<) is the only (up to isomorphism)
countable dense linear ordering without end points. We leave proving this as an exercise.

(c) For a finite σ -structure A, Th(A) is absolutely categorical, i.e. any two models B,B′ |= Th(A) are isomorphic.
It is an exercise to show that the theory of any finite structure is absolutely categorical.

(d) We will see shortly that an argument similar to that for vector spaces shows that ACFp is κ-categorical
as well (for every uncountable cardinal κ).

Proposition 4.3 (Łoś–Vaught test). Let T be a σ -theory that does not have finite models. If T is κ-categorical for
some κ ⩾max {|σ |,ℵ0}, then T is complete.

Proof. Let A,B |= T . We need to show that A ≡ B, by Proposition 1.55. Since A and B are infinite, we can
apply the Weak Upward Löwenheim–Skolem theorem 3.13 and get A′ |= Th(A) and B′ |= Th(B) such that
|A′ | = κ = |B′ |. Because T is κ-categorical, A′ � B′ and hence A′ ≡ B′ . Thus, A ≡ A′ ≡ B′ ≡ B. □

This immediately gives that the theories VEC
Q

and DLO are complete. One cannot help mentioning here
the following very important theorem that started the modern model theory:

Theorem (Morley, 1965). Let T be a theory in a countable signature σ . If T is uncountably categorical, then it is
κ-categorical for every uncountable cardinal κ.
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Thus, it is not a coincidence that the theory of vector spaces is κ-categorical for all uncountable cardinals
κ. The proof of this theorem is far outside the realm of this course, but it is worth mentioning that the most
important ingredient of it is showing that if a structure is such that all of its definable sets are either finite or
cofinite (complement is finite), then it admits a “basis” similar to the vector space basis, and so one can use
the same argument as for vector spaces to construct isomorphisms.

One has to also mention the following long standing open problem that, although being model-theoretic
in nature, has been best understood (but not completely solved) in the context of descriptive set theory. Let’s
examine the possible infinite cardinalities for the number of countable nonisomorphic models of a given
σ -theory T . It is not hard to see that there are at most 2|max |σ |,ℵ0|-many σ -structures with universe N, so
when σ is countable, there are at most continuum-many σ -structures. The following conjecture is trivially
true when the Continuum Hypothesis (CH) holds, but it is still open when CH fails.

Vaught’s Conjecture 4.4. Let σ be a countable signature and T be a complete σ -theory having infinite models. If
T has uncountably-many nonisomorphic countable models, then it has continuum-many nonisomorphic countable
models.

4.B. Algebraically closed fields and the Lefschetz principle

We now aim at satisfying the conditions of the Łoś–Vaught test for ACFp.
The proof of the following is similar to that of the theory of vector spaces being uncountably categorical,

and can be safely omitted by the reader not comfortable with field theory.

Definition 4.5. Let F ⊆ K be fields and let B ⊆ K . We denote by F(B) the subfield of K generated by B.
Call B ⊆ K algebraically independent over F if for any finite subset B0 ⊆ B and b ∈ B \B0, b is not algebraic
over F(B0), i.e. it is not a root of a polynomial over F(B0). Call B a transcendence basis for K over F if it is
⊆-maximal algebraically independent over F.

Lemma 4.6. Let F ⊆ K be fields. If F is countable and K is uncountable, then any transcendence basis B of K over
F has cardinality |K |.

Proof. By the maximality of B, each element of K is a root of a polynomial over F(B), so |K | = ℵ0 · |F(B)<N|. By
the countability of F, |F(B)| = ℵ0 · |F| · |B| = ℵ0 · |B|, and hence |F(B)<N| = ℵ0 · |B|, so |K | = ℵ0 · |B|. This implies
that B is uncountable because otherwise K would be countable. Hence ℵ0 · |B| = |B|, so |K | = |B|. □

Proposition 4.7. For p prime or 0, ACFp is κ-categorical for every uncountable cardinal κ.

Proof. Let K1,K2 |= ACFp with |K1| = |K2| = κ. For i = 1,2, let Fi be the prime field of K i , i.e. the substructure
of K i generated by ∅. (If p = 0, then Fi is a copy of Q; otherwise it is a copy of Z/pZ.) Since F1 and F2
are clearly isomorphic (as rings), we can assume without loss of generality that F1 = F2 =.. F. Let Bi be a
transcendence basis over F in K i , so Ki is equal to the algebraic closure F(Bi) of F(Bi) in Ki . By Lemma 4.6,
|Bi | = |Ki | = κ, so there is a bijection f : B1

∼−−→ B2 (yay!). This f uniquely extends to an isomorphism from
F(B1) to F(B2), which in its turn extends (not necessarily uniquely) to an isomorphism of K1 = F(B1) onto
K2 = F(B2). □

Lemma 4.8. Every algebraically closed field is infinite.

Proof. For any finite field F ..= {a1, . . . , an}, the polynomial (x − a1)(x − a2) . . . (x − an) + 1 does not have a root in
F. Thus F is not algebraically closed. □

Corollary 4.9. ACFp is complete, for any prime p and for p = 0.

Proof. Follows from the Łoś–Vaught test 4.3, Proposition 4.7, and Lemma 4.8 put together. □

The following was once just a principle (a belief) in algebraic geometry, but it was later on formalized and
turned into a theorem by A. Robinson:

Theorem 4.10 (Lefschetz Principle). Let C ..= (C,0,1,+,−, ·). For a σring-sentence ϕ the following are equivalent:
(1) C |= ϕ.
(2) K |= ϕ, for some K |= ACF0.
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(3) ACF0 |= ϕ.
(4) For sufficiently large primes p, ACFp |= ϕ.
(5) For infinitely-many primes p, there is K |= ACFp such that K |= ϕ.

Proof. (1)⇔ (2)⇔ (3): Follows from the completeness of ACF0.
(3) ⇒ (4): By the Compactness theorem, there is a finite T ⊆ ACF0 such that T |= ϕ. But then, by the
definitions of ACF0 and ACFp, for sufficiently large prime p, ACFp |= T , so ACFp |= ϕ.

(4)⇒ (5): Trivial.
(5)⇒ (3): We prove the contrapositive: assume (3) fails. But then ACF0 |= ¬ϕ and hence, by (3)⇒ (4), for

sufficiently large primes p, ACFp |= ¬ϕ. Therefore (5) is false. □

Corollary 4.11 (Ax’s theorem). Let f : Cn→C
n be a polynomial map, i.e. f = (f1, . . . , fn), where each fi(z1, . . . , zn)

is a polynomial in z1, . . . , zn with coefficients in C. If f is injective then it is surjective.

Proof (Robinson). For fixed n and fixed degree d ..= maxi {deg(fi)}, the statement is first-order expressible
by a σring-sentence ϕn,d , and hence, instead of proving it for the field C, by the Lefschetz principle, it is
enough to prove ϕn,d for the algebraic closure F p of Fp ..= Z/pZ, for all primes p. So, fix a polynomial map

f : F
n
p→ F

n
p of degree d.

It is not hard to check that F p is an increasing union
⋃
↑ k∈NFk of finite fields Fk , where F0

..= Fp.5 Thus,
letting k0 ⩾ 0 be large enough so that all of the coefficients involved in the definition of f are in Fk0

, we can
write:

F

n
p =

⋃
k⩾k0

Fnk .

But then, because Fk is a field and the definition of f only uses field operations and elements of Fk , F
n
k is

closed under f , i.e. f (Fnk ) ⊆ Fnk , for all k ⩾ k0. Because f is injective, the Pigeonhole Principle (yay!) gives
f (Fnk ) = Fnk , so

f (F
n
p) = f

⋃
k⩾k0

Fnk

 =
⋃
k⩾k0

f (Fnk ) =
⋃
k⩾k0

Fnk = F

n
p. □

4.C. Reducts of arithmetic

PA was constructed as an attempt to build a “computationally recognizable” axiomatization of Th(N ), where
“computationally recognizable” means that there is a computational procedure (i.e. a computer program) for
recognizing whether a given sentence is an axiom (we will make this more in the next section). However, as
we shall see, Gödel’s Incompleteness theorem states that PA is incomplete, so it does not axiomatize Th(N ).
In fact, there is no “computationally recognizable” axiomatization for Th(N ), i.e. any subtheory T ⊆ Th(N )
is either incomplete or “computationally unrecognizable”.

What about reducts of N ? Does the theory of (N,0,S) or even of (N,0,S,+) admit a “computationally
recognizable” axiomatization? In other words, where is the border of recognizability? It turns out that unlike
N , the theories of (N,0,S) and (N,0,S,+) admit “computationally recognizable” axiomatizations, and this is
what we will focus on in this subsection.

We start with N S
..= (N,0,S). Let σS ..= (0,S). Here is our first (and last) attempt of axiomatizing Th(N S ).

Let theory TS consist of the following axioms:

(S1) Zero has no predecessor: ∀x(S(x) ̸� 0).
(S2) The successor function is one-to-one: ∀x∀y(S(x) � S(y)→ x � y).
(S3) Any nonzero number is a successor of something: ∀x(x ̸� 0→∃y(x � S(y))).
(S4) Axiom schema: For each n ∈N, there are no n-cycles: ∀x(Sn(x) ̸� x), where Sn(∗) ..= S(S(. . .S(︸    ︷︷    ︸

n times

∗) . . .)).

5Indeed, a finite field F has only finitely many polynomials over it because xn|F
∗ | = 1 for each n ∈N, where

F∗ ..= F \ {0}. Thus, throwing in a root for each results in a finite field again.
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Note that (S4) is an axiom schema, i.e. it contains an axiom for every n ∈N; in particular, TS is infinite.

It is clear that any model M of TS has a standard part N ..=
{
∆(n)M : n ∈N

}
, where ∆(n) ..= Sn(0). Define a

binary relation ∼ on M as follows: for all a,b ∈M,

a ∼ b ⇐⇒ if for some n ∈N, M |= Sn(a) � b or M |= Sn(b) � a.

If a is standard, i.e. a ∈N, then the equivalence class [a] of a is exactly N. If a ∈M is nonstandard, then [a]
does not have a least element (why?) and hence looks like a Z-chain:

. . .→ ∗→ a→ SM (a)→ SM (SM (a))→ . . .

Thus M is a union of N and a bunch of Z-chains. Let ZM denote the set of Z-chains in M and put
ζM ..= |ZM |. Then |M | = |N|+ ζM · |Z| and hence, by basic cardinal arithmetic, M has cardinality ζM unless
ζM is finite, i.e. |M | = max {ζM ,ℵ0}. In particular, if M is uncountable, then |M | = ζM .

Proposition 4.12. TS is κ-categorical, for every uncountable cardinal κ.

Proof. Let A,B |= TS with |A| = |B| = κ. By above, ζA = |A| = κ = |B| = ζB . Thus, there is a bijection f : ZA→ ZB .
Now the standard parts of A and B are clearly isomorphic. Moreover, any Z-chain C ∈ ZA is isomorphic to
f (C) because any two Z-chains are clearly isomorphic. Thus, combining all these individual isomorphisms
together, we get an isomorphism from A to B. □

From this and the Łoś–Vaught test, we get

Corollary 4.13. TS is complete.

Turning to N+
..= (N,0,S,+), we let σ+

..= (0,S,+) and T+ be the theory consisting of all of the axioms of PA
except for the ones involving multiplication, so it is clear that T+ is “computationally recognizable”. The
proof of the following theorem uses the technique of quantifier elimination (see Section 7) and we will omit it
here.

Theorem 4.14 (Presburger, 1929). T+ is complete.

Thus, as we shall see, the “computational unrecognizability” phenomenon starts with N ..= (N,0,S,+, ·).

5. Incomplete theories

We start with an informal definition, which we will formalize later on.

Definition 5.1 (Informal). A σ -theory T is called recursive if there is a computer program such that given a
σ -sentence ϕ, it returns YES if ϕ ∈ T , and NO otherwise.

We saw in the previous section that the theories of (N,0,S) and (N,0,S,+) admit recursive axiomatizations.
However, the situation changes once we add multiplication because it enables prime numbers and makes
it possible to encode tuples of natural numbers into a single number, and we have the following ground-
breaking theorem:

Theorem 5.2 (Incompleteness; Gödel, 1931). Any recursive theory T ⊆ Th(N ) is incomplete. In particular, PA
is incomplete.

This section is devoted to the proof of several versions of this theorem and some of its consequences, as
well as making the definition of recursive precise.

5.A. Sketch of proof of the Incompleteness theorem

Gödel’s theorem is like the late paintings of Claude Monet.

It is easy to perceive, but from a certain distance. A

close look reveals only fastidious details that one perhaps

does not want to know.
6

Jean-Yves Girard

6Thanks to Anton Bernshteyn for suggesting to include this quote.
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There are infinitely-many proofs of this theorem, but mainly, they split into two groups depending
on what they use: self-reference or diagonalization. We will give rigorous proofs of each kind later on.
However, mainly for historical reasons, in this subsection we sketch the idea of Gödel’s original proof, which
uses self-reference. We shall give a more rigorous version of this proof later after developing the basics of
recursion theory.

Definition 5.3 (Informal). A function f : Nk →N is called recursive if there is a computer program such
that given a⃗ ∈Nk as input, it outputs f (a⃗). A set/relation A ⊆N

k is called recursive if its indicator function
is recursive.

The first thing one shows is that recursive functions are arithmetical, i.e. definable (and hence 0-definable)
in N ..= (N,0,S,+, ·). Thus, any function can be implemented by a computer program is first-order expressible
in the signature of arithmetic.

Let σ be a finite signature, whose symbols are s0, . . . , sn. Recalling Convention 2.3, we enumerate the
symbols of FOL(σ ) as follows:

s0 s1 . . . sn � ¬ → ∀ , ( ) v0, v1, v2, . . . (5.4)

and call the index of a symbol its code. For example, the code of s0 is 0, the code of � is n+ 1 and the code of
vi is n+ 8 + i. Using prime numbers and the fact that prime number factorization is unique, we can encode a
tuple (n1, . . . ,nk) of natural numbers into a single natural number ⟨n1, . . . ,nk⟩ ..= pn1+1

1 · . . . · pnk+1
k , so we can

encode formulas since they are just tuples of symbols of FOL(σ ). In fact, we can make sure that the coding
and decoding operations are recursive (think of computer programs that would do this).

Thus, for a word w in the alphabet FOL(σ ), let ⌜w⌝ denote its code. We may now call a σ -theory T
recursive if and only if the set ⌜T ⌝ of codes of its axioms is recursive (as a subset of N).

Now let σ be the signature of arithmetic, i.e. σ ..= σarthm, and thus we have the above coding since σarthm
is finite. For every n ∈N, put ∆(n) ..= Sn(0). It is tedious but straightforward to show that there is a recursive
function Sub0 : N2→N such that for any σarthm-formula ϕ in which v0 is not quantified, and for any m ∈N,

Sub0(⌜ϕ⌝,m) = ⌜ϕ(∆(m)/v0)⌝.

In English: this function takes m and the code of ϕ, and returns the code of the formula obtained from ϕ by
replacing all occurrences of v0 by the term ∆(m).

As mentioned above, all recursive functions are arithmetical. Hence, there is a σarthm-formula Sub0(x,y,z)
such that for all a,b,c ∈N,

Sub0(a,b) = c ⇐⇒ N |= Sub0(a,b,c).

Without loss of generality, we can assume v0 is not quantified in Sub0(x,y,z).

Lemma 5.5 (Fixed point for N ). For each σarthm-formula ϕ(v) there is a σarthm-sentence θ such that

N |= θ↔ ϕ(⌜θ⌝).

Proof. Put ψ(v0) ..= ∃z
(
Sub0(v0,v0, z)∧ϕ(z)

)
and m ..= ⌜ψ(v0)⌝. Now we feed ψ(v0) its own code by letting

θ ..= ψ
(
∆(m)/v0

)
, and thus Sub0(m,m) = ⌜ψ

(
∆(m)/v0

)
⌝ = ⌜θ⌝. Watch the magic happen:

N |= θ ⇐⇒ N |= ψ(m)

⇐⇒ N |= ∃z
(
Sub0(m,m,z)∧ϕ(z)

)
⇐⇒ there exists b ∈N such that b = Sub0(m,m) and N |= ϕ(b)

⇐⇒ N |= ϕ(⌜θ⌝).

If you feel cheated, join the club. □

This lemma says that every unary arithmetical relation ϕ(v) asserts of (the code of) some sentence θ
exactly what θ asserts about N . It enables self-reference in the language of arithmetic, using which we can
express the Liar Paradox (i.e. Cantor’s diagonalization method), which is what lies at the heart of the proof
of the Incompleteness theorem.

As an immediate corollary we get the following result that is actually stronger than the Gödel’s Incom-
pleteness theorem:
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Theorem 5.6 (Tarski, 1939). T h(N ) is not arithmetical, i.e. the set ⌜Th(N )⌝ ..= {⌜ϕ⌝ : ϕ ∈ Th(N )} is not definable
in N .

Proof. Left as a homework problem. □

Because formal proofs are just finite sequences of formulas, we can code them using the operation of
coding n-tuples. Given a recursive σarthm-theory T , it is straightforward to check that the following relation
is recursive: for a,b ∈N,

ProofT (a,b) ..⇔ a is a code of a σarthm-formula ϕ and b is a code of a proof of ϕ from T .

To write a program for this, one has to check the definition of the formal proof, i.e. that every formula in the
finite sequence coded by e is either an axiom of FOL(σarthm), or belongs to T (this is where we need T to be
recursive), or can be obtained from the previous formulas in the sequence by applying Modus Ponens.

As before, since all recursive functions are arithmetical, there is a σarthm-formula ProofT (x,y) such that
for all a,b ∈N,

ProofT (a,b) ⇐⇒ N |= ProofT (a,b).

Given this, we have a σarthm-formula defining the relation of provability in N :

ProvableT (x) ..= ∃yProofT (x,y),

and hence, for any σ -formula ϕ,

ϕ is provable in T ⇐⇒ N |= ProvableT (⌜ϕ⌝).

Proof of the Incompleteness Theorem 5.2. We let T ⊆ Th(N ) be recursive and show that it is incomplete by
finding a sentence that N satisfies but T does not prove.

Applying the Fixed Point lemma to

ϕ(v) ..= ¬ProvableT (v),

we get a σarthm-sentence γT such that

N |= γT ↔¬ProvableT (⌜γT ⌝).

The Gödel sentence γT says about itself that it is not provable in T (just like in the Liar Paradox, the liar says
“I am a liar”). Because T ⊆ Th(N ), we have

T ⊢ γT =⇒ N |= γT
⇐⇒ N |= ¬ProvableT (⌜γT ⌝)

⇐⇒ for all b ∈N,N |= ¬ProofT (⌜γT ⌝,b)

⇐⇒ for all b ∈N, b is not a code of a proof of γT
⇐⇒ T ⊬ γT ,

and thus, T ⊬ γT . But this means that N |= ¬ProvableT (⌜γT ⌝), so N |= γT , demonstrating the incompleteness
of T . □

Here is another proof of the Incompleteness theorem that is shorter but nonconstructive:

Another proof of the Incompleteness Theorem 5.2. If T was recursive and complete, then the formula

ProvableT (x)

would define the set ⌜Th(N )⌝ in N because, by the completeness of T , a sentence ϕ is provable from T if
and only if ⌜ϕ⌝ ∈ ⌜Th(N )⌝. Thus ⌜Th(N )⌝ would be arithmetical, contradicting Tarski’s Theorem 5.6. □
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5.B. Quine: a program that prints its own code

A more down to earth version of the Fixed Point lemma is a computer program that prints its own code,
commonly referred to as a quine7. In this subsection, we will write such a program using informal pseu-
docode in the hope of obtaining a better (hands-on) understanding of how the self-reference is implemented
via the substitution function.

To write a quine, we will use a pseudo-code, whose syntax resembles that of the programming language
C. In our pseudo-code, ..= is the command that assigns a value to a variable. A key point is that any
programming language has the means of distinguishing when a symbol stands for a variable and when it is
just a symbol with no content: x is a variable, whereas ‘x’ is just the symbol x with no content. Similarly,
x ..= 7 is a programming code that assigns value 7 to the variable x, whereas “x ..= 7” is just a sequence/string
of symbols with no content.

To get a quine, we can just mimic the proof of the Fixed Point lemma above: first write a program
PrintSub(x,c,y) that takes as input strings (i.e. sequences of symbol) x,y and a symbol (character) c, and
prints the result of substitution in x of y for c, i.e. it iterates through x and every time it encounters the symbol
given in c, it replaces with the string y. Then we take the diagonal of this function: PrintDiagSub(x) ..=
PrintSub(x, ‘x’,x). This program now takes a string x as input and in the content of x replaces every
occurrence of the symbol x with the content of the variable x (which is a string of symbols). It remains to feed
the program PrintDiagSub(x) its own code: Quine() ..= PrintDiagSub(the code of PrintDiagSub(x)).

Below, the sequence/string of symbols written in double-quotes are interpreted by the programming
language as just that string of symbols and not as programming language commands.

We start by writing a program without input that assigns the variable x some string (e.g. “mathx ..= is ..=
xfunx ..= ”) using the command x ..= “mathx ..= is ..= xfunx ..= ”, and then, it iterates through the content of x
and prints every symbol in it; however, whenever it encounters the pattern “x ..= ”, it, in addition, prints the
opening quote symbol ‘“’, then the content of the variable x, then the closing quote symbol ‘”’.

NotYetQuine()
{
x ..= “mathx ..= is ..= xfunx ..= ”;
for(i ..= 0; i < length(x); i ..= i + 1)
{

Print(x[i]);
if (i ⩾ 1∧ x[i − 1] = ‘x’∧ x[i] = ‘..=’)
{

Print(‘“’);
Print(x);
Print(‘”’);
}
}

}

This is not quite a quine yet and we leave it as an exercise to determine what this program actually prints.
Now, we’ll get an actual quine by replacing the string “mathx ..= is ..= xfunx ..= ” with the code above, but
with the string “mathx ..= is ..= xfunx ..= ” removed from the code.

7This is in the honor of philosopher Willard Van Orman Quine, who studied self-reference and is the
author of the Quine paradox: “Yields falsehood when preceded by its quotation” yields falsehood when
preceded by its quotation.
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Quine()
{

x ..= “Quine()
{

x ..= ;
for(i ..= 0; i < length(x); i ..= i + 1)
{

Print(x[i]);
if (i ⩾ 1∧ x[i − 1] = ‘x’∧ x[i] = ‘..=’)
{

Print(‘“’);
Print(x);
Print(‘”’);
}
}

}”
for(i ..= 0; i < length(x); i ..= i + 1)
{

Print(x[i]);
if (i ⩾ 1∧ x[i − 1] = ‘x’∧ x[i] = ‘..=’)
{

Print(‘“’);
Print(x);
Print(‘”’);
}
}

}

This program will print exactly its own code, character-by-character, up to the spacing/formatting (which is
there only to increase readability).

For the rest of the section, we will be occupied with making the notion of recursive precise and developing
tools for proving a stronger version of Gödel’s Incompleteness theorem that applies not only to subtheories
of Th(N ), but also to theories (in an arbitrary finite signature σ ), which have PA “encoded” in them; for
example, PA∪ {¬γPA} and ZFC.

5.C. A quick introduction to recursion theory

In this subsection we give a model (of computation) to capture intuitive notions such as algorithm, com-
putable functions, etc. It is a general belief, known as the Church–Turing thesis, that this model captures
the mentioned notions pretty well. One evidence of it is that it is very robust in the sense that all other
seemingly different models of computation that people had defined turned out to be equivalent.

Definition 5.7. For a relation R ⊆N
k+1 and a⃗ ∈Nk , let µx(R(a⃗,x)) be the least x ∈N for which R(a⃗,x) holds,

if such x exists; otherwise, µx(R(a⃗,x)) is undefined and we write µx(R(a⃗,x)) ..= ⊥. This operation applied
to R is called the search (or minimalization) operation. We call the search operation is successful at a⃗ ∈Nk ,
µx(R(a⃗,x)) is defined. We also say that the search operation is successful if it is successful at every a⃗ ∈Nk .

For example, µx(x2 > 7) = 3.

Definition 5.8. A function f : Nk →N is called recursive (or computable) if it is one of the basic functions in
(R1) or is obtained from the latter by finitely-many applications of the operations of composition (R2) and
successful search (R3):

(R1) • Addition: (x,y) 7→ x+ y : N2→N

• Multiplication: (x,y) 7→ x · y : N2→N
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• Order: 1⩽ : N2 →N, where 1⩽ is the indicator function of ⩽ (i.e. 1⩽(x,y) = 1 if x ⩽ y, and 0,
otherwise)

• Projection functions: P ki : Nk →N given by P ki (x1, . . . ,xk) ..= xi , for each k ∈N and i ∈ {1, . . . , k}.
(R2) Composition: For g : Nm → N and h1, . . . ,hm : Nk → N, their composition is the function f ..=

g(h1, . . . ,hm) : Nk →N.
(R3) Successful search: For g : Nk+1→N, a function f : Nk ⇀N is said to be obtained from g via successful

search if f (a⃗) = µx(g(a⃗,x) = 0) for each a⃗ ∈Nk .

A relation R ⊆N
k is said to be recursive if its indicator function 1R : Nk →N is recursive.

Proposition 5.9. Recursive functions and relations are arithmetical, i.e. definable in N ..= (N,0,S,+, ·).

Proof. Clearly, the basic functions in (R1) are arithmetical and arithmetical functions are closed under
composition (R2). The closure under the successful search operation (R3) follows from the fact that we can
implement that operation via the existential quantifier ∃. □

Although the class of recursive functions is obtained by closing the set of functions in (R1) under
operations (R2) and (R3), it is closed under many other operations. The most important among these is:

(R4) Primitive recursion: Let g : Nk →N and h : Nk ×N×N→N. We say that f : Nk ×N→N is defined
by primitive recursion from g,h if for all a⃗ ∈Nk and n ∈N,

f (a⃗,0) = g(a⃗)

f (a⃗,n+ 1) = h(a⃗,n, f (a⃗,n))

This is often included in the definition of recursive functions. However, we prefer showing that it is a
consequence of the definition rather than including it in the latter since keeping the definition minimalistic
makes it easier to prove that the class of recursive functions is contained in other classes of functions (less
cases to consider). We now develop some tools, which we will use to show that recursive functions are closed
under primitive recursion.

The following proposition provides examples of recursive functions and further closure properties, which
are used below without mention.

Lemma 5.10.
(5.10.a) The relations ⩾,= are recursive.
(5.10.b) Constant functions Ckm : Nk →N are recursive, where Ckm(a⃗) ..=m, for all a⃗ ∈Nk .
(5.10.c) The successor function S : N→N is recursive.
(5.10.d) The set of recursive relations is an algebra, i.e. it is closed under complements and finite unions/intersections.
(5.10.e) Successful search for any recursive relation: Let R ⊆N

k+1 be recursive such that for all a⃗ ∈Nk there
exists x ∈N with (a⃗,x) ∈ R. Then the function f : Nk →N given by

f (a⃗) = µxR(a⃗,x)

is recursive.
(5.10.f) Definition by cases: LetR1, . . . ,Rm ⊆N

k be recursive such that for each a⃗ ∈Nk exactly one ofR1(a⃗), . . . ,Rm(a⃗)
holds, and suppose that g1, . . . , gm : Nk →N are recursive. Then g : Nk →N given by

g(a⃗) =


g1(a⃗) if R1(a⃗)
...

...

gm(a⃗) if Rm(a⃗)

is recursive.

Proof. For (a), observe that 1⩾(x,y) = 1⩽(P 2
2 (x,y), P 2

1 (x,y)) and 1=(x,y) = 1⩽(x,y) ·1⩾(x,y).
We prove (b) by induction on m. For m = 0, observe that Ck0(a⃗) = µx(P k+1

k+1 (a⃗,x) = 0). Assume Ckm is recursive
and note that

Ckm+1(a⃗) = µx(Ckm(a⃗) < x) = µx(1⩾(Ck+1
m (a⃗,x), P k+1

k+1 (a⃗,x)) = 0).

For (c), just note that S(a) = a+C1
1 (a).
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For (d), observe that ¬P (a⃗)⇔ 1P (a⃗) = Ck0(a⃗) and 1P∧Q(a⃗) = 1P (a⃗) ·1Q(a⃗). Thus ¬P and P ∧Q are recursive
if so are P and Q.

For (e), note that f (a⃗) = µx(1¬R(a⃗,x) = 0).
Part (f) is left to the reader. □

By definition, a relation is recursive if and only if its indicator function is recursive. The following is a
converse to this, providing a convenient way of verifying recursiveness of functions.

Proposition 5.11 (Graph property). A function f : Nk →N is recursive if and only if its graph R ⊆N
k+1 is

recursive.

Proof. For each a⃗ ∈N k and b ∈N,

R(a⃗,b) ⇐⇒ f (a⃗) = b ⇐⇒ f
(
P k+1

1 (a⃗,b), . . . , P k+1
k (a⃗,b)

)
= P k+1

k+1 (a⃗,b),

so R is recursive if f is. Conversely, for each a⃗ ∈N k , f (a⃗) = µxR(a⃗,x), so f is recursive if R is. □

We will see below that the class of recursive relation is not closed under quantification over N. However,
the following shows that it is closed under bounded quantification and we use it below without mention.

Proposition 5.12 (Bounded quantification). The class of recursive relations is closed under bounded quantifi-
cation, i.e. if a relation R ⊆N

k+1 is recursive, then the following relations are also recursive: for each a⃗ ∈Nk ,
b ∈N,

P (a⃗,b) ..⇔ (∃x < b)R(a⃗,x),

Q(a⃗,b) ..⇔ (∀x < b)R(a⃗,x).

Proof. The second statement follows from the first by taking negations. For the first, observe that for each
a⃗ ∈Nk ,b ∈N, there is an x ∈N such that R(a⃗,x)∨ x ⩾ b, so the search for such an x is successful and hence
the following relation is recursive:

P (a⃗,b) ⇐⇒ µx
(
R(a⃗,x)∨ x ⩾ b

)
< b. □

This gives another batch of examples of recursive functions.

Lemma 5.13.

(5.13.a) The function ·−: N2→N defined by n ·−m ..= max {n−m,0} is recursive.
(5.13.b) The remainder function Rem : N2 →N, defined by (a,b) 7→ the remainder of a when divided by b, is

recursive.
(5.13.c) The function Pair : N2→N defined by

(x,y)→
(x+ y)(x+ y + 1)

2
+ x

is a recursive bijection.
(5.13.d) The functions Left,Right : N→N defined by

Pair(x,y) = z ⇐⇒ Left(z) = x∧Right(z) = y

are recursive.

Proof. We leave proving (5.13.a) to (5.13.c) to the reader. For (5.13.d), observe that Left(z) = µx
(
∃y<z+1Pair(x,y) =

z
)

and similarly for Right. □

Towards our goal of showing closure under primitive recursion, we need to understand how to check the
calculation done by via primitive recursion; in other words, we need a “proof/certificate” that to verify the
calculations ourselves.
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Proposition 5.14 (Dedekind’s analysis of recursion). If f : Nk+1→N is defined by primitive recursion from
g,h as in (R4), then for all a⃗ ∈Nk , n ∈N and m ∈N,

f (a⃗,n) =m ⇐⇒ ∃b⃗ ∈N<N such that |⃗b| = n+ 1

and b⃗(0) = g(a⃗)

and for each i < n, b⃗(i + 1) = h(a⃗,n, b⃗(i))

and b⃗(n) =m.

Proof. Obvious. □

To be able to express the right hand side of Dedekind’s analysis of recursion, we need to be able to
recursively encode and decode tuples of natural numbers of arbitrary length into single natural numbers.
We do it using the most basic result in number theory.

Chinese Remainder Theorem 5.15. Let d0, . . . ,dn−1 be pairwise coprime and put d = d0 · d1 · . . . · dn−1. Then the
map

h : Z/dZ→Z/d0Z× . . .×Z/dn−1Z

defined by
[a]d 7→ ([a]d0

, . . . , [a]dn−1
)

is a well-defined group isomorphism.

Proof. That h is well-defined follows from the fact that every di divides d, and that h is a homomorphism
follows from the fact that the remainder function respects addition. Since the groups on the left and right of
the homomorphism have the same number of elements, by the Pigeonhole Principle, we only have to show
that h is injective. To this end, assume that h([a]d) = 0. Thus every di divides a and hence d divides a because
di are pairwise coprime. Therefore, [a]d = 0 and hence ker(h) is trivial. □

Lemma 5.16 (Gödel’s β-function). The function β : N2→N defined by

β(w,i) ..= Rem
(
Left(w),1 + (i + 1)Right(w)

)
is recursive and has the property that for every sequence (w0, . . . ,wn−1), there exists w ∈N such that for all i < n,

β(w,i) = wi .

Proof. The fact that β is recursive follows from Lemma 5.13, so we prove the second statement. We let

s ..= max {n,w0,w1, . . . ,wn−1}
and b ..= s!, and verify that

d0
..= 1 + (0 + 1) · b,d1

..= 1 + (1 + 1) · b, . . . ,dn−1
..= 1 +n · b

are pairwise coprime as follows: if a prime p divides 1 + (i + 1) · b and 1 + (j + 1) · b, for i < j, then it divides
their difference (j − i) · b = (j − i) · s!. Since j − i < n ⩽ s, p must divide s! = b, contradicting that p divides
1 + (i + 1) · b.

By the Chinese Remainder theorem, there is a < d0 · . . . · dn−1 such that Rem(a,di) = wi . Thus setting
w ..= Pair(a,b), we get

wi = Rem(a,di) = Rem
(
Left(w),1 + (i + 1)Right(w)

)
= β(w,i). □

Using Gödel’s β-function, we define the following encoding/decoding tuples functions, which are clearly
recursive.
(5.17.a) For each k ∈N (think k = 7), we encode N

k into N via the function ⟨·⟩k : Nk →N defined by

⟨a0, . . . , ak−1⟩k ..= µx

β(x,0) = k ∧
k∧
i=1

β(x, i) = ai−1

 .
Note that we record the length of the turple (a0, . . . , ak−1) in the 0th coordinate to be able to recover the
tuple unambiguously. This also ensures that the images of the functions ⟨·⟩k are disjoint for distinct k.
Below, we often omit writing the subscript k in ⟨a0, . . . , ak−1⟩k and simply write ⟨a0, . . . , ak−1⟩ because
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there is no ambiguity; however, we do write the subscript whenever we wish to emphasize that the
⟨·⟩k are different functions (with different domains) for distinct k.

(5.17.b) Thus, if a ∈N is in the image of ⟨·⟩k for some k ∈N, we can recover this k as the 0th coordinate of the
sequence that a encodes. In other words, we define the length function lh : N→N by lh(a) ..= β(a,0).

(5.17.c) For each i ∈N (think i = 4), if a ∈N is in the image of ⟨·⟩k for some k ∈N, we can recover its ith

coordinate as the (i + 1)th coordinate of the sequence encoded by a. In other words, we define the
ith coordinate function (·)i : N→N by (a)i ..= β(a, i + 1). We clearly have (⟨a0, . . . , ak−1⟩)i = ai for each
k ∈N and each (a0, . . . , ak−1) ∈Nk .

(5.17.d) We define the initial segment function InitSeg : N2→N by

InitSeg(a, i) ..= µx
(
lh(x) = i ∧ (∀j < i) [(x)j = (a)j ]

)
.

Thus, InitSeg(⟨a0, . . . , an⟩ , i) = ⟨a0, . . . , ai−1⟩.
(5.17.e) We define the concatenation function ∗ : N2→N by

a ∗ b ..= µx
(

lh(x) = lh(a) + lh(b)∧
(
∀i < lh(a)

)[
(x)i = (a)i

]
∧
(
∀i < lh(b)

)[
(x)lh(a)+i = (b)i

])
.

Thus, ⟨a0, . . . , an−1⟩ ∗ ⟨b0, . . . , bm−1⟩ = ⟨a0, . . . , an−1,b0, . . . , bm−1⟩.

Proposition 5.18. Recursive functions are closed under the operation of primitive recursion, i.e. if g,h, f are as in
(R4) and g,h are recursive, then f too is recursive.

Proof. We implement Dedekind’s analysis of recursion as follows. Define an auxiliary function f̃ : Nk+1→N

by
f̃ (a⃗,n) = µx(lh(x) = n+ 1∧ (x)0 = g(a⃗)∧ (∀i < n)(x)i+1 = h(a⃗, i, (x)i)),

and note that f (a⃗,n) = (f̃ (a⃗,n))n. Since f̃ is clearly recursive, f is also recursive. □

Primitive recursion enables us to show that any function that admits a recursive definition is recursive.
E.g. n→ 2n is recursive because {

20 = 1
2n+1 = 2 · 2n .

We now define a nice subclass of recursive functions, namely that of primitive recursive functions, which
is still rich enough to contain most of the functions that can be implemented as computer programs. In fact,
most of the recursive functions mentioned so far are actually primitive recursive.

Definition 5.19. The class of primitive recursive functions is the smallest class containing the successor func-
tion S : N→N, the constant functions Ckm : Nk →N, k,m ∈N and the projection functions P ki (x1, . . . ,xk) = xi ,
i ⩽ k ∈N, and is closed under composition (R2) and primitive recursion (R4). A relation R ⊆N

k is called
primitive recursive if its indicator function 1R : Nk →N is primitive recursive.

Lemma 5.20. The following functions are primitive recursive.
(5.20.a) Addition + : N2→N and multiplication · : N2→N.

(5.20.b) Predecessor: PD(n) ..=

0 if n = 0
n− 1 otherwise

.

(5.20.c) Insured subtraction: n ·−m ..= max {n−m,0}.

(5.20.d) Inverse-bit: bit(n) ..=

0 if n > 0
1 otherwise.

(5.20.e) Equality: 1=(n,m) ..= 1 if n =m and 1=(n,m) ..= 0 otherwise.
(5.20.f) Less than or equal to: 1⩽(n,m) ..= 1 if n ⩽m and 1⩽(n,m) ..= 0 otherwise.

Proof. Use primitive recursion to define
• addition from the projection and successor functions,
• multiplication from the constant 0 and addition functions,
• predecessor from the constant 0 function and the projection function proj21(n,y) ..= n,
• insured subtraction from the constant 0 and the predecessor functions.
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For equality, observe that 1=(n,m) = bit
(
(n ·−m) + (m ·− n)

)
, so for less than or equal to, we have

n ⩽m if and only if (n ·−m) = 0. □

It is easy to check that Lemma 5.10 holds with recursive replaced by primitive recursive.
The following makes it easy to verify that Lemmas 5.13 and 5.16 also hold with “recursive” replaced by

“primitive recursive”.

Lemma 5.21 (Bounded search). Let R ⊆N
n+1 be a recursive relation. Then the function f : Nn+1→N defined

by f (a⃗, y) ..= µx<yR(a⃗,x) is primitive recursive, where

µx<yR(a⃗,x) =

µxR(a⃗,x) if (∃x < y)R(a⃗,x)
y otherwise.

Proof. We define f (a⃗, y) by primitive recursion as follows: let f (a⃗,0) ..= 0 and

f (a⃗, y + 1) ..=


f (a⃗, y) if f (a⃗, y) < y
y if f (a⃗, y) = y ∧R(a⃗, y)
y + 1 otherwise.

□

The proof of Lemma 5.16 yields a primitive recursive function B : N→N, defined by B(s) =
∏
i<s(1 + (1 +

i)s!), such that for every n ∈N and a⃗ ∈Nn,

whenever N ⩾max {n,a0, . . . , an−1}, there is a < B(N ) such that β(a, i) = ai for each i < n.

Using this together with Lemma 5.21 one can easily show that all of the encoding/decoding functions in
(5.17) are primitive recursive.

The following lemma allows recursive definitions using all previously computed values of a function as
opposed to only the last computed value.

Lemma 5.22 (Complete primitive recursion). For f : Nn+1→N, let

f̄ (a⃗,n) ..=
〈
f (a⃗,0), . . . , f (a⃗,n− 1)

〉
.

Then:
(5.22.a) f is primitive recursive if and only if f̄ is primitive recursive.
(5.22.b) If g : Nk+1→N is primitive recursive, then so is f : Nk+1→N defined by f (a⃗,n) ..= g(a⃗, f̄ (a⃗,n)).

Proof. We prove (5.22.a), leaving (5.22.b) to the reader.
⇐: Put f (a⃗,n) ..= (f̄ (a⃗,n+ 1))n.
⇒: We define f̄ (a⃗,n) by primitive recursion as follows:{

f̄ (a⃗,0) ..= <>
f̄ (a⃗,n+ 1) ..= f̄ (a⃗,n) ∗

〈
f (a⃗,n)

〉 . □

One may ask if there are any recursive functions that are not primitive recursive. The answer is YES
(of course) and the reason is that primitive recursive functions can only realize bounded search, whereas
recursive ones can realize a potentially unbounded successful search. Thus, to construct an example of a
recursive but not primitively recursive function, one needs to come up with one involving successful search,
but the bound for the search can not be computed from the input in primitively recursive fashion. We do so
using the general method of parameterization-and-diagonalization.

Antidiagonalization 5.23 (Cantor). Let X be a set and Υ : X × X → N be a function. The antidiagonal
AntiDiagΥ : X→N of Υ defined by

AntiDiagΥ (x) ..=

0 if Υ (x,x) , 0
1 otherwise

is not among the fibers of Υ , i.e. the set
{
Υp ∈NX : p ∈ X

}
, where Υp ..= Υ (p, ·) : X→N.

Proof. For any p ∈ X, if AntiDiagΥ = Υp, then AntiDiagΥ (p) = 0 if and only if 0 , Υ (p,p) =.. Υp(p) =
AntiDiagΥ (p), a contradiction. □
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Definition 5.24. For sets X,Y ,P and a class C of functions X → Y , we call a function Υ : P ×X → Y a
P -parameterization of C if for each f : X→ Y , f ∈ C if and only if there is p ∈ P with Υp = f .

Corollary 5.25. Any N-parameterization of the class of all recursive (resp. primitive recursive) functions N→N

is itself not recursive (resp. not primitive recursive).

Proof. For any such parameterization Υ , its antidiagonal AntiDiagΥ is has a primitive recursive definition
from Υ , so if Υ is recursive (resp. primitive recursive), then such is AntiDiagΥ , so it has to show up as one
of the fibers of Υ , contradicting (5.23). □

Proposition 5.26. There exists a recursive N-parameterization Υ : N ×N→N for the class of all primitive
recursive functions N→N. In particular, this Υ is an example of a recursive but not primitive recursive function.

Proof. Outlined in a homework problem. □

A similar proof also shows that there is no recursive N-parameterization of the class of all recursive
functions N → N. Similarly, thinking of recursive functions as programs, the set of their codes is not
recursive, i.e. there is no recursive binary relation R such that for any unary recursive relation Q there is n
such that for all x,

Q(x) ⇐⇒ R(n,x).

This is known as the undecidability of the halting problem.

Here is a more concrete and important example of a recursive function that is not primitive recursive:

Definition 5.27. Ackermann function is the function A : N2→N inductively defined as follows:
A(0,x) ..= x+ 1

A(n+ 1,0) ..= A(n,1)
A(n+ 1,x+ 1) ..= A(n,A(n+ 1,x))

.

The proof that this function is recursive but not primitive recursive is left as a homework problem
together with the proof that the graph of this function is primitive recursive. The last fact shows that the
graph property (Proposition 5.11) does not hold for primitive recursive functions.

5.D. Representability in a theory

In the sketch of the proof of the Incompleteness theorem above, we used the fact that recursive functions are
arithmetical, i.e. definable in N (Proposition 5.9). Thus, the proof only applied to theories that N satisfies.
If we want to prove incompleteness for other theories, like PA∪ {¬γPA}, we have to develop a notion of
definability inside a theory rather than a structure. This is what the following definition is supposed to
capture.

Definition 5.28 (Representability). Let T be a σarthm-theory in the signature σarthm of arithmetic.
• We say that a relation R ⊆N

n is representable in T if there is a formula ϕ(x⃗) such that for all a⃗ ∈Nn,

R(a⃗) =⇒ T |= ϕ(∆(a⃗)) and ¬R(a⃗) =⇒ T |= ¬ϕ(∆(a⃗)),

where ∆(a⃗) = (∆(a1), . . . ,∆(an)). Such ϕ is said to represent the relation R in T .
• We say that a function f : Nn→N is representable in T (by a formula) if there is a formula ϕ(x⃗, y) such that

for all a⃗ ∈Nn,

T |= ∀y
[
ϕ(∆(a⃗), y)↔ y = ∆(f (a⃗))

]
.

Such ϕ is said to represent the function f in T .
• A function f : Nn→N is said to be representable in T by a term if there is a σarthm-term t(x⃗) such that for

all a⃗ ∈Nn,
T |= t(∆(a⃗)) = ∆(f (a⃗)).

Such t is said to represent f in T .

Proposition 5.29. Let T be a σarthm-theory and f : Nn→N.
(5.29.a) If f is representable in T by a term, then it is also representable in T by a formula.
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(5.29.b) Suppose that for any distinct m,k ∈N, T |= ∆(m) ̸� ∆(k). Then, if f is representable in T by a formula,
then the graph of f is representable in T by the same formula.

Proof. For part (a), letting t(x⃗) be a term representing f , it is straightforward to check that the formula
ϕ(x⃗, y) ..= t(x⃗) � y represents f .

As for (b), let ϕ(x⃗, y) be a formula representing f in T and fix arbitrary a⃗ ∈Nn and b ∈N. By instantiating
y ..= ∆(b), we get

T |= ϕ(∆(a⃗,∆(b)))↔ ∆(b) = ∆(f (a⃗)).
Thus, it is clear that if f (a⃗) = b then T |= ϕ(∆(a⃗),∆(b)), and if f (a⃗) , b then the additional hypothesis on T
guarantees that T |= ¬ϕ(∆(a⃗),∆(b)). □

The following shows that we could have defined representability of relations using that of functions (not
the other way around).

Proposition 5.30. If T is a σarthm-theory such that T |= ∆(1) ̸� 0 and R ⊆N
n, then

R is representable in T if and only if 1R is representable in T .

Proof. ⇒: Let ϕ(x⃗) represent R in T and put

ψ(x⃗, y) �
[
ϕ(x⃗)∧ y � ∆(1)

]
∨
[
¬ϕ(x⃗)∧ y � 0

]
.

We show that ψ(x⃗, y) represents 1R in T . Fix a⃗ ∈Nn and consider cases as to whether R(a⃗) holds.
Assume R(a⃗) holds, so T |= ϕ(∆(a⃗)), 1R(a⃗) = 1, and we have to show

T |= ∀y
[
ψ(∆(a⃗), y)↔ y = ∆(1)

]
.

Fixing a model M |= T and an arbitrary y ∈M, we see that, since M |= ϕ(∆(a⃗)),

M |= ψ(∆(a⃗), y) ⇐⇒ M |=
[
ϕ(∆(a⃗))∧ y = ∆(1)

]
⇐⇒ M |= y = ∆(1).

A similar argument handles the case ¬R(a⃗).
⇐: Let ϕ(x⃗, y) represent 1R and put ψ(x⃗) � ϕ(x⃗,∆(1)). We show that ψ(x⃗) represents R in T . For every a⃗ ∈Nn,
instantiating y ..= ∆(1) in the definition of representability, we get

T |= ϕ(∆(a⃗),∆(1))↔ ∆(1) = ∆(1R(a⃗)).

Thus, it is clear that if R(a⃗) holds then T |= ϕ(∆(a⃗),∆(1)), and if R(a⃗) fails then T |= ∆(1) ̸� 0 guarantees that
T |= ¬ϕ(∆(a⃗),∆(1)). □

Proposition 5.31. All recursive functions and relations are representable in PA.

Proof. By Proposition 5.30, it is enough to show for functions.
Because the standard part of any model of PA is isomorphic to N , the terms t+(x,y) ..= x + y, t.(x,y) ..= x · y

and t(n)
i (x1, . . . ,xn) ..= xi represent, respectively, the addition, multiplication and the projection functions. For

the same reason, the formula x ⩽ y ..= ∃z(z+ x = y) represents the relation ⩽, and hence 1⩽ is representable
as well by Proposition 5.30. It remains to show that representability is closed under composition (R2) and
safe search (R3).

For (R2) , assume that ϕ(x⃗, y) represents the function g : Nk →N and ψi(v⃗,u) represent the functions
hi : Nn→N, where x⃗ is an k-vector and v⃗ is a n-vector. We show that

θ(v⃗, y) � ∃x⃗
k∧
i=1

ψi(v⃗,xi)∧ϕ(x⃗, y)

represents f ..= g(h1, . . . ,hk). Fix a⃗ ∈Nn and let d = f (a⃗). We have to show that

PA |= ∀y
[
θ(∆(a⃗), y)↔ y � ∆(d)

]
.

Let bi ..= hi(a⃗) and put b⃗ ..= (b1, . . . , bk). Then f (a⃗) = g (⃗b) = d. Therefore,

PA |= ∀y
[
ϕ(⃗b,y)↔ y � ∆(d)

]
and PA |= ∀z

[
ψi(∆(a⃗), z)↔ z � ∆(bi)

]
, for i = 1, . . . , k.

Thus, arguing in models gives the desired statement.
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For (R3), let ϕ(x⃗, y,z) represent the function g : Nn+1→N, where x⃗ is an n-vector and g is such that for
all a⃗ ∈Nn there is b ∈N with g(a⃗,b) = 0. We show that

ψ(x⃗, z) � ϕ(x⃗, z,0)∧∀u
[
u < z→¬ϕ(x⃗,u,0)

]
represents f (a⃗) ..= µz(g(a⃗, z) = 0). Fix a⃗ ∈Nn and let b ..= f (a⃗), so g(a⃗,b) = 0 and b is the least such natural
number. We have to show that

PA |= ∀z
[
ψ(∆(a⃗), z)↔ z � ∆(b)

]
.

Fix M |= PA and an element ζ ∈ M. We know that if ζ = ∆(b), then, because ϕ represents g in PA, M |=
ϕ(∆(a⃗),∆(b),0) and M |= ¬ϕ(∆(a⃗),∆(b′),0) for each b′ < b. Because PA |= ∀u

(
u < ∆(b)→

∨
b′<b u � ∆(b′)

)
, it

follows that M |= ψ(∆(a⃗),∆(b)) and hence M |= ψ(∆(a⃗),ζ). Conversely, if M |= ψ(∆(a⃗),ζ), then M |= ϕ(∆(a⃗),ζ)
and M |= ∀u

(
u < ζ→¬ϕ(∆(a⃗),ζ,0)

)
. But M |= ϕ(∆(a⃗),∆(b)), so M |= ζ ⩽ ∆(b), so ζ is a standard element of

M and hence it must be ∆(b). □

In a later subsection, we will also prove the converse of this proposition, so representability in PA actually
characterizes recursive functions.

Remark 5.32. The proof of Proposition 5.31 goes through with PA replaced by any σarthm-theory T that is
strong enough to prove all of the q.f. statements about the standard part {∆(n) : n ∈N} in the signature of
arithmetic extended with <. More particularly, all we need is that T ⊢ ∆(n) ̸� ∆(m) for distinct n,m ∈N and

T |= ∀x
(
x < ∆(m)→

∨
n<m

x � ∆(n)
)
.

5.E. Gödel coding

Here we describe a coding of formulas and proofs, and all functions necessary to prove the Fixed Point
lemma and the Incompleteness theorem.

For the rest of the section, let σ be a finite signature.
• We list the symbols of FOL(σ ) as it is done in (5.4) and for each symbol in this list, we let SN(s) denote its

index.
• For a σ -term t, define its Gödel code ⌜t⌝ as follows

⌜t⌝ =

⟨SN(s)⟩ if t = s is a variable or a constant symbol〈
SN(f ),⌜t1⌝, . . . ,⌜tn⌝

〉
if f is an n-ary function symbol and t = f (t1, . . . , tn).

Note that for a variable or a constant symbol s, ⌜s⌝may not be equal to SN(s).
• For a σ -formula ϕ, define its Gödel code ⌜ϕ⌝ as follows

⌜ϕ⌝ =



⟨SN(�),⌜t1⌝,⌜t2⌝⟩ if ϕ = (t1 � t2)
⟨SN(R),⌜t1⌝, . . . ,⌜tn⌝⟩ if R is an n-ary relation symbol and ϕ � R(t1, . . . , tn)〈
SN(¬),⌜ψ⌝

〉
if ϕ = ¬ψ〈

SN(→),⌜ψ1⌝,⌜ψ2⌝
〉

if ϕ = ψ1→ ψ2〈
SN(∀),⌜v⌝,⌜ψ⌝

〉
if ϕ = ∀vψ.

Lemma 5.33. The following subsets of N are primitive recursive:
(5.33.a) Variable ..= {⌜x⌝ : x is a variable}
(5.33.b) Term ..= {⌜t⌝ : t is a σ -term}
(5.33.c) Formula ..= {⌜ϕ⌝ : ϕ is a σ -formula}

Proof. In all proofs we use complete primitive recursion Lemma 5.22.
(5.33.a) a ∈ Variable if and only if lh(a) = 1 and (a)0 is even.
(5.33.b) Term(a) if and only if Variable(a) or a is a code for a constant symbol or (a)0 is a code for an n-ary
functions symbol with n = lh(a)− 1 and ∀i < n,Term((a)i+1).
(5.33.c) is left to the reader. It gets messy if one wants to also check our convention about quantified
variables. □
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Lemma 5.34. There is a primitive recursive function Sub : N3→N such that for any σ -formula ϕ, variable v
and σ -term t that is OK to be plugged in for v in ϕ,

Sub(⌜ϕ⌝,SN(v),⌜t⌝) = ⌜ϕ(t/v)⌝.

Proof. Define Sub(a,m,k) ..=
k if Variable(a) and (a)0 =m〈
(a)0,Sub((a)1,m,k), . . . ,Sub((a)lh(a)−1,m,k)

〉
if lh(a) > 0 and (a)0 , SN(∀)

⟨(a)0, (a)1,Sub((a)2,m,k)⟩ if lh(a) > 0 and (a)0 = SN(∀) and (a)1 ,m

a otherwise.

This is clearly primitive recursive (using complete recursion). □

Lemma 5.35. The following relations are primitive recursive:
(5.35.a) FreeVar ..= {(⌜ϕ⌝,SN(v)) : v occurs free in ϕ} ⊆N

2

(5.35.b) OKtoSub ..= {(⌜ϕ⌝,⌜t⌝,SN(v)) : t is OK to be plugged in for variable v in ϕ} ⊆N
3

(5.35.c) Sentence ..= {⌜ϕ⌝ : ϕ is a sentence} ⊆N

(5.35.d) Axiom ..= {⌜ϕ⌝ : ϕ is an axiom of FOL(σ )} ⊆N

(5.35.e) MP ..= {(⌜ϕ⌝,⌜ϕ→ ψ⌝,ψ) : ϕ,ψ are σ -formulas} ⊆N
3

where ϕ, t v range over formulas, terms and variables of FOL(σ ).

Proof. This is an easy but tedious programming exercise. For example: for all a ∈N,

Sentence(a) ⇐⇒ Formula(a) and ∀i<a¬FreeVar(a, i).

The readers are invited to check the rest of the relations themselves if they feel like programming. □

Definition 5.36. For a σ -theory T , define binary relations ProofT ,RefuteT ⊆N
2 by

ProofT ..= {(
〈
⌜ϕ1⌝, . . . ,⌜ϕn⌝

〉
,⌜ϕ⌝) : (ϕ1, . . . ,ϕn) is a proof of ϕ from T } ,

RefuteT ..= {(
〈
⌜ϕ1⌝, . . . ,⌜ϕn⌝

〉
,⌜ϕ⌝) : (ϕ1, . . . ,ϕn) is a proof of ¬ϕ from T } ,

where ϕi and ϕ vary over σ -formulas.

For a σ -theory T , put ⌜T ⌝ ..= {⌜ϕ⌝ : ϕ ∈ T }. We say that T is recursive (resp. primitive recursive, arithmetical)
if such is ⌜T ⌝.

Lemma 5.37. If a σ -theory T is recursive (resp. primitive recursive, arithmetical), then such is ProofT .

Proof. This is because for all a ∈N, ProofT (a,b) if and only if lh(a) > 0 and (a)lh(a)−1 = b and for every k < lh(a)
either (a)k ∈ Axiom or (a)k ∈ ⌜T ⌝ or (∃i < k) (∃j < k) MP((a)i , (a)j , (a)k). □

5.F. Robinson’s system Q

Now we describe a finite subtheory of Th(N ), namely Robinson’s8 system Q, which is much weaker than PA,
but still strong enough to represent recursive functions, c.f. Remark 5.32. The advantage of it over PA is that
it is finite, and we will use this later in proving that the empty σarthm-theory is undecidable. However, this
subsection can be safely skipped by readers, who are willing to accept that we can represent all recursive
functions in some finite subtheory of Th(N ).

Definition 5.38 (Robinson’s system Q). The following are the axioms of Q:
(Q1) ∀x[¬S(x) � 0],
(Q2) ∀x∀y[S(x) � S(y)→ x � y],
(Q3) ∀x[x+ 0 � x],
(Q4) ∀x∀y[S(x+ y) � x+ S(y)],
(Q5) ∀x[x · 0 � 0],
(Q6) ∀x∀y[x · S(y) � x · y + x],
(Q7) ∀x(x ̸� 0→∃y(x � S(y))).

8This is due to Raphael Robinson and not Abraham or Julia Robinsons as I falsely thought.
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So the difference between PA and Q is that the induction schema of PA is replaced by a single axiom
stating that every nonzero element has a predecessor (which is clearly provable in PA). This theory is
pretty weak: for example, it does not prove the associativity/commutativity of the addition/multiplication.
However, every model of Q has a standard part:

Proposition 5.39.

(5.39.a) For any model M of Q, there is a unique homomorphism f : N →M . In fact, this f is a σarthm-embedding
and hence we can view N as a substructure of M .

(5.39.b) For any quantifier free formula ϕ(x⃗) and a⃗ ∈Nk ,

N |= ϕ(a⃗) ⇐⇒ Q ⊢ ϕ(∆(a⃗)),

where ∆(a⃗) ..= (∆(a1), . . . ,∆(ak)).

Proof. Part (5.39.b) follows from (5.39.a) since for M |= Q, N ⊆M and hence

N |= ϕ(a⃗) ⇐⇒ M |= ϕ(∆(a⃗)),

because ϕ is quantifier free. Because M was an arbitrary model of Q, we are done by the Completeness
theorem.

As for part (5.39.a), the proof is exactly the same as for models of PA. The uniqueness is clear because we f
has to preserve 0 and S and thus f (∆(n)N ) = ∆(n)M . This function is injective because SM is injective and 0M

does not have a predecessor. It remains to show that f preserves + and ·. We show that f (n+m) = f (n) + f (m)
by induction on m, and we leave the case of · to the reader. For m = 0, this follows from axiom (Q3). Now
assume f (n+m) = f (n)+f (m). Then f (n+S(m)) = f (S(n+m)) = S(f (n+m)) = S(f (n)+f (m)) = f (n)+S(f (m)) =
f (n) + f (S(m)), where we used the facts that f respects S and that M satisfies axiom (Q4). □

Let x ⩽ y and x < y abbreviate the formulas ∃z(z+ x � y) and x ̸� y ∧∃z(z+ x � y), respectively. Keep in
mind that z+ x may not be equal to x+ z in a model of Q. Since the statement x ⩽ y is not quantifier free, it
does not follow from the previous lemma that a model of Q and N have to agree on the ordering of natural
numbers (the standard part of M). However, it turns out to still be true:

Lemma 5.40 (Q preserves the ordering on N). For all n,m ∈N,

(5.40.a) Q ⊢ x ⩽ ∆(n)→
n∨
i=0

x = ∆(i);

(5.40.b) n ⩽m ⇐⇒ Q ⊢ ∆(n) ⩽ ∆(m);
(5.40.c) ¬n ⩽m ⇐⇒ Q ⊢ ¬∆(n) ⩽ ∆(m);
(5.40.d) Q ⊢ x ⩽ ∆(n)∨∆(n+ 1) ⩽ x;
(5.40.e) Q ⊢ x ⩽ ∆(n)∨∆(n) < x.

Proof. For (5.40.b), the right-to-left direction follows immediately from (5.40.a). As for the other direction,
if n ⩽ m, then let k = m− n and thus N |= ∆(k) +∆(n) = ∆(m). By (5.39.b), Q ⊢ ∆(k) +∆(n) = ∆(m) and thus
Q ⊢ ∆(n) ⩽ ∆(m).

For (5.40.e), first consider n = 0. Then by (Q3), Q ⊢ 0 ⩽ x, so the desired statement follows from the
definition of the formula y < z. Now let n , 0 and hence n =m+ 1. By (5.40.c), Q ⊢ x ⩽ ∆(m)∨∆(n) ⩽ x. Thus,
arguing in Q and using (5.40.a), either x = ∆(k) for some k < n, or x = ∆(n), or ∆(n) ⩾ x. Hence, again using
(5.40.a) and the definition of the formula y < z, we get that either x ⩽ ∆(n) or ∆(n) < x.

We leave the proofs of (5.40.c) and (5.40.d) to the reader, and we prove (5.40.a) by induction on n. Let
M |= Q. For n = 0, assume a ∈M and M |= a ⩽ 0. Thus, there is b ∈M such that M |= b+ a � 0. Now if a , 0M ,
then a has a predecessor, i.e. for some c ∈M , M |= a � S(c) and thus M |= b + S(c) � 0. Arguing inside M ,
0 = b+ S(c) = S(b+ c), which contradicts the fact that 0 is not a successor. Thus a = 0.

Now assume the statement is true for n and assume M |= a ⩽ ∆(n+ 1). Hence there is b ∈M such that
b + a = ∆(n+ 1) (arguing inside M). Now if a = 0, we are done. Otherwise, it has a predecessor c ∈M and
thus S(b+ c) = b+S(c) = ∆(n+ 1). By injectivity of S, we get b+ c = ∆(n) and hence c ⩽ ∆(n). By the induction
hypothesis, c is equal to one of ∆(i) for i = 0, . . . ,n and thus a is equal to one of ∆(j) for j = 1, . . . ,n+ 1. □

Proposition 5.41. All recursive functions and relations are representable in Q.
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Proof. The proof is word-by-word the same as for Proposition 5.31 because we have proven above that the
properties of PA used in that proof also hold for Q: namely, the required properties are (5.39.b) and (5.40.a),
(5.40.c) and (5.40.d). □

In a later subsection, we will also prove the converse of this proposition, so representability in Q actually
characterizes recursive functions.

5.G. The First Incompleteness Theorem (Rosser’s form)

Define a function Sub0 : N2 → N by Sub0(a,n) = Sub(a,SN(v0),∆(n)). It is clear that Sub0 is primitive
recursive since such is Sub.

For a σarthm-formula θ, put [θ] ..= ∆(⌜θ⌝).

Lemma 5.42 (Fixed point for Q). For every σarthm-formula ϕ(v), there is a σarthm-sentence θ such that

Q |= θ↔ ϕ([θ]).

Proof. Let Sub0(x,y,z) be a σarthm-formula representing Sub0 in Q. We can assume without loss of generality
that the variable v0 does not appear in Sub0 and ϕ. Put

ψ(v0) ..= ∃z(Sub0(v0,v0, z)∧ϕ(z)),

and let m = ⌜ψ⌝. Put θ ..= ψ(∆(m)). Then Sub0(m,m) = ⌜ψ(∆(m))⌝ = ⌜θ⌝ and hence, by the definition of
representability,

Q |= Sub0(∆(m),∆(m), z)↔ z = [θ]. (i)
In particular,

Q |= Sub0(∆(m),∆(m), [θ]). (ii)
Therefore, we have

Q |= θ ⇐⇒ Q |= ψ(∆(m))

⇐⇒ Q |= ∃z(Sub0(∆(m),∆(m), z)∧ϕ(z))

[=⇒ is because of (i)] ⇐⇒ Q |= Sub0(∆(m),∆(m), [θ])∧ϕ([θ])

[⇐= is because of (ii)] ⇐⇒ Q |= ϕ([θ]). □

Now we are ready to prove the Incompleteness theorem for all σarthm-theories T ⊇Q. However, we would
like to prove a slightly stronger version that applies to theories in signatures other than σarthm that are rich
enough to encode Q in them. We make this precise in the following definition.

Definition 5.43. Let T1,T2 be theories in finite signatures σ1,σ2, respectively. An interpretation of T1 in T2 is
a map π from the set of σ1-sentences to the set of σ2-sentences such that for any σ1-sentences θ,ϕ,ψ,
(5.43.i) T1 |= θ =⇒ T2 |= π(θ),
(5.43.ii) T2 |= π(¬θ)↔¬π(θ),
(5.43.iii) T2 |= π(ϕ ∧ψ)↔ π(ϕ)∧π(ψ),

The interpretation π is said to be recursive (resp. primitive recursive) if there is a recursive (resp. primitive
recursive) function π∗ : N→N such that π∗(⌜θ⌝) = ⌜π(θ)⌝, where ⌜ ⌝ on the left and on the right denotes
the coding functions of FOL(σ1) and FOL(σ2), respectively.

If there is a (recursive, primitive recursive) interpretation of T1 in T2, we say that T2 (recursively, primitive
recursively) interprets T1. For example, ZFC primitive recursively interprets Q. Also, if T1 ⊆ T2, then by
taking the identity function as π∗, we see that T2 interprets T1.

Below let σ be a finite signature.

Lemma 5.44. Let T be a (resp. primitive) recursive σ -theory that interprets Q and let π be an interpretation of Q
in T . Then the following relations are (resp. primitive) recursive:

Proofπ,T (a,b) ..⇐⇒ b is an FOL(σarthm)-code of a σarthm-sentence ϕ and
a is an FOL(σ )-code of a proof of π(ϕ) from T ,

Refuteπ,T (a,b) ..⇐⇒ b is an FOL(σarthm)-code of a σarthm-sentence ϕ and
a is an FOL(σ )-code of a proof of π(¬ϕ) from T .
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Proof. Observe that

Proofπ,T (a,b) ⇐⇒ Sentenceσarthm
(b) and ProofT (a,π∗(b)),

Refuteπ,T (a,b) ⇐⇒ Sentenceσarthm
(b) and ProofT (a,π∗(⟨SN(¬),b⟩)). □

First Incompleteness Theorem 5.45 (Rosser’s form). Any consistent recursive σ -theory that recursively
interprets Q is incomplete.

Let us contemplate about the proof a bit before we present it. In the proof of the Incompleteness theorem
for T ⊆ Th(N ), we constructed a sentence γ that basically expressed the Liar Paradox: it said about itself
that it is not provable. Let us try to use the same idea here: let π be a recursive interpretation of Q in T and
let Proofπ,T (x,y) be a σarthm-formula representing Proofπ,T in Q. Then by the Fixed Point lemma for Q, we
get a σarthm-sentence γ such that

Q |= γ ↔∀x¬Proofπ,T (x, [γ]). (∗)
It is true that T ⊬ π(γ) since otherwise there will be a code a ∈N of a proof of π(γ) from T and hence

Q |= Proofπ,T (∆(a), [γ]). But then by (∗), Q |= ¬γ and thus T |= π(¬γ), so T |= ¬π(γ), contradicting the
consistency of T .

However, we don’t get any contradiction if we assume T |= ¬π(γ). Indeed, assuming the latter, the
consistency of T implies that T ⊬ π(γ) and hence there is no natural number that is a code of a proof of π(γ)
from T , i.e. ¬Proofπ,T (a,⌜γ⌝), for all a ∈N. Then, for every a ∈N, Q |= ¬Proofπ,T (∆(a), [γ]). Unfortunately,
this does NOT imply that Q |= ∀x¬Proofπ,T (x, [γ]) because there may well be a model M of Q with a
nonstandard element w ∈M \N such that M |= Proofπ,T (w, [γ]) and there is no contradiction here.

So, the Liar Paradox doesn’t work here and Rosser’s trick is to use the idea of the following joke9:

An economist and his friend stumble upon a $100 bill lying on the sidewalk. The friend says “Hey, look, a
$100 bill” and bends over to pick it up, but the economist stops him, saying “Don’t bother because that’s
impossible—if it was really a $100 bill, someone would have picked it up by now.”

Rosser’s proof of First Incompleteness Theorem 5.45. Let π be a recursive interpretation of Q in T , and let
Proofπ,T (x,y) and Refuteπ,T (x,y) be σarthm-formulas representing Proofπ,T and Refuteπ,T in Q. Then by the
Fixed Point lemma for Q, we get a σarthm-sentence ρ such that

Q |= ρ↔∀x(Proofπ,T (x, [ρ])→ (∃u < x)Refuteπ,T (u, [ρ])). (5.46)

The Rosser sentence ρ expresses the unprovability of its translation in T in a round-about way: it asserts

For every proof of myself, there is a shorter proof of my negation.

We show that neither T ⊢ π(ρ) nor T ⊢ ¬π(ρ).
Case 1: suppose T ⊢ π(ρ). Then there is a code m ∈N of a proof of π(ρ) from T and hence

Q ⊢ Proofπ,T (∆(m), [ρ]). (5.47)

Because T is consistent, T ⊬ ¬π(ρ), and hence, by the definition of interpretation, T ⊬ π(¬ρ). Thus ∀k ∈N,
¬Refuteπ,T (k,⌜ρ⌝) and hence Q ⊢ ¬Refuteπ,T (∆(k), [ρ]); in particular, this is true for all k < m. Therefore, by
(5.40.a),

Q ⊢ (∀u < ∆(m))¬Refuteπ,T (u, [ρ]). (5.48)

From (5.47) and (5.48), we get

Q ⊢ ∃x(Proofπ,T (x, [ρ])∧ (∀u < x)¬Refuteπ,T (u,x)),

which implies Q ⊢ ¬ρ by (5.46). Therefore, T ⊢ π(¬ρ) and hence T ⊢ ¬π(ρ), contradicting the consistency of
T .

Case 2: suppose T ⊢ ¬π(ρ). Thus T ⊢ π(¬ρ), so there is a code k ∈N of a proof of π(¬ρ) from T . Hence
Refuteπ,T (k,⌜ρ⌝) holds and by representability in Q,

Q ⊢ Refuteπ,T (∆(k), [ρ]). (5.49)

9The author has heard this joke from Itay Neeman in the context of searching for an apartment to rent in
LA.
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Also, for any n ∈N, ¬Proofπ,T (n,⌜ρ⌝) holds by the consistency of T , and thus

Q ⊢ ¬Proofπ,T (∆(n), [ρ]). (5.50)

We argue in models, so fix M |= Q. By (5.40.e), for every a ∈M, a ⩽ ∆(k) or ∆(k) < a. In the first case, by
Item (5.40.a), we get that a = ∆(n) for some n ⩽ k, and thus M |= ¬Proofπ,T (a, [ρ]), by (5.50). In the second
case, i.e. if ∆(k) < a,

M |= (∃u < a)Refuteπ,T (u, [ρ]),
by (5.49). Therefore, for all a ∈M,

M |= Proofπ,T (a, [ρ])→ (∃u < a)Refuteπ,T (u, [ρ]).

Thus
Q ⊢ ∀x(Proofπ,T (x, [ρ])→ (∃u < x)Refuteπ,T (u,x)),

and hence Q ⊢ ρ, by (5.46). But then T ⊢ π(ρ), contradicting the consistency of T . □

5.H. The Second Incompleteness Theorem and Löb’s theorem

Let σ be a finite signature and let T be a recursive σ -theory. Recall (see Definition 5.36) that the relations
ProofT ,RefuteT ⊆N

2 are recursive. Let ProofT (x,y) and RefuteT (x,y) be σarthm-formulas representing them
in Q, and put ProvableT (y) ..= ∃xProofT (x,y). Also recall that by ⊥ we denote the sentence ∃x(x ̸� x).

Definition 5.51. For T as above, we define a σarthm-sentence that expresses the consistency of T as follows:

ConT ..= ¬ProvableT
(
[⊥]

)
.

Lemma 5.52. Let σ be a finite signature and T a recursive σ -theory. For any σ -sentences ϕ,θ, the following
σarthm-sentences are provable in PA:
(5.52.a) The Deduction theorem: ProvableT∪{θ}([ϕ])↔ ProvableT ([θ→ ϕ]).
(5.52.b) Proof by contradiction: ProvableT ([¬θ→⊥])↔ ProvableT ([θ]).
(5.52.c) Lemma about consistency: ConT∪{¬θ}↔¬ProvableT (θ).

Proof. For (5.52.a) and (5.52.b), one has to note that the proofs of the corresponding theorems can be
formalized in PA since all they use is syntactic arguments and induction. As for (5.52.c), it follows from
(5.52.a) and (5.52.b) and we leave this as an exercise. □

Theorem 5.53. Let π be a recursive interpretation of PA in a recursive σ -theory T and let ρπ,T be the Rosser
sentence for T as in (5.46). Then PA ⊢ ConT → ρπ,T .

Proof. We claim that Rosser’s proof of the First Incompleteness theorem can be carried out in PA. It would
take too long to actually prove this, but the main point is the following: Rosser’s proof is completely syntactic,
i.e. playing with formal proofs (we only used models and the Completeness theorem because we were too
lazy to do formal proofs, but in principle we could have constructed all necessary formal proofs). Using
Lemma 5.52, syntactic arguments such as the proof of the Fixed Point lemma can be expressed and carried
through PA because all they use is induction, which PA has.

Thus, in particular, PA proves that if T is consistent then T ⊬ π(ρπ,T ), i.e.

PA ⊢ ConT →∀x¬Proofπ,T (x, [ρπ,T ]).

On the other hand, it follows from the definition of ρπ,T that

PA ⊢ ∀x¬Proofπ,T (x, [ρπ,T ])→ ρπ,T .

Therefore, PA ⊢ ConT → ρπ,T . □

From this we immediately get yet another foundational theorem by Gödel:

Second Incompleteness Theorem 5.54. If π is a recursive interpretation of PA in a recursive σ -theory T , then
T ⊬ π(ConT ), i.e. T cannot prove its own consistency.

Proof. By the previous lemma and the fact that π is an interpretation of PA in T , we get

T ⊢ π(ConT )→ π(ρπ,T ).

Thus, if T ⊢ π(ConT ) then T ⊢ π(ρπ,T ), which is a contradiction. □
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Because N is a model of PA, we know that whatever PA proves is true about the natural numbers, in other
words, for every σarthm-sentence θ,

N |= ProvablePA([θ])→ θ.

Does PA know this? That is: does it prove ProvablePA([θ])→ θ for all θ? Here is the answer:

Theorem 5.55 (Löb, 1955). For every σarthm-sentence θ, PA does not prove ProvablePA([θ])→ θ unless it proves
θ itself, i.e.

PA ⊢ ProvablePA([θ])→ θ if and only if PA ⊢ θ.
Proof. We prove the nontrivial direction: left-to-right. Assume towards a contradiction that PA ⊢ ProvablePA([θ])→
θ yet PA ⊬ θ. Thus the theory S ..= PA∪ {¬θ} is consistent. By contrapositive, PA ⊢ ¬θ→¬ProvablePA([θ])
and hence,

S ⊢ ¬ProvablePA([θ]). (∗)
By (5.52.c), we have

PA ⊢ ConS ↔¬ProvablePA(θ),
thus also

S ⊢ ConS ↔¬ProvablePA(θ),
so, by Modus Ponens with (∗), we get S ⊢ ConS , contradicting the Second Incompleteness theorem. □

6. Undecidable theories

Fix a finite signature σ .

Definition 6.1. For a σ -theory T , let Thm(T ) ..= {ϕ ∈ σ -sentences : T ⊢ ϕ}. T is said to be decidable if
⌜Thm(T )⌝ is recursive.

After various incompleteness results, we are now convinced that sufficiently rich recursive theories T such
as PA or ZFC are incomplete. But maybe we can still write a program that for a given sentence ϕ decides
whether it is a theorem of T or not? More precisely, is T decidable? (If the answer was yes for example for
ZFC, mathematicians would be unemployed and the world would be an uninteresting place to live in.) This
section is devoted to answering this question.

6.A. Σ0
1 sets and Kleene’s theorem

For a set A ⊆N
k+1, we write We also write

∃NyA(·k , y) ..= projk(A) ..=
{
a⃗ ∈Nk : ∃b ∈N (a⃗,b) ∈ A

}
∀NyA(·k , y) ..= coprojk(A) ..=

{
a⃗ ∈Nk : ∀b ∈N (a⃗,b) ∈ A

}
.

and refer to these sets, respectively, as the projection and coprojection of A onto the first k coordinates. We
also write ¬A ..= N

k \A.
We say that Γ is a class of subsets of finite powers of N if Γ =

⋃
k∈N Γ (Nk), where Γ (Nk) ⊆P(Nk) for each

k ∈N. For example, throughout, we let R denote the class of all recursive sets, i.e. R ..=
⋃
k∈NR(Nk), where

R(Nk) denotes the set of all recursive subsets of Nk .
For a class Γ as above, we put

¬Γ ..=
{
N
k \A : A ∈ Γ (Nk), k ∈N

}
∃NΓ ..=

{
∃NyR(·k , y) : R ∈ Γ (Nk+1), k ∈N

}
∀NΓ ..= ¬∃N¬Γ =

{
∀NyR(·k , y) : R ∈ Γ (Nk+1), k ∈N

}
.

Definition 6.2 (Arithmetical classes). We recursively define the following classes:

Σ0
1

..= ∃NR
Σ0
n+1

..= ∃NΠ0
n

Π0
n

..= ¬Σ0
n

∆0
n

..= Σ0
n ∩Π0

n.
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Unraveling this, we see that

Σ0
n = ∃N∀N∃N . . . ∃∀N︸              ︷︷              ︸

n quantifiers

R

Π0
n = ∀N∃N∀N . . . ∃∀N︸              ︷︷              ︸

n quantifiers

R.

By induction on n, it is easy to see that

Observation 6.3. Let Γ be any of the classes in Definition 6.2. If A ∈ Γ , then A×N ∈ Γ .

This immediately implies:

Corollary 6.4. Σ0
n ⊆Π0

n+1 and Σ0
n ⊆ Σ0

n+1 for all n ⩾ 1.

Hence, we have the following picture

Σ0
1 Σ0

2 Σ0
n

⊆ ⊆ ⊆ ⊆ ⊆ ⊆
∆0

1 ∆0
2 ∆0

3 . . . ∆0
n ∆0

n+1 . . .
⊆ ⊆ ⊆ ⊆ ⊆ ⊆

Π0
1 Π0

2 Π0
n︸                                                                                                      ︷︷                                                                                                      ︸

Arithmetical hierarchy

Here are the main closure properties of these classes:

Proposition 6.5 (Closure properties of arithmetical classes).
(6.5.a) Σ0

n is closed under finite unions and intersections, projections, and recursive preimages and images, i.e.
under the operations ∨,∧,∃N, and taking a preimage and an image under a recursive function.

(6.5.b) Π0
n is closed under finite unions/intersections, coprojections, and recursive preimages and coimages, i.e.

under the operations ∨,∧,∀N, and taking a preimage and a copimage under a recursive function.

Proof. This is by induction on n and is mainly left as an exercise. We just mention as a hint that ∃N∃NR =
∃NR because we can recursively encode a pair of natural numbers into a single natural number. □

Corollary 6.6. The union of all classes is Definition 6.2 is equal to the class of all arithmetical sets.

Proof. Because successor, addition, and multiplication are recursive function, the fact that each arithmetical
set is in one of these classes follows from the definitions and the fact that these classes are closed under finite
unions. The converse follows from the fact that all recursive relations are arithmetical (Proposition 5.9). □

For any of the classes Γ in Definition 6.2, when A ∈ Γ , we simply say that A is a Γ set or a Γ relation.

Lemma 6.7. For a σ -theory T , if T is recursive, then ⌜Thm(T )⌝ is Σ0
1.

Proof. If T is recursive, then so is the relation ProofT ⊆N
2 defined in the previous subsection. But then for

all a ∈N
a ∈ ⌜Thm(T )⌝ ⇐⇒ ∃xProofT (x,a). □

It is immediate that R ⊆ ∆0
1, but we actually have:

Lemma 6.8 (Kleene’s theorem). R = ∆0
1.

Proof. Let R ⊆N
k be a ∆0

1 relation. Hence, there are recursive relations P ,Q ⊆N
k+1 such that ∀a⃗ ∈Nk

a⃗ ∈ R⇔∃xP (a⃗,x), a⃗ ∈ ¬R⇔∃xQ(a⃗,x).

But then the function f : Nk →N defined by f (a⃗) = µx(P ∨Q(a⃗,x)) is recursive and hence R is recursive too
since a⃗ ∈ R⇔ f (a⃗) ∈ P . □

From this we immediately get the following decidability result:

Proposition 6.9. Every complete recursive σ -theory T is decidable.
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Proof. Using the fact that for every σ -sentence ϕ, ϕ < Thm(T )⇔¬ϕ ∈ Thm(T ), we get that for every a ∈N,

a < ⌜Thm(T )⌝⇔ a < Sentenceσ or ⟨SN(¬), a⟩ ∈ ⌜Thm(T )⌝.

By Lemma 6.7, ⌜Thm(T )⌝ is Σ0
1. Because ¬Sentenceσ is recursive (hence Σ0

1) and Σ0
1 is closed under recursive

preimages and finite unions (Proposition 6.5), the right hand side is Σ0
1 and thus so is the completement of

⌜Thm(T )⌝. Therefore, ⌜Thm(T )⌝ is ∆0
1 and hence is recursive (by Kleene’s theorem). □

As a corollary, we get that ACFp, p = 0 or prime, and the theory of vector spaces over a countable field10

are decidable.
Another corollary of Kleene’s theorem is a strengthening of Proposition 5.11.

Corollary 6.10. For a function f : Nk →N, the following are equivalent:
(1) f is recursive.
(2) Graph(f ) ⊆N

k+1 is recursive.
(3) Graph(f ) ⊆N

k+1 is Σ0
1.

Proof. By Proposition 5.11, it is enough to show (3)⇒ (2), for which, by Kleene’s theorem, it is enough to
show that if Graph(f ) is Σ0

1 then it is also Π0
1. For this observe that for any a⃗ ∈Nk and b ∈N,

(a⃗,b) ∈Graph(f )⇔∀b′ ∈N
[
(a⃗,b′) ∈Graph(f )⇒ b′ = b

]
⇔∀b′ ∈N

[
(a⃗,b′) <Graph(f ) or b′ = b

]
.

and the expression on the right is Π0
1 due to Graph(f )c being Π0

1 and Proposition 6.5. □

6.B. Universal Σ0
1 relation and Church’s theorem

Definition 6.11. Let Γ be a class of subsets of finite powers of N. For k ⩾ 1, a set U ⊆ N ×Nk is said
to parameterize Γ (Nk) if for each Γ set A ⊆ N

k , there is p ∈ N such that A = Up ..=
{
a⃗ ∈Nk : (p, a⃗) ∈U

}
. If,

moreover, U itself is in Γ , then U is said to be universal for Γ (Nk).

Remark 6.12. If Γ is closed under taking fibers (which the arithmetical classes are), then U ⊆N×Nk being
Γ (Nk) universal implies that

Γ (Nk) =
{
Up : p ∈N

}
.

We will build a Σ0
1 parameterizations for R(Nk) and conclude that none of them are recursive due to

Cantor’s antidiagonalization:

Lemma 6.13 (Cantor). For a set X and any relation U ⊆ X2, its antidiagonal AntiDiag(U ) ..= {x ∈ X : (x,x) <U }
is not one of its fibers, i.e. AntiDiag(R) ,Up ..= {x ∈ X : (p,x) ∈U } for all p ∈ X.

Proof. Assume for contradiction that AntiDiag(U ) =Up for some p ∈ X. Then

p ∈ AntiDiag⇔ (p,p) <U ⇔ p <Up,

a contradiction. □

Corollary 6.14. Let Γ be a class of subsets of finite powers of N. If Γ is closed under preimages by the diagonal
map n 7→ (n,n) and complements (e.g. Γ ..= R), then any parameterization U ⊆N

2 of Γ (N) is not in Γ .

Proof. If U were in Γ , then A ..= AntiDiag(U ) would also be in Γ being a preimage of the complement
of U under the diagonal map n 7→ (n,n). But then A should be one of the fibers of U , contradicting
Lemma 6.13. □

10As it is written, Proposition 6.9 applies only to finite signatures and if a countable field F is not finite,
the signature σF of the theory of vector spaces over F is infinite. However, we can still assign codes to
symbols in σF so that we can decode all the information about the symbol from its code in a primitive
recursive way. Thus everything proven above applies to σF as well.
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A parameter for a recursive relation will be its code in some programming language. Using representability
of recursive relations in, say, Q, we can choose the language to be FOL(σarthm) and use Q as the “compiler”.
In fact, Q can be replaced by any theorem that recursively interprets Q.

We start by proving the converse of Proposition 5.31.

Proposition 6.15. Let T be a recursive consistent σarthm-theory. Then any relation R ⊆N
k representable in T is

recursive. In particular, any function f : Nk →N representable in T is recursive.

Proof. The statement about functions follows from that about relations because if f is representable, then
such is its graph (by Item (5.29.b)), therefore, by the first statement, the graph is recursive, and hence such is
f (Proposition 5.11).

Let R ⊆N
k be representable in T by a formula ϕ(x⃗). By the definition of representability and because T is

consistent, for all a⃗ ∈Nk , we have

a⃗ ∈ R⇔ T ⊢ ϕ(∆(a⃗))⇔ ⌜ϕ(∆(a⃗))⌝ ∈ ⌜Thm(T )⌝.

Lemma 6.7, Thm(T ) is Σ0
1 and the function s : Nk → N defined by a⃗ → ⌜ϕ(∆(a⃗))⌝ is clearly primitive

recursive. Hence, the right hand side is Σ0
1 by Proposition 6.5.

Because the definition of representability is symmetric for R and ¬R, we have that ¬R is also representable
(by ¬ϕ) and hence, by what we have already proven, ¬R is Σ0

1. Therefore, by Kleene’s theorem, R is
recursive. □

This, together with Propositions 5.31 and 5.41, gives the following characterization of recursive functions.

Corollary 6.16. A function f : Nk →N is recursive if and only if it is representable in PA if and only if it is
representable in Q.

This allows us to construct a parameterization for all recursive subsets of Nk . For a fixed vector v⃗ ..=
(v0, . . . , vk−1) of variables, let Subk : N ×Nk → N be a primitive recursive function such that for every
σarthm-formula ϕ and for every a⃗ ∈Nk ,

Subk(⌜ϕ⌝, a⃗) = ⌜ϕ(∆(a⃗)/v⃗)⌝.

For a σ -theory T that interprets Q by π and for k ⩾ 1, define a relation U (k)
π,T ⊆N×Nk by setting, for each

(p, a⃗) ∈N×Nk ,

U
(k)
π,T (p, a⃗) ..⇐⇒ π∗(Subk(p, a⃗)) ∈ ⌜Thm(T )⌝.

When k = 1, we simply write Uπ,T instead of U (1)
π,T .

Proposition 6.17. For a consistent σ -theory T interpreting Q by π and for any k ⩾ 1, U (k)
π,T parameterizes the

class R(Nk) of recursive subsets of Nk .

Proof. Fix any recursive R ⊆N
k and let ϕ(v⃗) be a formula representing R in Q. Thus for all a⃗ ∈Nk ,

a⃗ ∈ R =⇒ Q ⊢ ϕ(∆(a⃗)/v⃗) =⇒ T ⊢ π
(
ϕ(∆(a⃗)/v⃗)

)
a⃗ < R =⇒ Q ⊢ ¬ϕ(∆(a⃗)/v⃗) =⇒ T ⊢ ¬π(ϕ(∆(a⃗)/v⃗)).

Since T is consistent, we get a⃗ ∈ R⇔ T ⊢ π
(
ϕ(∆(a⃗))

)
, and therefore, letting p ..= ⌜ϕ(v⃗)⌝, we have a⃗ ∈ R⇔

(p, a⃗) ∈U (k)
π,T . □

Corollary 6.18. For a consistent σ -theory T interpreting Q by π and for any k ⩾ 1, U (k)
π,T is not recursive. Yet, if T

and π are recursive, U (k)
π,T is Σ0

1.

Proof. The second statement follows from the definition of U (k)
π,T and Lemma 6.7. The first statement for

k = 1 follows from Proposition 6.17 and Corollary 6.14. From this, one can deduce that U (k)
π,T is not recursive

for every k ⩾ 1, which we leave as an exercise. □

Corollary 6.19. ∆0
1 ⊊ Σ0

1,Π
0
1, and hence, Σ0

1 ,Π
0
1.
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When T = Q and π = id, we write U (k)
Q for U (k)

id,Q and Proposition 6.17 can be strengthened.

Proposition 6.20. For each k ⩾ 1, the relation U (k)
Q is universal for Σ0

1(Nk).

Proof. The main point is that for any Σ0
1 set S ⊆N

k , there is a σarthm-formula ϕS (x⃗) such that for each a⃗ ∈Nk ,

a⃗ ∈ S ⇐⇒ Q ⊢ ϕS (∆(a⃗)). (6.21)

This is because S = ∃NzR(·k , z) for some recursive R ⊆N
k+1, which is representable in Q by some formula

ϕR(x⃗, y), so taking ϕS (x⃗) ..= ∃yϕR(x⃗, y), we check that (6.21) holds.
If a⃗ ∈ S then for some b ∈N, (a⃗,b) ∈ R, so Q ⊢ ϕR(∆(a⃗),∆(b)) and hence Q ⊢ ∃yϕR(∆(a⃗), y).
The converse uses the full power of representability. If Q ⊢ ϕS(∆(a⃗)), then N |= ∃yϕR(a⃗, y), so there is

b ∈ N such that N |= ϕR(a⃗,b). But then it must be that (a⃗,b) ∈ R because otherwise, by the condition of
representability, Q ⊢ ¬ϕR(∆(a⃗),∆(b)), contradicting N |= Q. □

Going back to a theory T interpreting Q, Corollary 6.18 immediately gives:

Theorem 6.22 (Church, 1936). Any consistent σ -theory T recursively interpreting Q is undecidable.

Proof. Let π be a recursive interpretation of Q in T . If T were decidable, i.e. ⌜Thm(T )⌝ were recursive, then
Uπ,T would be recursive as well, contradicting Corollary 6.18. □

In particular, Q and PA are undecidable. Also, ZFC is undecidable unless it is inconsistent. Church’s
theorem also has the following rather surprising consequence based on the fact that Q is finite:

Corollary 6.23. The empty σarthm-theory is undecidable, i.e. Thmσarthm
(∅) is not recursive.

Proof. Let ϕQ be the conjunction of the axioms of Q (here is where we use that Q is finite!). Then for any
σarthm-sentence θ,

Q ⊢ θ ⇐⇒ ∅ ⊢ ϕQ→ θ.

Thus, letting p ..= ⌜ϕQ⌝, we get that for all a ∈N,

a ∈ ⌜Thm(Q)⌝ ⇐⇒
〈
SN(→),p,a

〉
∈ ⌜Thmσarthm

(∅)⌝.
Hence, ⌜Thmσarthm

(∅)⌝ cannot be recursive since otherwise ⌜Thm(Q)⌝ would also be recursive, contradicting
Theorem 6.22. □

7. Quantifier elimination

7.A. Definitions and technicalities

Fix a signature σ .

Definition 7.1. We say that a σ -theory T admits quantifier elimination (q.e.), if for every formula ϕ(x⃗), there
is a quantifier-free (q.f.) formula ψ(x⃗) such that

T |= ∀x⃗(ϕ↔ ψ). (7.2)

Assuming that σ is finite, we say that T admits effective q.e. if there is recursive function h : N→N such that
for every formula ϕ(x⃗), h(⌜ϕ⌝) is a code of a q.f. formula ψ(x⃗) such that (7.2) holds. We say that a σ -structure
M admits (effective) q.e. if so does Th(M).

Note that for a σ -theory T to even have a chance to admit q.e., there would have to exist a quantifier-free
sentence. To ensure that such always exists, we enrich FOL(σ ) with propositional symbols for Truth and
Falsity. More precisely, just like we always include the binary relation symbol = in FOL(σ ), we include 0-ary
relation symbols ⊤ and ⊥, together with the following axioms

(10) Truth: ⊤↔∀x(x = x)
(11) Falsity: ⊥↔¬⊤.

Below, we work with this enriched version of FOL(σ ).
If T is recursive, then the effectiveness of q.e. comes for free.11

11Thanks to William Balderrama for pointing this out.
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Proposition 7.3. Let σ be a finite signature. If a σ -theory T is recursive and admits q.e., then it admits effective
q.e.

Proof. The main point is one can safely search for a proof of an equivalence of a given formula with a q.f.
one. The details are left as an exercise. □

7.B. Connection with decidability and famous q.e. results

There is a strong connection between q.e. and decidability. To see this, consider the set QFThm(T ) ..=
{ψ : ψ is a q.f. sentence and T ⊢ ψ}. In many interesting cases, this set (i.e. the set of the codes) is recursive.
For example, for T ..= Th(R,0,1,+,−, ·,<) or T ..= ACF, a q.f. sentence is just a Boolean combination of
(in)equalities about terms made out of 0,1 using +,−, ·, and hence it is (at least intuitively) clear that
QFThm(T ) is recursive (in fact primitive recursive); same is true for T ..= Th(N,0,S,+, ·).

Proposition 7.4. Let σ be a finite signature and T a σ -theory. If QFThm(T ) is recursive and T admits effective
q.e., then T is decidable.

Proof. Let h : N→N be a recursive function as in Definition 7.1. Then, for every n ∈N,

n ∈ ⌜Thm(T )⌝ ⇐⇒ h(n) ∈ ⌜QFThm(T )⌝,

so ⌜Thm(T )⌝ is recursive. □

The following renowned result is often referred to as the decidability of Euclidean geometry.

Theorem 7.5 (Tarski). The structure (R,0,1,+,−, ·,<) admits effective q.e. and hence its theory is decidable.

For p prime or 0, because ACFp is decidable because it is complete. But here is a stronger result:

Theorem 7.6 (Robinson, Tarski, ?). ACF admits (quite effective) q.e.

To appreciate this theorem, let X = (xij )
n
i,j=1 be a matrix of variables and let ϕ(X) be a σring-formula

expressing that X is invertible, i.e. ϕ(X) says that there is a matrix of variables Y such that when multiplying
by X one gets the identity matrix (this is a conjunction of n2 equations). Clearly ϕ(X) is an existential
formula, but we know from linear algebra that there is a q.f. equivalent to it, namely, the formula expressing
that the determinant of X is nonzero. This is not an entirely trivial fact, is it (think about coming up with
the definition of determinant)? The above theorem implies this for every formula.

For the rest of the section, we will develop a model-theoretic criterion for q.e. using which we will show
that ACF admits q.e. As an application, we will prove Hilbert’s Nullstellensatz.

7.C. Syntactic approach

Lemma 7.7 (Quantifier elimination test). A σ -theory T admits (effective) q.e. if and only if for every σ -formula

of the form ∃yϕ(x⃗, y), where ϕ is q.f., there is a q.f. formula ψ(x⃗) such that T |= ∀x⃗
([
∃yϕ(x⃗, y)

]
↔ ψ(x⃗)

)
.

Proof. Follows by a straightforward induction on the construction of formulas. □

Proposition 7.8. DLO admits (effective) q.e.

Proof. By the previous lemma, we have to describe a recursive procedure of getting rid of the existential
quantifier from a formula of the form ∃yϕ(x⃗, y), where ϕ is q.f. Note that ϕ is a Boolean combination of
equalities, inequalities and negations thereof. First note that we can get rid of negations: in DLO, u ̸� v is
equivalent to u < v ∨ v < u. Also, u ≮ v is equivalent in DLO to u = v ∨ v < u. Thus, using the distributivity
of ∧ over ∨, we may assume that ϕ is a disjunction of conjunctions of equalities and inequalities. Finally, ∃y
distributes over ∨ and

|=
(
∃y[ψ(x⃗, y)∧θ(x⃗)]

)
↔

(
[∃yψ(x⃗, y)]∧θ(x⃗)

)
,

so we may assume that ϕ is just a conjunction of equalities and inequalities using y, i.e. ϕ is of the form∧
i∈I
y = xi

∧
∧
j∈J
xj < y

∧
∧
k∈K

y < xk

 ,
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where I, J,K ⊆
{
0,1, . . . , |x⃗| − 1

}
.

Case: I , ∅. To obtain a q.f. equivalent, we fix i ∈ I and simply replace every occurrence of y in ϕ with xi .
Case: I = ∅ and either J = ∅ or K = ∅. Say J = ∅. Then, ϕ is equivalent, in DLO, to ⊤ because DLO asserts that
there is no maximum element, so a y satisfying

∧
k∈K xk < y would exist in every model of DLO.

Case: I = ∅ and J , ∅ and K , ∅. Because our linear order is required to be dense, such a y would exist in
every model as long as max {xk : k ∈ K} <min

{
xj : j ∈ J

}
. Thus, in DLO, ϕ is equivalent to∧

j∈J,k∈K
xj < xk . □

7.D. Semantic approach

Let σ be a signature and M be a σ -structure. For A ⊆M, recall the definitions of σA and Diag(M ,A) from
Definition 3.7. Note that here the role of the model M is to provide an ⊆-maximal set of q.f. σA-sentences
that is consistent with T . We abstract this out:

Definition 7.9. Let D be a set of new constant symbols (i.e. they do not occur in σ ). A set Γ (D) of quantifier
free σD-sentences is called a T -diagram for D if Γ (D) is a ⊆-maximal set of q.f. σD-sentences such that
T ∪ Γ (D) is consistent. When D is finite, we write it as an ordered tuple d⃗ and write Γ (d⃗) instead.

Note that the ⊆-maximality here is equivalent to the statement that for each q.f. σD-sentence ψ, either
ψ ∈ Γ (D) or ¬ψ ∈ Γ (D). It is clear that for any M |= T and A ⊆M, Diag(M ,A) is a T -diagram for A. The
converse is also true due to the Completeness theorem:

Observation 7.10. Every T -diagram is of the form Diag(M ,A) for some M |= T and A ⊆M.

The following definition gives an equivalent (semantic) condition to q.e.

Definition 7.11. We say that a σ -theory T is diagram-complete if T ∪ Γ (d⃗) is a complete σd⃗-theory for every

T -diagram Γ (d⃗) and every finite tuple d⃗ of new constants.

Note that the finiteness condition on d⃗ is superficial:

Observation 7.12. T is diagram-complete if and only if T ∪ Γ (A) is a complete σA-theory for every T -diagram
Γ (A) and every set A of new constants.

Proof. This is simply because every σA-formula uses only a finite subset of A. □

Proposition 7.13. A σ -theory T admits q.e. if and only if it is diagram-complete.

Proof. ⇒: Let Γ (d⃗) be a T -diagram and let ϕ(d⃗) be a σd⃗-sentence. By q.e., there is a q.f. σd⃗-sentence ψ(d⃗)

such that T |= ϕ(d⃗)↔ ψ(d⃗). But by the maximality of Γ (d⃗), either ψ(d⃗) or its negation is in Γ (d⃗), so T ∪ Γ (d⃗)
satisfies either ϕ(d⃗) or its negation.
⇐: Assume T diagram-complete and let ϕ(x⃗) be a σ -formula. Treating x⃗ as a vector of new constants, we
consider the set

Γ (x⃗) ..=
{
ψ : ψ(x⃗) is a q.f. σ -formula and T |= ϕ→ ψ

}
,

hoping to prove that T |= ψ→ ϕ for some ψ ∈ Γ (x⃗).

Claim. T ∪ Γ (x⃗) |= ϕ.

Proof of Claim. Suppose towards a contradiction that there is a model M |= T∪Γ (x⃗) with M |= ¬ϕ. In particular,
Diag(M , x⃗) ⊇ Γ (x⃗). But Diag(M , x⃗) is a T -diagram and T is diagram-complete, so T ′(x⃗) ..= T ∪Diag(M , x⃗) is
a complete σx⃗-theory. Now T ′(x⃗) ⊭ ϕ because M |= ¬ϕ and M |= T ′(x⃗), so T ′(x⃗) |= ¬ϕ. By the Compactness
theorem, and because Diag(M , x⃗) is closed under conjunctions, there is ψ ∈Diag(M , x⃗) such that T ∪{ψ} |= ¬ϕ
(even if T alone satisfies ¬ϕ, we can take ψ ..=⊤). Taking the contrapositive, it follows that T |= ϕ→¬ψ, so
¬ψ ∈ Γ (x⃗) ⊆Diag(M , x⃗), contradicting the consistency of Diag(M , x⃗). ⊠

By the Compactness theorem again, and because Γ (x⃗) is closed under conjunctions and contains ⊤, there
is ψ ∈ Γ (x⃗) such that T |= ψ→ ϕ, so T |= ψ↔ ϕ. □
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7.E. Quantifier elimination for ACF

In this subsection we prove that ACF is diagram-complete. The only method for showing completeness that
we have learnt so far is the Łoś–Vaught test, and that is what we will use.

The proof of the following proposition is almost the same as of Proposition 4.7.

Proposition 7.14. For every ACF-diagram Γ (d⃗), ACF∪ Γ (d⃗) is a κ-categorical σring(d⃗)-theory, for every uncount-
able cardinal κ.

Proof. Let K1,K2 |= ACF∪ Γ (d⃗) with |K1| = |K2| = κ and let a⃗ ..= d⃗K1 and b⃗ ..= d⃗K2 . Furthermore, let Fi denote
the prime subfield of Ki .

Claim. F(a⃗) and F (⃗b) are isomorphic. In particular, K1 and K2 have the same characteristic.

Proof of Claim. This easily follows from the fact that Γ (d⃗) contains each atomic (σring)d⃗-formulas (including
the σ -sentences 1 + 1 + . . .+ 1 = 0) or its negation. ⊠

Without loss of generality, we can identify F(a⃗) and F (⃗b), i.e. assume that L ..= F(a⃗) = F (⃗b). Let Bi
be transcendence base over L in Ki . The rest of the proof is a repetition of the corresponding part in
Proposition 4.7. □

This and Proposition 7.13 together imply:

Corollary 7.15. ACF admits quantifier elimination.

Corollary 7.16. The definable subsets of an algebraically closed field are finite or cofinite.

Proof. Let K be an algebraically closed field. By q.e., every definable set S ⊆ F is defined by a q.f. formula
ϕ(x). For the base case ϕ(x) ..= (t1(x) � t2(x)), the statement is clear since each ti(x) is a polynomial in x with
coefficients in K and the polynomial t1(x)− t2(x) has only finitely-many roots. The step case is also clear since
the set of finite and cofinite subsets of K is closed under finite unions (corresponding to ∧) and complements
(corresponding to ¬). □

Remark 7.17. One can also show using a similar argument that the theory of vector spaces over a countable
field admits q.e. and conclude that the definable subsets of a vector space are only the finite and cofinite
ones. In general, structures with only definable subsets being finite or cofinite are called strongly minimal.
It turns out that in those structures the model-theoretic generalization of algebraic closure allows to define
notions of independence, basis, and dimension such that the rest of the structure is “free” over a basis in
the sense that any bijection between bases extends to a (not necessarily unique) isomorphism between the
structures.

7.F. Model-completeness

The following is a very useful notion that is slightly weaker than quantifier elimination.

Definition 7.18. A σ -theory T is called model-complete if A ⊆ B implies A ⪯ B, for all A,B |= T .

Caution 7.19. It is important to note that for a model B of T , we have A ⊆ B ⇒ A ⪯ B only for those
substructures A of B, which are also models of T .

Proposition 7.20. Quantifier elimination implies model-completeness.

Proof. Suppose T admits q.e. and A ⊆ B, where A,B |= T . Because A and B agree on the q.f. formulas about
the elements of A, and every formula is equivalent to a q.f. formula (in T ), A and B agree on all formulas
about the elements of A. A σ -structure M is called model-complete if such is Th(M). □

Example 7.21. It follows from Theorem 7.5 that (R,0,1,+,−, ·) is model-complete; yet, one can show that the
formula abbreviating x < y has no q.f. equivalent.

Recalling that we simply write Diag(A) for Diag(A,A), the following proposition justifies the terminology
with regards to diagram-completeness and highlights the difference with quantifier elimination.

Proposition 7.22. For a σ -theory T , the following are equivalent:
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(1) T is model-complete.
(2) For every model A |= T , T ∪Diag(A) is a complete σA-theory.
(3.a) Every σ -formula ϕ(x⃗) is equivalent in T to a universal formula.
(3.b) Every σ -formula ϕ(x⃗) is equivalent in T to an existential formula.

Proof. All implications are easy, except for (2)⇒(3.a). The proof of the latter is along the same lines as that
of Proposition 7.13 and we leave it as a (good) exercise. □

7.G. Hilbert’s Nullstellensatz

Recall that ACF admits q.e. and hence is model-complete. As a nice application of this fact, we deduce what
would be the first theorem in algebraic geometry.

Hilbert’s Nullstellensatz 7.23 (Weak Form). Let F be an algebraically closed field and I be a proper ideal in the
polynomial ring F[d⃗], where d⃗ = (d1, . . . ,dn) is a finite vector of indeterminates. Then the polynomials in I have a
common root in F, i.e. there is a⃗ ∈ Fn such that f (a⃗) = 0 for all f ∈ F[d⃗].

Proof. By replacing I with a maximal ideal containing it (which exists by Zorn’s lemma), we may assume
that I is maximal to begin with. Thus, K ..= F[d⃗]/I is a field. Note that now every polynomial in I has a root
in K in the following sense: for f ∈ I , let f (x⃗) be the polynomial obtained from f by replacing d⃗ with the
variable vector x⃗. Then, by the definition of K , f (a⃗) = 0, where a⃗ = (d1 + I, . . . ,dn + I) ∈ K . (This is why we
moved from F to K : to artificially create a common root).

Let L be an algebraic closure of K . Since K ⊆ L, there is still a common root in L for all polynomials in
I . Now we want to use the model-completeness of ACF to transfer this statement down to F to obtain a
common root in F. However, expressing (in a first-order way) the statement that all polynomials in I have a
common root seems to be a problem because there are infinitely-many polynomials in I (while formulas are
finite). Luckily, Hilbert’s Basis theorem (which is very natural and easy, see here) says that any ideal in F[d⃗]
is finitely generated, so I is generated by some f1, . . . , fm ∈ F[d⃗]. Hence all polynomials in I having a common
root is equivalent to

ϕ(p⃗) ..= ∃x⃗
m∧
i=1

(fi(x⃗) � 0),

where p⃗ ∈ Fk is a tuple containing all coefficients of f1, . . . , fm. By model-completeness of ACF, because F ⊆ L
and F ,L |= ACF, we have F ⪯ L. Hence F |= ϕ(p⃗) since L |= ϕ(p⃗), so f1, . . . , fm have a common root in F. □

From this form of the Nullstellensatz, we can derive its strong form using the so-called Rabinowitsch
trick; this does not use any model theory, but we do it here anyway for recreation. First we introduce some
notation. For a ring R, let I(R) denote the set of its ideals. For a field F, a⃗ ∈ Fn, and J ∈ I(F[x⃗]), we say that a⃗
annihilates J , written J(a⃗) = 0, if for each f ∈ J , f (a⃗) = 0. Put C(J) ..=

{
a⃗ ∈ Fn : J(a⃗) = 0

}
. Similarly, for A ⊆ Fn,

put I(A) ..=
{
f ∈ F[x⃗] : (∀a⃗ ∈ A)f (a⃗) = 0

}
. Clearly, I(C(J)) ⊇

√
J , where

√
J is the radical of J , i.e.√

J ..=
{
f ∈ F[x⃗] : f m ∈ J for some m ∈N

}
.

Hilbert’s Nullstellensatz 7.24 (Strong Form). Let F be an algebraically closed field. For any J ∈ I(F[x⃗]),
I(C(J)) =

√
J .

Proof. Let f ∈ I(C(J)), so every a⃗ ∈ Fn that annihilates J , also annihilates f . Let t be a new indeterminant
variable and note that there is no element of Kn+1 that annihilates both J and 1− tf . Thus, by the weak form
of Hilbert’s Nullstellensatz, the ideal generated by J ∪ {1− tf } in F[x⃗, t] must be equal to F[x⃗, t]. Hence, there
are some f1, . . . , fk ∈ J and g1(t), . . . , gk+1(t) ∈ F[x⃗, t] such that

g1(t)f1 + . . .+ gk(t)fk + gk+1(t)(1− tf ) = 1.

Assuming that f , 0 (otherwise, we are done), plug in t = 1/f and get

g1(1/f )f1 + . . .+ gk(1/f )fk = 1.

Multiplying both sides with f m for large enough m ∈N, we get

g̃1f1 + . . .+ g̃kfk = f m,

https://proofwiki.org/wiki/Hilbert%27s_Basis_Theorem
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where g̃1, . . . , g̃k are some polynomials in F[x⃗], which shows that f ∈
√
J . □
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