
DESCRIPTIVE SET THEORY PROBLEM SET

ANUSH TSERUNYAN

1. Let X be a second-countable topological space.

(a) Show that X has at most continuum-many open subsets.

(b) Let α, β, γ denote ordinals. A sequence of sets (Aα)α<γ is called monotone if it
is either increasing (i.e. α < β ⇒ Aα ⊆ Aβ, for all α, β < γ) or decreasing (i.e.
α < β ⇒ Aα ⊇ Aβ, for all α, β < γ); call it strictly monotone, if all of the inclusions
are strict.

Prove that any strictly monotone sequence (Uα)α<γ of open subsets of X has
countable length, i.e. γ is countable.

Hint: Use the same idea as in the proof of (a).

(c) Show that every monotone sequence (Uα)α<ω1 open subsets ofX eventually stabilizes,
i.e. there is γ < ω1 such that for all α < ω1 with α > γ, we have Uα = Uγ.

Hint: Use the regularity of ω1, i.e. supremum of countably-many countable ordinals
is still a countable ordinal.

(d) Conclude that parts (a), (b) and (c) are also true for closed sets.

2. Prove that any separable metric space has cardinality at most continuum.

Remark: This is true more generally for first-countable separable Hausdorff topological
spaces, but false for general separable Hausdorff topological spaces (try to construct a
counter-example).

3. Let X be a topological space. Prove that (1)⇒ (2)⇒ (3)⇒ (4).

(1) X is a totally bounded metric space.

(2) X is a separable metric space.

(3) X is a second countable.

(4) X is Lindelöf, i.e. every open cover admits a countable subcover.

4. (a) Show that a metric space X is complete if and only if every decreasing sequence
of closed sets (Bn)n∈N with diam(Bn) → 0 has nonempty intersection (in fact,⋂
n∈NBn is a singleton).

(b) Show that the requirement in (a) that diam(Bn)→ 0 cannot be dropped. Do this
by constructing a complete metric space that has a decreasing sequence (Bn)n∈N of
closed balls with

⋂
n∈NBn = ∅.

Date: October 3, 2021.
Many of the problems here are borrowed from “Classical Descriptive Set Theory” by A. Kechris.
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Hint: Use N as the underlying set for your metric space.

5. Prove that a fiber product over a Hausdorff space is a closed subset of the product.
Conclude that a fiber product of countably-many Polish spaces over a Hausdorff space
is Polish.

6. By definition, the class of Gδ sets is closed under countable intersections. Show that it
is also closed under finite unions. Equivalently, the class of Fσ sets is closed under finite
intersections.

Hint: Think in terms of quantifiers ∀ and ∃ rather than intersections and unions; for
example, if A =

⋂
n Un, then x ∈ A ⇐⇒ ∀n(x ∈ An).

7. 1 Prove that for every Polish space X, there is an injection c : X ↪→ C such that the
c-preimages of the sets Vn ..= {x ∈ C : x(n) = 1}, n ∈ N, are open. In particular, the
c-preimages of open sets are Fσ.

Hint: Encode the points of X as binary sequences using a countable basis (Un)n∈N.

8. 1 Prove that every Polish space X admits a linear ordering < that is both Gδ and Fσ
2

as a subset of X2.

Hint: Think of the points of X as binary sequences using a countable basis (Un)n∈N.

9. (a) Show that the Cantor set (with relative topology of R) is homeomorphic to the
Cantor space.

(b) Show that the Baire space N is homeomorphic to a Gδ subset of the Cantor space
C.

(c) Show that the set of irrationals (with the relative topology of R) is homeomorphic
to the Baire space.

Hint: Use the continued fraction expansion.

10. Let T ⊆ A<N be a tree and suppose it is finitely branching. Prove that [T ] is compact.

11. Let T ⊆ N<N be a tree. Define a total ordering < on T such that < is a well-ordering if
and only if T doesn’t have an infinite branch.

12. Let S, T be trees on sets A,B, respectively. Prove that for any Gδ set D ⊆ [S] and
continuous function f : D → [T ] there is a monotone map ϕ : S → T such that f = ϕ∗.
In particular, dom(f) = dom(ϕ∗).

Hint: First solve for D ..= [S]: for s ∈ S, define ϕ(s) to be the longest t ∈ T such
that |t| 6 |s| and Nt ⊇ f(Ns). For the general case, write D =

⋂
↓ n Un, where the Un

are open, and replace |s| with the largest n 6 |s| such that Ns ∩ D ⊆ Un. The case
Ns ∩D = ∅ needs a special (yet straightforward) care.

1Thanks to Jenna Zomback for this.
2Thanks to Wei Dai for pointing out that this is also Fσ.
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13. Using the outline below, prove the following:

Proposition. Let (X, d) be a metric space. The following are equivalent:

(1) X is compact.

(2) Every sequence in X has a convergent subsequence.

(3) X is complete and totally bounded.

(4) X is separable and every decreasing sequences of nonempty closed sets has an
intersection.

In particular, compact metrizable spaces are Polish.

(1) ⇒ (2): For a sequence (xn)n, let Km be the closure of the tail {xn}n>m of the
sequence and use the intersection-of-closed sets version of the definition of compactness.

(2) ⇒ (3): For total boundedness, fix an ε > 0 and start constructing an ε-net F by
adding elements to your F that are not yet covered by B(F, ε). For completeness, note
that if a subsequence of a Cauchy sequence converges, then so does the entire sequence.

(3) ⇒ (4): Separability follows from total boundedness, see Question 3. Let (Kn) be a
decreasing sequences of nonempty closed sets and εn → 0. There is a finite collection B0

of balls or radius ε0 that covers K0. One of these balls has to intersect infinitely-many
Kn.

(4)⇒ (1): Separability implies Lindelöf (i.e. every open cover has a countable subcover),
see Question 3. Every countable open cover having a finite subcover is equivalent to
every countable collection of closed sets with the finite intersection property having a
nonempty intersection.

14. Let X be a compact metric space and Y be a separable complete metric space. Let
C(X, Y ) be the space of continuous functions from X to Y equipped with the uniform
metric, i.e. for f, g ∈ C(X, Y ),

du(f, g) = sup
x∈X

dY (f(x), g(x)).

Prove that C(X, Y ) is a separable complete metric space, hence Polish.

Hint 1: Proving separability is tricky, so you may want to first prove it for X = [0, 1]
and Y = R. In the general case (to prove separability), note that by uniform continuity,

C(X, Y ) =
⋃
n

An,m,

for every n ∈ N, where

An,m = {f ∈ C(X, Y ) : ∀x, y ∈ X(dX(x, y) < 1/n⇒ dY (f(x), f(y)) < 1/m)} .
Realize that it is enough to show that for any n,m ∈ N, there is a countable Bn,m ⊆ An,m
such that for any f ∈ An,m there is g ∈ Bn,m with du(f, g) < 3/m. Now fix n,m and try
to construct Bn,m; when doing so, don’t try to define each function in Bn,m by hand as
you would maybe do in the case X = [0, 1]; instead, carefully pick them out of functions
in An,m.

Hint 2: This is Theorem 4.19 in Kechris’s “Classical Descriptive Set Theory”.
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15. Show that Hausdorff metric on K(X) is compatible with the Vietoris topology.

16. Let (X, d) be a metric with d 6 1. For (Kn)n ⊆ K(X) \ {∅} and nonempty K ∈ K(X):

(a) δ(K,Kn)→ 0⇒ K ⊆ T limnKn;

(b) δ(Kn, K)→ 0⇒ K ⊇ T limnKn.

In particular, dH(Kn, K)→ 0⇒ K = T limnKn. Show that the converse may fail.

17. Let (X, d) be a compact metric with d 6 1. For sequence (Kn)n ⊆ K(X) \ {∅}, show
the following:

(a) δ(T limnKn, Km)→ 0 as m→∞;

(b) δ(Km,T limnKn)→ 0 as m→∞.

Thus, if K = T limnKn exists, then dH(Kn, K)→ 0.

18. Let (X, d) be a metric space with d 6 1. Then x 7→ {x} is an isometric embedding of
X into K(X).

19. Let (X, d) be a metric space with d 6 1 and assume Kn → K. Then any sequence
(xn)n∈N with xn ∈ Kn has a subsequence converging to a point in K.

20. Let X be metrizable.

(a) The relation “x ∈ K” is closed, i.e. {(x,K) : x ∈ K} is closed in X ×K(X).

(b) The relation “K ⊆ L” is closed, i.e. {(K,L) : K ⊆ L} is closed in K(X)2.

(c) The relation “K ∩ L 6= ∅” is closed, i.e. {(K,L) : K ∩ L 6= ∅} is closed in K(X)2.

(d) The map (K,L) 7→ K ∪ L from K(X)2 to K(X) is continuous.

(e) If Y is metrizable, then the map (K,L) 7→ K×L from K(X)×K(Y ) into K(X×Y )
is continuous.

(f) Find a compact X for which the map (K,L) 7→ K ∩ L from K(X)2 to K(X) is not
continuous.

21. Let X be a topological space.

(a) If X is nonempty perfect, then so is K(X) \ {∅}.
(b) If X is compact metrizable, then C(X) is perfect, where C(X) = C(X,R).

22. (AC) Show that any nonempty perfect compact Hausdorff space X has cardinality at
least continuum by constructing an injection from the Cantor space into X.

Hint: Mimic the proof for Polish spaces.

23. Let X be a nonempty perfect Polish space and let Q be a countable dense subset of X.
Show that Q is Fσ but not Gδ. In particular, Q is not Polish (in the relative topology
of R).
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24. 3 Show that [0, 1] does not admit a countable nontrivial4 partition into closed intervals.

Hint: What kind of subset would the endpoints of those intervals form?

25. Show that the perfect kernel of a Polish space X is the largest perfect subset of X, i.e.
it contains all other perfect subsets.

26. A topological group is a group with a topology on it so that group multiplication
(x, y) → xy and inverse x → x−1 are continuous functions. Show that a countable
topological group is Polish if and only if it is discrete.

27. Let X be separable metrizable. Show that

Kp(X) ..= {K ∈ K(X) : K is perfect}
is a Gδ set in K(X). In particular, if X is Polish, then so is Kp(X).

28. (a) Let X be a Polish space. Show that if K ⊆ X is countable and compact, then its
Cantor–Bendixson rank |K|C is not a limit ordinal.

(b) For each nonlimit ordinal α < ω1, construct a countable compact subset Kα of C,
whose Cantor–Bendixson rank is exactly α.

29. Let T ⊆ N<N be a tree.

(a) Suppose T is pruned. Find a condition (on the nodes of the tree T ) such that T
satisfies it if and only if [T ] is perfect (as a subset of N ).

(b) Define a Cantor–Bendixson derivative T ′ of T , as well as the iterated derivatives
(Tα)α∈ON, such that [T∞] is the perfect kernel of [T ], i.e. [T∞] = [T ]∞.

Remark: The statement of this question is somewhat vague and informal, but under-
standing it is part of the challenge.

30. Let X be a second countable zero-dimensional space.

(a) Prove Kuratowski’s reduction property: If A,B ⊆ X are open, there are open
A∗ ⊆ A,B∗ ⊆ B with A∗ ∪B∗ = A ∪B and A∗ ∩B∗ = ∅.
Hint: Write A and B as countable unions of clopen sets: A =

⋃
nAn, B =

⋃
nBn.

Put those points x of A in A∗ that are covered by An no later than by Bn, i.e. if n
is the smallest number such that x ∈ An ∪Bn, then x ∈ An.

(b) Conclude the following separation property: For any disjoint closed sets A,B ⊆ X,
there is a clopen set C separating A and B, i.e. A ⊆ C and B ∩ C = ∅.

31. (a) Let X be a nonempty zero-dimensional Polish space such that all of its compact
subsets have empty interior. Fix a complete compatible metric and prove that there
is a Luzin scheme (As)s∈N<N with vanishing diameter and satisfying the following
properties:

3Thanks to Jenna Zomback for sparking this problem.
4A partition P of a set X is trivial if P = {X}.
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(i) A∅ = X;

(ii) As is nonempty clopen;

(iii) As =
⋃
i∈NAsai.

Hint: Assuming As is defined, cover it by countably many clopen sets of diameter
at most δ < 1/n, and choose the δ small enough so that any such cover is necessarily
infinite.

(b) Derive the Alexandrov–Urysohn theorem, i.e. show that the Baire space is the only
topological space, up to homeomorphism, that satisfies the hypothesis of (a).

32. For this exercise, you may use the Alexandrov–Urysohn theorem without proof.

(a) Let Y ⊆ R be Gδ and such that Y , R \ Y are dense in R. Show that Y is
homeomorphic to N .

(b) Show that part (a) may fail if R is replaced by R2.

(c) However, prove that part (a) holds if R is replaced by any zero-dimensional nonempty
Polish space.

33. Show that for any Polish space X there is a continuous open surjection g : N � X by
constructing a sequence (Us)s∈N<N of open subsets of X such that

(i) U∅ = X

(ii) U sai ⊆ Us

(iii) Us =
⋃
i Usai

(iv) diam(Us) < 2−|s|.

Caution: We don’t require Usai ∩ Usaj = ∅ for i 6= j (which makes your life easy), so
the associated map g may not be injective.

34. Using part (c) of Question 32, prove the following:5

Theorem (Strengthening of the Perfect Set Theorem). Every nonempty perfect Polish
space contains a dense Gδ subset homeomorphic to the Baire space.

35. The following steps outline a proof of the Baire category theorem for locally compact
Hausdorff spaces.

1) Show that compact Hausdorff spaces are normal.

2) Using part (1), prove that in locally compact6 Hausdorff space X, for every nonempty
open set U and every point x ∈ U , there is a nonempty precompact7 open V 3 x
with V ⊆ U .

5Thanks to Anton Bernshteyn for suggesting this problem.
6A topological space is said to be locally compact if every point has a neighborhood basis that consists of

precompact7 open sets.
7Precompact sets are those contained in compact sets. For Hausdorff spaces, this is equivalent to having a

compact closure.
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3) Prove that locally compact Hausdorff spaces are Baire.

36. For topological space X, Y , a continuous map f : X → Y is called category preserving
if f -preimages of meager sets are meager.

(a) Show that any continuous open map f : X → Y is category preserving (in fact,
f -preimages of nowhere dense are nowhere dense). In particular, projections are
category preserving.

(b) For topological spaces X, Y , if X is Baire, then, for a continuous map f : X → Y ,
the following are equivalent:

(1) f is category preserving.

(2) f -preimages of nowhere dense sets are nowhere dense.

(3) f -images of open sets are somewhere dense.8

(4) f -preimages of dense open sets are dense.

37. 9

(a) Give an example of a function f : R→ R that is continuous at every irrational but
discontinuous at every rational.

(b) Prove that there is no function f : R→ R that is continuous at every rational but
discontinuous at every irrational.

Hint: Show that the set of continuity points of any function is Gδ.

38. Recall that C([0, 1]) is a Polish space with the uniform metric. Show that the generic
element of C([0, 1]) is nowhere differentiable following the outline below.

1) Prove that given m ∈ N, any function f ∈ C([0, 1]) can be approximated (in the
uniform metric) by a piecewise linear function g ∈ C([0, 1]), whose linear pieces
(finitely many) have slope ±M , for some M > m.

2) For each n > 1, let En be the set of all functions f ∈ C([0, 1]), for which there is
x0 ∈ [0, 1] (depending on f) such that |f(x) − f(x0)| 6 n|x − x0| for all x ∈ [0, 1].
Show that En is nowhere dense using the fact that if g is as in (1) with m = 2n, then
some open neighborhood of g is disjoint from En.

39. Let X be a perfect Polish space and show that a generic compact subset of X is perfect,
i.e. show that the set Kp(X) is comeager in K(X) (see Question 27).

40. A finite bounded game on a set A is a game similar to infinite games, but the players
play at most n number of steps before the winner is decided, for some fixed number
n > 1 (say a million). More formally, the game is a tree T ⊆ A<n, for some n, and the
runs of the game are exactly the elements of the set Leaves(T ) of all leaves of T , so the
payoff set is a subset D ⊆ Leaves(T ). Player I wins the run s ∈ Leaves(T ) of the game

8Thanks to Dakota Ihli for suggesting this.
9Thanks to Francesco Cellarosi for bringing up the statements of this question to me.
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iff s ∈ D. Consequently, Player II wins iff s ∈ Leaves(T ) \D. All games that appear in
real life are such games, e.g. chess (counting ties as a win for Player II).

Prove the determinacy of finite bounded games.

Hint: Let’s write down what it means for Player I to have a winning strategy in this
game, assuming for simplicity that n is even and that all of the runs of the game are of
length exactly n:

∃a1∀a2...∃an−1∀an((a1, ..., an) ∈ D).

What happens when you negate this statement?

41. A finite game on a set A is a game similar to infinite games, but the players play only
finitely many steps before the winner is decided. More formally, it is a (possibly infinite)
tree T ⊆ A<N that has no infinite branches, and the set of runs is Leaves(T ), so the
payoff set is a subset D ⊆ Leaves(T ). Player I wins the run s ∈ Leaves(T ) of the game
iff s ∈ D. Consequently, Player II wins iff s ∈ Leaves(T ) \D.

(a) Prove the determinacy of finite games.

Hint: Call a position s ∈ T determined, if from that point on, one of the players
has a winning strategy. Thus, no player has a winning strategy in the beginning iff
∅ is undetermined. What can you say about extensions of undetermined positions?

(b) Conclude the determinacy of clopen infinite games. (These are games with runs in

AN and the payoff set a clopen subset of AN.)

42. 10 Let G be the so-called Hamming graph on C, namely, there is an edge between x, y ∈ C
exactly when x and y differ by one bit.

(a) Prove that G is has no odd cycles and hence is bipartite (admits a 2-coloring).
Pinpoint the use of AC.

(b) Fix a coloring c : C → 2 of G and let Ai ..= c−1(i) for i ∈ {0, 1}. Consider the
game where each player plays a finite nonempty binary sequence at each step and a
play is the concatenation of those finite sequences, thus an infinite binary sequence.
Prove that this game with the payoff set A0 is not determined by showing that if
one of the players had a winning strategy, so would the other one.

Hint: Steal the other player’s strategy.

43. In ZF (in particular, don’t use AC or ¬AD), define a game with rules G(T,D) on the set

A = P(NN) (i.e. define a pruned tree T ⊆ A<N and a set D ⊆ AN), so that ZF+¬AD
implies that this game is undetermined. In other words, you have to define the tree
T and the payoff set D without using ¬AD, but then prove that the game G(T,D) is
undetermined using ¬AD.

Hint: Note that besides playing subsets of NN, players can also play natural numbers
in the sense that N ↪→P(NN) by n 7→ {(n)i∈N}.

10Thanks to Forte Shinko for suggesting this problem.
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44. Let X be a second countable Baire space. Show that the σ-ideal MGR(X) has the
countable chain condition in BMEAS(X), i.e. there is no uncountable family A ⊆
BMEAS(X) of nonmeager sets such that for any two distinct A,B ∈ A, A ∩ B is
meager.

45. Let X be a topological space.

(a) If An ⊆ X, then for any open U ⊆ X,

U 
⋂
n

An ⇐⇒ ∀n(U  An).

(b) If X is a Baire space, A is Baire measurable, and U ⊆ X is nonempty open, then

U  Ac ⇐⇒ ∀V ⊆ U(V 1 A),

where V varies over a weak basis11 for X.

(c) If X is a Baire space, the sets An ⊆ X are Baire measurable, and U is nonempty
open, then

U 
⋃
n

An ⇐⇒ ∀V ⊆ U∃W ⊆ V ∃n(W  An).

where V,W vary over a weak basis for X.

46. Prove that a topological group G is Baire iff G is nonmeager.

47. Let X be a topological space and A ⊆ X.

(a) Show that U(A) is regular open, i.e. it is equal to the interior of its closure.

(b) If moreover X is a Baire space and A is Baire measurable, then U(A) is the unique
regular open set U with A =∗ U .

48. Let G be a Polish group (i.e. a topological group whose topology happens to be Polish)
and let H < G be a subgroup. Prove that H is Polish iff H is closed.

Hint: ConsiderH insideH. What is the Baire category status (meager/nonmeager/comeager)
of H in (the relative topology of) H? If H ( H, look at the cosets.

49. Let Γ be a group acting on a Polish space X by homeomorphisms (i.e. each element
γ ∈ Γ acts as a homeomorphism of X). A set A ⊆ X is called invariant if γA = A
for all γ ∈ Γ. The action Γ y X is called generically ergodic if every invariant Baire
measurable set A ⊆ X is either meager or comeager. For a set A ⊆ X, denote by [A]Γ
the saturation of A, namely [A]Γ =

⋃
γ∈Γ γA.

Prove that the following are equivalent:

(1) Γ y X is generically ergodic.

(2) Every invariant nonempty open set is dense.

(3) For comeager-many x ∈ X, the orbit [x]Γ is dense.

11A weak basis for a topological space X is a collection V of nonempty open sets such that every nonempty
open set U ⊆ X contains at least one V ∈ V .
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(4) There is a dense orbit.

(5) For every nonempty open sets U, V ⊆ X, there is γ ∈ Γ such that (γU) ∩ V 6= ∅.

Hint: For (2)⇒(3), take a countable basis {Un}n∈N and consider
⋂
n[Un]Γ.

50. Show that the Kuratowski–Ulam theorem fails if A is not Baire measurable by con-
structing a nonmeager set A ⊆ R2 (using AC) so that no three points of A are on a
straight line.

Hint: Note that there are only continuum many Fσ sets, so take a transfinite enumeration
(Fξ)ξ<2ℵ0 of all meager Fσ sets, and construct a sequence (aξ)ξ<2ℵ0 of points in R2 by

transfinite recursion so that for each ξ < 2ℵ0 ,

{aλ : λ 6 ξ} * Fξ,

and no three of the points in {aλ : λ 6 ξ} lie on a straight line.

Hint: Recall that in perfect Polish spaces (such as R,R2), any nonmeager Baire
measurable subset contains a copy of the Cantor space (this is because it contains a
nonmeager Gδ set). Now if A ..= {aλ : λ 6 ξ} ⊆ Fξ, apply Kuratowski–Ulam to Fξ to
find x ∈ R such that (Fξ)x is meager and the vertical line Lx = {(x, y) ∈ R : y ∈ R} is
disjoint from A.

51. Show that if X, Y are second countable Baire spaces, so is X × Y .

52. Definition. A filter on a set X is a set U ⊆P(X) such that

(i) (Nontriviality) X ∈ U but ∅ /∈ U ;

(ii) (Upward closure) A ∈ U , B ⊇ A⇒ B ∈ U ;

(iii) (Closure under finite intersections) A,B ∈ U ⇒ A ∩B ∈ U .

A filter U is called an ultrafilter if A /∈ U ⇒ Ac ∈ U for every A ⊆ X. Finally,
an ultrafilter is called principal if for some x ∈ X, {x} ∈ U (or, equivalently, U =
{A ⊆ X : x ∈ A}).

It is useful to think of a filter U as the family of all conull sets of a {0, 1}-valued
finitely additive measure µU on a subalgebra of P(X). In other words, sets in U should
be thought of as large sets. U being an ultrafilter simply means that µU is defined
on all of P(X); in other words, if a set is not large then it is small (i.e. there are no
intermediate sets). Also, U being principal means that µU is a Dirac measure (i.e. a
point-mass at some point x).

(a) (AC) Prove that for every infinite set X, there exists a nonprincipal ultrafilter on
X; do it by showing that every filter is contained in an ultrafilter and applying this
to the filter of cofinite sets (called the Fréchet filter).

(b) Identifying P(N) with C = 2N, view ultrafilters on N as subsets of C and show that
no nonprincipal ultrafilter U is Baire measurable (as a subset of C).

53. Using the outline below, prove Pettis’s theorem:
10



Theorem (Pettis). Let G be a topological group and A ⊆ G be Baire measurable. If A
is nonmeager, then A−1A contains an open neighborhood of the identity 1G; in fact if
U  A, then U−1U ⊆ A−1A.

1) By Question 46, G must be Baire.

2) Note that for any sets B,C ⊆ G,

B ⊆ C−1C ⇐⇒ ∀h ∈ B (Ch ∩ C 6= ∅). (∗)
3) Let U ⊆ G be nonempty open such that U  A. Fix arbitrary g ∈ U and note

that V ..= g−1U ⊆ U−1U is an open neighborhood of 1G. Thus, by (∗), ∀h ∈ V ,
Uh ∩ U 6= ∅.

4) Conclude that for each h ∈ V , Ah ∩ A 6= ∅, and hence, by (∗) again, V ⊆ A−1A.

5) Note that we have shown g−1U ⊆ A−1A for arbitrary g ∈ U , and thus, U−1U ⊆ A−1A.

54. Let G be a Baire topological group (i.e. G is nonmeager) and let H < G be a Baire
measurable subgroup. Prove if H is nonmeager then it is actually clopen! In particular,
if H has countable index in G, then it is clopen.

55. (a) Automatic continuity: Let G,H be topological groups, where G is Baire and
H is separable. Then every Baire measurable group homomorphism ϕ : G→ H is
actually continuous!

Hint: Enough to prove continuity at 1G, so let U 3 1H be open and take an open
neighborhood V 3 1H such that V −1V ⊆ U . Using the separability of H, deduce
that ϕ−1(hV ) is nonmeager for some h ∈ H and apply Pettis’s theorem.

(b) Conclude that if f : (R,+)→ (R,+) is a Baire measurable group homomorphism,
then for some a ∈ R, f(x) = ax for all x ∈ R.

Hint: First show this for integers, then for rationals, etc.

56. Letting dA : R → [0, 1] denote the Lebesgue density function for A ⊆ R, define
D(A) ..= {x ∈ R : dA(x) = 1}. Show that Lebesgue measurable subsets A ⊆ R with
A ⊆ D(A) form a topology.

Hint: To show that a possibly uncountable union A ..=
⋃
`∈LA` of such sets is still

Lebesgue measurable, prove that it can be approximated from above by open sets. First
reduce it to the case A ⊆ (0, 1). Then for each ε > 0, let C be the collection of all

intervals I ⊆ (0, 1) that admit an ` ∈ L with λ(A`∩I)
λ(I)

> 1− ε. Show that C covers A and,

in fact, there is a subcover C ′ ⊆ C of A with λ (
⋃
C ′ \ A) < 2ε. For the latter, use the

version of the Vitali covering lemma as in Lemma 8 of the author’s note on Lebesgue
differentiation.

57. Prove the following facts about the density topology on R. (Below λ denotes the Lebesgue
measure on R and all topological terms are with respect to the density topology.)

(a) Every nonempty open set has positive measure.
11
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(b) For a Lebesgue measurable set A ⊆ R, explicitly compute Int(A) and A, and

conclude that λ(Int(A)) = λ(A) = λ(A).

58. Consider R with the density topology and Lebesgue measure λ. For A ⊆ R, prove that
the following are equivalent:

(1) A is nowhere dense in the density topology;

(2) A is meager in the density topology;

(3) A is λ-null.

Conclude that A is Baire measurable in the density topology if and only if it is Lebesgue
measurable.

59. Let X = IN and put C0 = {(xn)n∈N : xn → 0}. Show that C0 is in Π0
3(X).

60. Let X be a topological space, Y ⊆ X, and let ξ be an ordinal with 1 6 ξ < ω1. Prove
the following:

(a) If Γ is one of Σ0
ξ ,Π

0
ξ ,B, then Γ(Y ) = Γ(X)|Y ..= {A ∩ Y : A ∈ Γ(X)}.

(b) We also always have ∆0
ξ(Y ) ⊇ ∆0

ξ(X)|Y . If moreover, Y ∈ ∆0
ξ(X), then we also

have ∆0
ξ(Y ) ⊆∆0

ξ(X)|Y . However, give an example of a Polish space X and Y ⊆ X
such that the last inclusion is false for ξ = 1.

61. A class Γ of sets is called self-dual if it is closed under complements, i.e. ¬Γ = Γ. Show
that if Γ is a self-dual class of sets in topological spaces that is closed under continuous
preimages, then for any topological space X there does not exist an X-universal set for
Γ(X). Conclude that neither the class B(X) of Borel sets, nor the classes ∆0

ξ(X), can
have X-universal sets.

62. Letting X be a separable metrizable space and λ < ω1 be a limit ordinal, put

Ω0
λ(X) ..=

⋃
ξ<λ

Σ0
ξ(X) (=

⋃
ξ<λ

∆0
ξ(X) =

⋃
ξ<λ

Π0
ξ(X)).

(a) Let Y be an uncountable Polish space and prove that there exists a set P ∈
∆0

λ(Y ×X) that parameterizes Ω0
λ(X).

Hint: First construct such a set for Y = N× C. Then conclude it for Y = C using
the fact that the following functions are continuous: ()0 : C → N and ()1 : C → C
defined for y ∈ C by

y = 1(y)0a0a(y)1.

Finally, conclude the statement for any Y using the perfect set property.

(b) Conclude that if X is uncountable Polish, then ∆0
λ(X) ) Ω0

λ(X).

63. (a) Show that any Polish space admits a finer Polish topology that is zero-dimensional
and has the same Borel sets, i.e. for a given Polish space (X, T ), there exists a
zero-dimensional Polish topology T0 ⊇ T such that B(T0) = B(T ).

12



(b) Let (X, TX), (Y, TY ) be Polish and f : X → Y a Borel isomorphism. Show that there
are Polish topologies T ′X ⊇ TX , T ′Y ⊇ TY with B(T ′X) = B(TX), B(T ′Y ) = B(TY )
such that f : (X, T ′X) → (Y, T ′Y ) is a homeomorphism. Moreover, T ′X , T ′Y can be
taken to be zero-dimensional.

(c) Let Γ be a countable group and consider a Borel action of Γ on a Polish space
(X, T ), i.e. each g ∈ Γ acts as a Borel automorphism of X. Prove that there
exists a Polish topology T0 ⊇ T with B(T0) = B(T ) that makes the action of Γ
continuous. Moreover, T0 can be taken to be zero-dimensional.

64. Let X, Y be topological spaces. If f : X → Y is continuous with respect to some coarser
(not necessarily strictly) Hausdorff topology on Y , then graph(f) is closed in X × Y .

65. Let X be a Tychonoff topological space. Prove that the topology on X generated by
countably-many Polish topologies refining the original topology of X is Polish.

66. Let G be a group equipped with a Polish topology that makes multiplication continuous.
Prove that G is a topological group, i.e., the inverse is continuous as well.

Hint: The inverse map is a group isomorphism from G to the opposite group12 and its
graph is nice.

67. Let X, Y be topological spaces and let projX : X × Y → X be the projection function.
Prove the following statements:

(a) projX is continuous and open.

(b) projX does not in general map closed sets to closed sets, even for X = Y = R.

Remark: We will see shortly in the course that for certain Y = N , the projection
of a closed set may not even be Borel in general.

(c) For X = Y = R, projX maps closed sets to σ-compact (and hence Fσ) sets. More
generally, images of Fσ sets under continuous functions from σ-compact to Hausdorff
spaces are Fσ.

(d) Tube lemma: If Y is compact, then projX indeed maps closed sets to closed sets.

Hint: It is perhaps tempting to use sequences, but this would only work for
first-countable spaces. Instead, use the open cover definition of compact and show
that for closed F ⊆ X×Y , every point x ∈ X \projX(F ) has an open neighborhood
disjoint from projX(F ). The “correct” solution should use nothing but definitions.

68. Show that the class of analytic sets is closed under

(a) continuous images,

(b) continuous preimages,

(c) countable unions,

(d) countable intersections.

12The opposite group Gop of G is the group with the same underlying set, but the order of multiplication
is switched: x ·op y ..= y · x.
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Show that these statements also hold if we replace “continuous” by “Borel”.

69. Let X be Polish and let {An}n∈N be a sequence of disjoint analytic sets in X. Prove
that there are disjoint Borel sets {Bn}n∈N with Bn ⊇ An.

70. Let X, Y be Polish and f : X → Y Borel. Show that for A ⊆ f(X), if f−1(A) is Borel,
then A is Borel relative to f(X), i.e. there is a Borel A′ ⊆ Y such that A = A′ ∩ f(X).

71. Let X be Polish and let E be an analytic equivalence relation on X, i.e. E is an analytic
subset of X2.

(a) Show that for an analytic set A, its saturation [A]E ..= {x ∈ X : ∃y ∈ A(xE y)} is
also analytic.

(b) Let A,B ⊆ X be disjoint E-invariant analytic sets (i.e., [A]E = A, [B]E = B).
Prove that there is an E-invariant Borel set D separating A and B, i.e., D ⊇ A
and D ∩B = ∅.

72. Construct an example of a closed equivalence relation E on a Polish space X and a
closed set C ⊆ X such that the saturation [C]E is analytic but not Borel.

Remark: This shows that in part (a) of the previous question, “analytic” is the best
we can hope for.

Hint: Take analytic A ⊆ N that’s not Borel and let C ⊆ N 2 be a closed set projecting
down onto A. Define an appropriate equivalence relation E on N 2 (i.e. E ⊆ N 2 ×N 2).

73. Let X be set and let T , T ′ be Polish topologies on X such that T ⊆ B(T ′) (for example,
this would hold if T ⊆ T ′). Show that B(T ) = B(T ′).

74. Let (G, T ) be a Polish group, where T denotes the topology of G. Prove that if a Baire
measurable subgroup H < G admits a different topology T ′ 6= T |H with T ⊆ B(T ′) or
T ′ ⊆ B(T ) (for example, this would hold if T ′ is strictly finer/coarser than T ) such
that (H, T ′) is a Polish group, then H is meager in G (in the topology T ).

Hint: Recall Questions 54 and 55(a).

75. Prove the following characterization of Borel sets: A subset B of a Polish space X is
Borel iff it is an injective continuous image of a closed subset of N .

76. Let X be Polish and consider the coding map c : F (X) → 2N defined by F 7→ the

characteristic function of {n ∈ N : F ∩ Un 6= ∅}. Prove that for x ∈ 2N, x ∈ c(F (X)) if
and only if

∀Un ⊆ Um[x(n) = 1→ x(m) = 1]

and

∀Un∀ε ∈ Q+
[
x(n) = 1→ ∃Um ⊆ Un with diam(Um) < ε such that x(m) = 1)

]
.

Conclude that c(F (X)) is a Gδ subset of 2N and hence the Effros space F (X) is standard
Borel.

14



77. Let X be a Polish space. Show that K(X) is a Borel subset of F (X).13

78. Let X be a Polish space. A function s : F (X)→ X is called a selector if s(F ) ∈ F for
every nonempty F ∈ F (X). The goal of this question is to show that for every Polish
space X, the Effros Borel space F (X) admits a Borel selector.

(a) Show that F (N ) admits a Borel selector.

(b) By Question 33, there is a continuous open surjection g : N → X. Prove that the
map f : F (X)→ F (N ) defined by F 7→ g−1(F ) is Borel.

(c) Conclude that F (X) admits a Borel selector.

79. Let X, Y be Polish spaces and let f : X → Y be a continuous function such that f(X)
is uncountable. Put

Kf (X) = {K ∈ K(X) : f |K is injective} ,
and note that, for a fixed countable basis U of X and for K ∈ K(X),

K ∈ Kf (X) ⇐⇒ ∀U1, U2 ∈ U with U1 ∩ U2 = ∅[f(U1 ∩K) ∩ f(U2 ∩K) = ∅].
Next, show that for fixed U1, U2 ∈ U with U1 ∩ U2 = ∅ the set

V =
{
K ∈ K(X) : f(U1 ∩K) ∩ f(U2 ∩K) = ∅

}
is open in K(X), and hence Kf (X) is Gδ.

80. Let X be a Polish space, F ⊆ X ×N and A = projX(F ). Show that if Player II has a
winning strategy in the unfolded Banach–Mazur game G∗∗(F,X), then A is meager.

81. For a topological space X, show that BMEAS(X) admits envelopes: for a given A ⊆ X,
first find a BMEAS(X)-envelope for it in terms of U(·), then write down explicitly what
the set is.

82. Let X be a Polish space and let C(X) denote the smallest σ-algebra on X containing
B(X) and closed under the operation A.

(a) Show that σ(Σ1
1(X)) ⊆ AΠ1

1(X) ⊆ C(X).

Hint: For σ(Σ1
1(X)) ⊆ AΠ1

1(X), it is enough to show that AΠ1
1(X) is closed under

countable unions and countable intersections. For countable unions, use the natural
bijection N<N×N ∼−→ N<N \ {∅} given by (n, s) 7→ nas. For countable intersections,
use the usual diagonal (snake-like) bijection N2 ∼−→ N to monotonically encode finite
sequences of elements of N<N into single elements of N<N.

(b) For each uncountable Polish space Y show that there is a Y -universal set for

AΠ1
1(X).

Hint: Enough to prove for Y = N N<N
(why?). Start with a N -universal set

F ⊆ N × X for Π1
1(X) and for each s ∈ N<N, consider the set Ps ⊆ N N<N × X

defined as follows: for (y, x) ∈ N N<N ×X, put (y, x) ∈ Ps ..⇔ (y(s), x) ∈ F.
(c) Conclude that for uncountable X, σ(Σ1

1(X)) ( AΠ1
1(X) ( C(X).

13Thanks to Anton Bernshteyn for suggesting this question.
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83. (Fun problem) Prove directly (without using Wadge’s theorem or lemma) that any

countable dense Q ⊆ 2N is Σ0
2-complete, by showing that player II has a winning strategy

in the Wadge game GW (A,Q) for any A ∈ Σ0
2(N ).

84. For a property P ⊆ N of natural numbers, we use the following abbreviations:

∀∞nP (n) ..⇔ {n ∈ N : P (n)} is cofinite ⇔ for large enough n, P (n) holds
∃∞nP (n) ..⇔ {n ∈ N : P (n)} is infinite ⇔ for arbitrarily large n, P (n) holds

Show that the set Q2 =
{
x ∈ 2N : ∀∞n(x(n) = 0)

}
is Σ0

2-complete and conclude that

the set N2 =
{
x ∈ 2N : ∃∞n(x(n) = 0)

}
is Π0

2-complete.

85. Show that the following sets are Π0
3-complete:

(a) P3 =
{
x ∈ 2N×N : ∀n∀∞m(x(n,m) = 0)

}
,

Hint: Use Q2 from the previous question.

(b) C3 =
{
x ∈ NN : limn x(n) =∞

}
.

Hint: Reduce P3 to C3.

86. Each binary relation on N is an element of P(N2), which we may identify with 2N2
.

Thus, we can define

LO =
{
x ∈ 2N2

: x is a linear ordering
}

WO =
{
x ∈ 2N2

: x is a well-ordering
}
.

(a) Show that LO is a closed subset of 2N2
and that WO is co-analytic.

(b) Prove that WO is actually Π1
1-complete.

Hint: Define an appropriate ordering on a tree to show that WF 6W WO, where
WF = Tr \ IF.

87. Prove the Schröder–Bernstein theorem for equivalence relations E,F on Polish spaces
X, Y , respectively; that is: if E viB F and F viB E, then E 'B F .

88. Odometer. Let X0 =
{
x ∈ 2N : ∀∞n x(n) = 0

}
, X1 =

{
x ∈ 2N : ∀∞n x(n) = 1

}
, and

put X = 2N \ (X0 ∪X1). Note that X0 and X1 are E0-classes, so all we did is throwing
away from 2N two E0-classes. Define a continuous action of Z on X so that the induced
orbit equivalence relation EZ is exactly E0|X .

89. Universality of the shift action. Let Γ y X be a Borel action of a countable group Γ

on a Polish space X. Show that there is a Borel equivariant14 embedding f : X ↪→ (2N)Γ,
where Γ y (2N)Γ by shift as follows: γ · y(δ) = y(δγ), for γ, δ ∈ Γ, y ∈ (2N)Γ. In
particular, f is a Borel reduction of the induced orbit equivalence relations.

14A map is called equivariant if it commutes with the action, i.e.. γ · f(x) = f(γ · x), for x ∈ X.
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90. (a) For ` : N→ N, let E0(`) be the restriction of E0(N) toN6` ..= {x ∈ N : x(n) 6 `(n)}.
Show that E0(`) vc E0

(b) More generally, prove that E0(N) vc E0.

(c) Show that Ev ∼B E0 by proving that Ev vB E0(idN) vc E0 vc Ev, where idN is the
identity function on N.

Hint: Use that each x ∈ R can be uniquely written as

x =
a1

1!
+
a2

2!
+ · · ·+ an

n!
+ · · · ,

where a1 = bxc, for each n > 2, an ∈ {0, 1, ..., n− 1} and ∃∞n(an 6= n − 1); the
latter condition is to ensure uniqueness.

91. Let E be an equivalence relation on a Polish space X. Prove that id(2N) 6B E iff

id(2N) vB E iff id(2N) vc E.

92. Fill in the details in the proof of Mycielski’s theorem; namely, given a meager equivalence
relation E on a Polish space X, write E =

⋃
n Fn, where Fn are increasing and nowhere

dense, and construct a Cantor scheme (Us)s∈2<N ⊆ X of vanishing diameter (with respect
to a fixed complete metric d for X) with the following properties:

(i) Us is nonempty open, for each s ∈ 2<N;

(ii) Usai ⊆ Us, for each s ∈ 2<N, i ∈ {0, 1};
(iii) (Us × Ut) ∩ Fn = ∅, for all distinct s, t ∈ 2n and n ∈ N.

93. Let (X, T ) be a Polish space and let E be an equivalence relation on X. For a family
F of subsets of X, we say that F generates E if

xEy ⇐⇒ ∀A ∈ F (x ∈ A⇔ y ∈ A).

Prove that the following are equivalent:

(1) E is smooth;

(2) There is a Polish topology TE ⊇ T on X (and hence automatically B(TE) = B(T ))
such that E is closed in (X2, T 2

E ).

Caution: It is easy to make E closed in X2 by refining the topology of X2, but
here we have to refine the topology of X so that E becomes closed in X2.

(3) E is generated by a countable Borel family F ⊆ B(T ).

Hint: For (1)⇒(2), consider a Borel function witnessing the smoothness of E and make
it continuous. For (2)⇒(3), assuming that E is closed, write X2 \E =

⋃
n Un×Vn, with

Un, Vn disjoint open, and note that the saturations [Un]E and [Vn]E are disjoint analytic
sets; separate them by an invariant Borel set.

94. (Blackwell’s theorem) Let X be a Polish space and E be an equivalence relation on X
generated by a countable family {Bn}n∈N of Borel sets. Prove that a Borel set B ⊆ X
is E-invariant iff it belongs to the σ-algebra generated by {Bn}n∈N.
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Hint: For ⇒ direction, consider the function f : X → 2N by x 7→ (xn)n∈N, where
xn = 1⇔ x ∈ Bn, and use Question 70.

95. Prisoners and hats (E0 version). This question illustrates the nonsmoothness of E0,
more particularly, how having a selector for E0 (provided by AC) causes unintuitive
things.

Problem. ω-many prisoners are sentenced to death, but they can get out under the
following condition. On the day of the execution they will be lined up, i.e., enumerated
(pn)n∈N, so that everybody can see everybody else but themselves. Each of the prisoners
will have a red or blue hat put on them, but he/she won’t be told which color it is
(although they can see the other prisoners’ hats). On command, all the prisoners at once
make a guess as to what color they think their hat is. If all but finitely many prisoners
guess correctly, they all go home free; otherwise all of them are executed. The good
news is that the prisoners think of a plan the day before the execution, and indeed, all
but finitely many prisoners guess correctly the next day, so everyone is saved. How do
they do it?

96. For Polish spaces X, Y , a function f : X → Y is called universally measurable if the f -
preimages of open sets in Y are universally measurable sets. Prove that the composition
of two universally measurable functions is universally measurable.

97. For a Borel equivalence relation E, show that if there is universally measurable reduction

of E to Id(2N), then E is smooth (i.e. there is a Borel reduction of E to Id(2N)).

Hint: It’s ok to use big theorems.

98. Let S ⊆ 2<N.

(a) If S contains at most one element of each length, then GS is acyclic15.

Hint: Suppose there is a cycle (with no repeating vertex) and consider the longest
s ∈ S associated with its edges.

(b) If S contains at least one element of each length, then EGS = E0.

Hint: For each n ∈ N, show by induction on n that for each s, t ∈ 2n and x ∈ 2N,
there is a path in GS from sax to tax, i.e. sax can be transformed to tax by a
series of appropriate bit flips.

99. Prisoners and hats (Hamming graph version16). This question illustrates that the

Hamming graph H on 2N does not admit a reasonable 2-coloring. The Hamming graph
H is defined by putting an edge between two binary sequences if they differ by exactly
one bit. Thus, H is a cousin of G0 and EH = E0.

Problem. ω-many prisoners are sentenced to death, but they can get out under the
following condition. On the day of the execution they will be lined up, i.e., enumerated
(pn)n∈N, so that everybody can see everybody else but themselves. Each of the prisoners
will have a red or blue hat put on them, but he/she won’t be told which color it is

15Here we treat GS as an undirected graph, i.e. we consider edges (x, y) and (y, x) to be the same.
16Thanks to Dat P. Nguyen for coming up with this version of the problem.
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(although they can see the other prisoners’ hats). On command, each prisoner, one-
by-one (starting from p0, then p1, then p2, etc.), makes a guess as to what color they
think their hat is. Whoever guesses right, goes home free. The good news is that the
prisoners think of a plan the day before the execution, so that at most one prisoner is
executed. How do they do it?

100. Let E,F be countable Borel equivalence relations on standard Borel spaces X, Y ,
respectively, and let A ⊆ X be a Borel E-complete section, i.e., it meets every E-class.

(a) Construct a Borel reduction π : E → E|A whose graph is contained in E, i.e.,
π(x)Ex for each x ∈ X.

Hint: Luzin–Novikov (what else).

(b) Deduce that any Borel reduction fA : E|A → F extends to a Borel reduction
f : E → F .

101. 17 Prove the following more general version of the Schröder–Bernstein theorem for
equivalence relations.

Theorem. Let E,F be countable Borel equivalence relations on standard Borel spaces
X, Y , respectively. If E 6B F and F 6B E, then there is a Borel reduction f : E → F
that descends to a bijection between X/E and Y/F , i.e., [f(X)]F = Y .

Hint: Because reductions descend to injections between X/E and Y/F , the Schröder–
Bernstein algorithm applied to these injections would produce a bijection between X/E
and Y/F . Mimic on X and Y what happens on the level of quotients by taking the
saturations of all of the sets that show up in the Schröder–Bernstein algorithm. This
will produce a required reduction to F of a restriction of E to some Borel E-complete
section. Now apply Problem 100.

102. Projections along graphs. Let G be a locally countable Borel graph on a standard
Borel space X and let A ⊆ X be a Borel EG-complete section. A projection onto A
along G is a function π : X → A that maps each point in X to a G-closest (in the graph
distance) element of A (in particular, π|A = idA). Call this projection π coherent if,
moreover, for each x ∈ X, π−1(π(x)) contains a shortest path from x to π(x) (thus all
points on that path are mapped to the same point π(x)). Prove that there is a coherent
Borel projection onto A along G. Deduce part (a) of Problem 100 from this.

Hint: Luzin–Novikov assigns natural numbers to the edges of G, providing a lexico-
graphic ordering of the paths in G.

103. Let G be a directed Borel graph on a Polish space (X, T ). For A ⊆ X, let

N o
G(A) = {x ∈ X : ∃y ∈ A with (x, y) ∈ G}

denote the set of out-neighbors of vertices in A in G. If A = {x}, we just write N o
G(x).

Put doG(x) ..= |N o
G(x)| and call it the out-degree of x in G. Lastly, if G is undirected, i.e.

symmetric, then we drop o from the superscripts and simply write NG and dG .

17 Thanks to Ruiyuan (Ronnie) Chen for pointing out this statement.
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(a) Suppose that the out-degree of each vertex is countable and prove that χB(G) 6 ℵ0

iff there is a Polish topology T0 ⊇ T such that for every x ∈ X, x /∈ NG(x)
T0

.

Hint: For ⇐, use the fact that x /∈ NG(x)
T0

is witnessed by a basic open set
Un ∈ T0.

(b) Conclude if the out-degree of each vertex is finite, then χB(G) 6 ℵ0.

104. Show that if an undirected locally countable18 Borel graph G has a countable Borel
chromatic number, then it admits a Borel maximal G-independent set19 I ⊆ X, i.e. a
maximal G-independent set that happens to be Borel.

105. Let G be a Borel graph on a standard Borel space X.

(a) Prove that if the maximum degree of G is 6 d (i.e. dG(x) 6 d for each x ∈ X),
then χB(G) 6 d+ 1.

Hint: Prove by induction20 on d using Question 104.

(b) Conclude that the Borel chromatic number of the graph induced by an irrational
rotation of the unit circle is 3 and define a Borel 3-coloring of this graph more
explicitly (by drawing a picture) such that each color is a finite union of half-open
arcs.

106. This is a proof of the Feldman–Moore theorem in terms of Borel edge-colorings.
For a set X, we refer to an pair (x, y) ∈ X2 as a directed edge with source x and

target y. We say that edges (x, y) and −(x, y) ..= (y, x) are parallel. Directed edges
(x, y), (x′, y′) are said to be source-incident (resp., target-incident, mixed-incident) if
x = x′ (resp., y = y′, x = y′ or y = x′). We say that they are whatsoever-incident if
they are incident in one of the three aforementioned ways.

Let E be a countable Borel equivalence relation on a Polish space X.

(a) By the Luzin–Novikov theorem, G ..= E \ IdX =
⋃
n fn, where fn : X ⇀ X is a

Borel partial function. This defines c0 : G→ N by (x, y) 7→ the least n ∈ N such
that fn(x) = y. Show that c0 is Borel and that for any distinct source-incident
edges e, e′ ∈ G, c0(e) 6= c(e′). Hence, for any target-incident edges e, e′ ∈ G,
c0(−e) 6= c0(−e′).

(b) Because X is second countable, we can write X2 \ IdX =
⋃
m(Um × Vm), where

Um, Vm ⊆ X are open and Um ∩ Vm = ∅. This defines c1 : G→ N by (x, y) 7→ the
least m ∈ N such that (x, y) ∈ Um × Vm. Show that c1 is Borel and that for any
mixed-incident edges e, e′ ∈ G, c1(e) 6= c1(e′).

(c) Conclude that c : G→ N3 defined by e 7→ (c0(e), c0(−e), c1(e)) is a directed edge-
coloring of G, in the strong sense that any two whatsoever-incident edges get

18Every vertex has only countably-many neighbors.
19A set I ⊆ X is G-independent if it doesn’t contain any G-adjacent vertices, i.e. I2 ∩ G = ∅. Such a set is

called maximal if it is not a proper subset of another G-independent set.
20Thanks to Wei Dai for suggesting a proof by induction.
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different colors. Thus, G admits a Borel directed edge-coloring with countable-many
colors.

(d) Show that for any Borel directed edge-coloring c : G → N, the map c′ : G → N
defined by e 7→ min {c(e), c(−e)} is a Borel (undirected) edge-coloring of G, in the
sense that the color of an undirected edge is well-defined (i.e., parallel directed
edges get the same color) and incident undirected edges get different colors (i.e.,
nonparallel whatsoever-incident directed edges get different colors).

107. Let X be a standard Borel space and T : X → X be a Borel transformation on X (not
necessarily countable to one). Letting G ..= graph(T ).

(a) Prove that χB(graph(T )) ∈ {1, 2, 3,ℵ0}.
Hint: χB(G) 6 ℵ0 follows from Question 103. To show that if χB(G) < ℵ0 then
χB(G) 6 3, note that for each x ∈ X one of the final colors has to be T -recurrent
(i.e. for infinitely-many n ∈ N, T n(x) is of that color) by the pigeonhole principle.
Restricting to each part where the least such color is the same, let’s say color 0,
work backwards from this color in the direction of T−1, alternatively assigning to
odd and even distances colors 1 and 2.

(b) Conclude that if T is d-to-1 for some fixed d ∈ N, then χB(G) 6 3.

108. Let G be the aperiodic part of the shift graph on C, i.e., the graph of the left-shift
function s : C → C, defined by (xn) 7→ (xn+1) for each aperiodic sequence (xn) ∈ C.
Prove that the Baire measurable chromatic number of G is greater than 2. Yet, conclude
from part (b) of Question 107 that χB(G) = 3.

109. Show that there exists a universal analytic equivalence relation, i.e. an analytic equiva-
lence relation EΣ such that any other such equivalence relation is Borel reducible to
EΣ.

Hint: Take a C-universal set U ⊆ C ×N 2 for Σ1
1(N 2) and let Ũ be obtained from U

by replacing the fibers Ux, x ∈ C, with their symmetric and transitive closures, so that
each fiber Ũx is an equivalence relation on N . Now define an appropriate equivalence
relation EΣ on C ×N .

110. The goal of this question is to show that there is a universal countable Borel equivalence
relation, i.e., a countable Borel equivalence relation E∞ such that any other such
equivalence relation is Borel reducible to E∞.

(a) Letting Fω be the free group on ω-many generators and Γ be any countable group,

define a Borel reduction ρ : (2N)Γ → (2N)Fω of the orbit equivalence relation EΓ to
the orbit equivalence relation EFω of the shift actions Γ y (2N)Γ and Fω y (2N)Fω ,
respectively.

Hint: Every countable group is a homomorphic image of Fω.

(b) Using the Feldman–Moore theorem in tandem with Question 89, conclude that

the orbit equivalence relation EFω of the shift action of Fω on (2N)Fω is a universal
countable Borel equivalence relation.
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