
CONVERGENCE IN MEASURE

ANUSH TSERUNYAN

Fix a measure space (X,M, µ) and everything below is with respect to this space. By a
measurable function, we mean a function X → R ..= [−∞,+∞] that is (M,B(R))-measurable.

1. Parameterized difference sets and quasi-metrics

For measurable functions f, g and α > 0, put

∆α(f, g) ..= {x ∈ X : |f(x)− g(x)| > α}
δα(f, g) ..= µ(∆α(f, g)).

Observation 1 (Decreasing monotonicity). For α, β > 0 and measurable functions f, g,

α > β =⇒ ∆α(f, g) ⊆ ∆β(f, g) =⇒ δα(f, g) 6 δβ(f, g)

For each α > 0, δα is a metric-like function on the space of all measurable functions, but it is
not even a pseudo-metric because the triangle inequality easily fails: indeed, take f, g, h to be
constant functions 0, 2, 4, respectively. Then δ3(f, h) = µ(X), whereas δ2(f, g) = δ2(g, h) = 0.
However, changing the parameter α, gives the following substitute for the triangle inequality.

Lemma 2 (Quasi-4-inequality). Let f, g, h be measurable functions and let α > 0. For any
partition α = β + γ into nonnegative reals,

(2.a) ∆α(f, h) ⊆ ∆β(f, g) ∪∆γ(g, h),

(2.b) δα(f, h) 6 δβ(f, g) + δγ(g, h).

Proof. (2.a) is immediate from the usual triangle inequality for reals and it implies (2.b). �

Observation 3. For any measurable functions f, g and decreasing positive sequence (αk)k ↓ 0,

∆0(f, g) =
⋃
↑
k∈N

∆αk(f, g).

2. Convergence in measure

Definition 4. For a sequence (fn)n of measurable functions and a measurable function f ,
say that (fn)n converges to f in measure, and write fn →µ f , if for each parameter α > 0,

δα(fn, f)→ 0 as n→∞.

Note that the definition of convergence in measure only involves positive α, excluding
α = 0, and it is not true in general that it implies δ0(fn, f) → 0. Indeed, for any measure
space (X,M, µ), take f ≡ 0 and fn ≡ n−1.

Call two measurable functions f, g µ-distinct if even µ sees that they are distinct, i.e.
d0(f, g) > 0. In other words, if f �µ g, where ∼µ is the relation of being equal a.e.

Proposition 5 (Hausdorfness of the topology). For any two µ-distinct measurable functions
f, g, there is α > 0 such that δα(f, g) > 0.

Proof. Follows from Observation 3 and the countable additivity of µ. �
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Corollary 6. If fn →µ f and fn →µ f
′, then f = f ′ a.e.

Proof. For each fixed α > 0, by the quasi-4-inequality,

δα(f, f ′) 6 δα
2
(f, fn) + δα

2
(fn, f

′)→ 0 as n→∞,
so δα(f, f ′) = 0, and hence δ0(f, f ′) = 0, by Observation 3. �

3. Cauchy in measure

Definition 7. Call a sequence (fn)n of measurable functions Cauchy in measure if for each
parameter α > 0, δα(fn, fm)→ 0 as n,m→∞.

Proposition 8 (Convergence⇒ Cauchy). For measurable functions f and (fn)n, if fn →µ f
then (fn)n is Cauchy.

Proof. For given α, ε > 0, fix N ∈ N large enough so that δα
2
(fn, f) < ε

2
, so, by the

quasi-4-inequality, for all n,m > N , δα(fn, fm) 6 δα
2
(fn, f) + δα

2
(f, fm) < ε. �

Lemma 9. Let (fn)n be a Cauchy in measure sequence of measurable functions.

(9.a) For any sequences (αk)k and (εk)k of positive reals, there is a subsequence (gk)k ..= (fnk)k
such that for every k ∈ N, δαk(gk+l, gk+m) < εk for all l,m ∈ N.

(9.b) If a subsequence (fnk)k converges in measure to a measurable function f , then fn →µ f .

Proof. (9.a): For each αk and εk, the Cauchy condition gives nk ∈ N such that for all
`,m > nk, δαk(f`, fm) < εk. Since we can always take these nk to be increasing, we get a
subsequence (gk)k ..= (fnk)k with the desired property.

(9.b): Fix α > 0 and ε > 0, so the Cauchy condition gives N such that for any n,m > N ,
δα

2
(fn, fm) < ε

2
. Also, the convergence fnk →µ f gives K ∈ N, such that for any k > K,

δα
2
(fnk , f) < ε

2
. Thus, for any n > N , taking k > max {N,K}, the quasi-4-inequality implies

δα(fn, f) 6 δα
2
(fn, fnk) + δα

2
(fnk , f) < ε. �

Notation 10. For any summable sequence (βk)k of positive reals and for each K ∈ N, put
β̄K ..=

∑
k>K βk, so β̄K → 0 as K →∞.

Theorem 11 (Cauchy ⇒ convergence). If a sequence (fn)n of measurable functions is
Cauchy in measure, then fn →µ f for some M-measurable function f . Moreover, there is a
subsequence (fnk)k with fnk → f a.e.

Proof. Applying (9.a) to any positive summable sequences (αk)k and (εk)k, we get a subse-
quence (gk)k such that for each k, δαk(gk, gk+1) < εk. Thinking of the ∆αk(gk, gk+1) as the
bad sets, denote them by Bk, so µ(Bk) < εk.

Claim 12. For any K ∈ N and any x /∈
⋃
k>K Bk, |gK(x)− gK+m(x)| < ᾱK for all m ∈ N.

Proof of Claim. By the 4-inequality for reals, we have

|gK(x)− gK+m(x)| 6
∑

K6k<K+m

|gk(x)− gk+1(x)|.

Because x /∈ Bk for k > K, it satisfies |gk(x) − gk+1(x)| 6 αk, so the last sum is at most∑
K6k<K+m αk < ᾱK . �

Claim 13. If x /∈ B ..= {x ∈ X : ∃∞k x ∈ Bk} =
⋂
K∈N

⋃
k>K Bk, then

(
gk(x)

)
k

is Cauchy.
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Proof of Claim. Fixing x /∈ B and ε > 0, there is K ∈ N such that x /∈
⋃
k>K Bk and we may

take large enough such K so that 2 · ᾱK < ε. Whence, Claim 12 gives

|gK+l(x)− gK+m(x)| 6 |gK+l(x)− gK(x)|+ |gK(x)− gK+m(x)| < 2 · ᾱK < ε. �

Luckily, the Bk have summable measures, so the Borel–Cantelli lemma implies that B is
null. But then Claim 13 implies that for a.e. x ∈ X,

(
gk(x)

)
k

is Cauchy, so it has a limit,

which we denote by f(x). Because gk → f a.e., f is M -measurable.

Claim 14. gK →µ f .

Proof of Claim. Fixing α > 0, we need to show that δα(gK , f) → 0. For any K ∈ N and
x /∈

⋃
k>K Bk, applying Claim 12 and letting m→∞, we get |gK(x)− f(x)| 6 ᾱK , so

∆ᾱK (gK , f) ⊆
⋃
k>K

Bk.

Taking K large enough so that ᾱK 6 α,

δα(gK , f) 6 δᾱK (gK , f) 6 µ

(⋃
k>K

Bk

)
<
∑
k>K

εk = ε̄K → 0 as K →∞. �

Lastly, (9.b) implies that fn →µ f . �

4. Relationship with other modes of convergence

Corollary 15. For measurable functions f and (fn)n, if fn →µ f then there is a subsequence
(fnk)k with fnk → f a.e.

Proof. Follows from Proposition 8 and Theorem 11. �

Proposition 16. If fn →L1 f then fn →µ f .

Proof. For each α > 0, α · 1∆α(fn,f) < |fn − f | · 1∆α(fn,f), so

α · δα(fn, f) =

∫
α · 1∆α(fn,f) 6

∫
|fn − f | · 1∆α(fn,f) 6 ‖fn − f‖1 ,

whence δα(fn, f) 6 1
α
‖fn − f‖1 → 0 as n→∞. �

Corollary 17 (Summary). fn →L1 f =⇒ fn →µ f =⇒ ∃(fnk)k, fnk → f a.e.

The following examples show that all of the other possible implications are false in general.

Examples.

(18.a) 1[n,n+1) → 0 pointwise, but not in measure, and hence also not in L1.

(18.b) n1(0, 1
n

) → 0 both pointwise and in measure, but not in L1.

(18.c) Let (gm)m∈N ..= (f
(k)
n )k<nn>1 be the typewritter sequence, i.e. f

(k)
n

..= 1([ k
n
, k+1
n

]). Then

gm → 0 in L1, hence also in measure, but the sequence
(
gm(x)

)
m∈N diverges for every

x ∈ [0, 1].
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