CONVERGENCE IN MEASURE

ANUSH TSERUNYAN

Fix a measure space (X, \mathcal{M}, μ) and everything below is with respect to this space. By a *measurable function*, we mean a function $X \to \overline{\mathbb{R}} := [-\infty, +\infty]$ that is $(\mathcal{M}, \mathcal{B}(\overline{\mathbb{R}}))$ -measurable.

1. PARAMETERIZED DIFFERENCE SETS AND QUASI-METRICS

For measurable functions f, g and $\alpha \ge 0$, put

$$\Delta_{\alpha}(f,g) := \{ x \in X : |f(x) - g(x)| > \alpha \}$$

$$\delta_{\alpha}(f,g) := \mu(\Delta_{\alpha}(f,g)).$$

Observation 1 (Decreasing monotonicity). For $\alpha, \beta \ge 0$ and measurable functions f, g,

$$\alpha \geqslant \beta \implies \Delta_{\alpha}(f,g) \subseteq \Delta_{\beta}(f,g) \implies \delta_{\alpha}(f,g) \leqslant \delta_{\beta}(f,g)$$

For each $\alpha \ge 0$, δ_{α} is a metric-like function on the space of all measurable functions, but it is not even a pseudo-metric because the triangle inequality easily fails: indeed, take f, g, h to be constant functions 0, 2, 4, respectively. Then $\delta_3(f, h) = \mu(X)$, whereas $\delta_2(f, g) = \delta_2(g, h) = 0$. However, changing the parameter α , gives the following substitute for the triangle inequality.

Lemma 2 (Quasi- \triangle -inequality). Let f, g, h be measurable functions and let $\alpha \ge 0$. For any partition $\alpha = \beta + \gamma$ into nonnegative reals,

- (2.a) $\Delta_{\alpha}(f,h) \subseteq \Delta_{\beta}(f,g) \cup \Delta_{\gamma}(g,h),$
- (2.b) $\delta_{\alpha}(f,h) \leq \delta_{\beta}(f,g) + \delta_{\gamma}(g,h).$

Proof. (2.a) is immediate from the usual triangle inequality for reals and it implies (2.b). \Box Observation 3. For any measurable functions f, g and decreasing positive sequence $(\alpha_k)_k \downarrow 0$,

$$\Delta_0(f,g) = \bigoplus_{k \in \mathbb{N}} \Delta_{\alpha_k}(f,g).$$

2. Convergence in measure

Definition 4. For a sequence $(f_n)_n$ of measurable functions and a measurable function f, say that $(f_n)_n$ converges to f in measure, and write $f_n \to_{\mu} f$, if for each parameter $\alpha > 0$,

$$\delta_{\alpha}(f_n, f) \to 0 \text{ as } n \to \infty.$$

Note that the definition of convergence in measure only involves positive α , excluding $\alpha = 0$, and it is not true in general that it implies $\delta_0(f_n, f) \to 0$. Indeed, for any measure space (X, \mathcal{M}, μ) , take $f \equiv 0$ and $f_n \equiv n^{-1}$.

Call two measurable functions $f, g \mu$ -distinct if even μ sees that they are distinct, i.e. $d_0(f,g) > 0$. In other words, if $f \approx_{\mu} g$, where \sim_{μ} is the relation of being equal a.e.

Proposition 5 (Hausdorfness of the topology). For any two μ -distinct measurable functions f, g, there is $\alpha > 0$ such that $\delta_{\alpha}(f, g) > 0$.

Proof. Follows from Observation 3 and the countable additivity of μ .

Date: March 31, 2018.

Corollary 6. If $f_n \to_{\mu} f$ and $f_n \to_{\mu} f'$, then f = f' a.e.

Proof. For each fixed $\alpha > 0$, by the quasi- \triangle -inequality,

$$\delta_{\alpha}(f, f') \leq \delta_{\frac{\alpha}{2}}(f, f_n) + \delta_{\frac{\alpha}{2}}(f_n, f') \to 0 \text{ as } n \to \infty,$$

so $\delta_{\alpha}(f, f') = 0$, and hence $\delta_0(f, f') = 0$, by Observation 3.

3. Cauchy in measure

Definition 7. Call a sequence $(f_n)_n$ of measurable functions Cauchy in measure if for each parameter $\alpha > 0$, $\delta_{\alpha}(f_n, f_m) \to 0$ as $n, m \to \infty$.

Proposition 8 (Convergence \Rightarrow Cauchy). For measurable functions f and $(f_n)_n$, if $f_n \rightarrow_{\mu} f$ then $(f_n)_n$ is Cauchy.

Proof. For given $\alpha, \varepsilon > 0$, fix $N \in \mathbb{N}$ large enough so that $\delta_{\frac{\alpha}{2}}(f_n, f) < \frac{\varepsilon}{2}$, so, by the quasi- \triangle -inequality, for all $n, m \ge N$, $\delta_{\alpha}(f_n, f_m) \le \delta_{\frac{\alpha}{2}}(f_n, f) + \delta_{\frac{\alpha}{2}}(f, f_m) < \varepsilon$.

Lemma 9. Let $(f_n)_n$ be a Cauchy in measure sequence of measurable functions.

- (9.a) For any sequences $(\alpha_k)_k$ and $(\varepsilon_k)_k$ of positive reals, there is a subsequence $(g_k)_k := (f_{n_k})_k$ such that for every $k \in \mathbb{N}$, $\delta_{\alpha_k}(g_{k+l}, g_{k+m}) < \varepsilon_k$ for all $l, m \in \mathbb{N}$.
- (9.b) If a subsequence $(f_{n_k})_k$ converges in measure to a measurable function f, then $f_n \to_{\mu} f$.

Proof. (9.a): For each α_k and ε_k , the Cauchy condition gives $n_k \in \mathbb{N}$ such that for all $\ell, m \ge n_k, \, \delta_{\alpha_k}(f_\ell, f_m) < \varepsilon_k$. Since we can always take these n_k to be increasing, we get a subsequence $(g_k)_k := (f_{n_k})_k$ with the desired property.

(9.b): Fix $\alpha > 0$ and $\varepsilon > 0$, so the Cauchy condition gives N such that for any $n, m \ge N$, $\delta_{\frac{\alpha}{2}}(f_n, f_m) < \frac{\varepsilon}{2}$. Also, the convergence $f_{n_k} \to_{\mu} f$ gives $K \in \mathbb{N}$, such that for any $k \ge K$, $\delta_{\frac{\alpha}{2}}(f_{n_k}, f) < \frac{\varepsilon}{2}$. Thus, for any $n \ge N$, taking $k \ge \max\{N, K\}$, the quasi- \triangle -inequality implies

$$\delta_{\alpha}(f_n, f) \leqslant \delta_{\frac{\alpha}{2}}(f_n, f_{n_k}) + \delta_{\frac{\alpha}{2}}(f_{n_k}, f) < \varepsilon.$$

Notation 10. For any summable sequence $(\beta_k)_k$ of positive reals and for each $K \in \mathbb{N}$, put $\bar{\beta}_K := \sum_{k \ge K} \beta_k$, so $\bar{\beta}_K \to 0$ as $K \to \infty$.

Theorem 11 (Cauchy \Rightarrow convergence). If a sequence $(f_n)_n$ of measurable functions is Cauchy in measure, then $f_n \to_{\mu} f$ for some \overline{M} -measurable function f. Moreover, there is a subsequence $(f_{n_k})_k$ with $f_{n_k} \to f$ a.e.

Proof. Applying (9.a) to any positive summable sequences $(\alpha_k)_k$ and $(\varepsilon_k)_k$, we get a subsequence $(g_k)_k$ such that for each k, $\delta_{\alpha_k}(g_k, g_{k+1}) < \varepsilon_k$. Thinking of the $\Delta_{\alpha_k}(g_k, g_{k+1})$ as the bad sets, denote them by B_k , so $\mu(B_k) < \varepsilon_k$.

Claim 12. For any $K \in \mathbb{N}$ and any $x \notin \bigcup_{k \geq K} B_k$, $|g_K(x) - g_{K+m}(x)| < \bar{\alpha}_K$ for all $m \in \mathbb{N}$.

Proof of Claim. By the \triangle -inequality for reals, we have

$$|g_K(x) - g_{K+m}(x)| \leq \sum_{K \leq k < K+m} |g_k(x) - g_{k+1}(x)|.$$

Because $x \notin B_k$ for $k \ge K$, it satisfies $|g_k(x) - g_{k+1}(x)| \le \alpha_k$, so the last sum is at most $\sum_{K \leq k < K+m} \alpha_k < \bar{\alpha}_K.$ \boxtimes

Claim 13. If $x \notin B := \{x \in X : \exists^{\infty} k \ x \in B_k\} = \bigcap_{k \in \mathbb{N}} \bigcup_{k \geq K} B_k$, then $(g_k(x))_k$ is Cauchy.

Proof of Claim. Fixing $x \notin B$ and $\varepsilon > 0$, there is $K \in \mathbb{N}$ such that $x \notin \bigcup_{k \geq K} B_k$ and we may take large enough such K so that $2 \cdot \bar{\alpha}_K < \varepsilon$. Whence, Claim 12 gives

$$|g_{K+l}(x) - g_{K+m}(x)| \leq |g_{K+l}(x) - g_K(x)| + |g_K(x) - g_{K+m}(x)| < 2 \cdot \bar{\alpha}_K < \varepsilon.$$

Luckily, the B_k have summable measures, so the Borel–Cantelli lemma implies that B is null. But then Claim 13 implies that for a.e. $x \in X$, $(g_k(x))_k$ is Cauchy, so it has a limit, which we denote by f(x). Because $g_k \to f$ a.e., f is \overline{M} -measurable.

Claim 14. $g_K \rightarrow_{\mu} f$.

Proof of Claim. Fixing $\alpha > 0$, we need to show that $\delta_{\alpha}(g_K, f) \to 0$. For any $K \in \mathbb{N}$ and $x \notin \bigcup_{k \geq K} B_k$, applying Claim 12 and letting $m \to \infty$, we get $|g_K(x) - f(x)| \leq \bar{\alpha}_K$, so

$$\Delta_{\bar{\alpha}_K}(g_K, f) \subseteq \bigcup_{k \geqslant K} B_k.$$

Taking K large enough so that $\bar{\alpha}_K \leq \alpha$,

$$\delta_{\alpha}(g_K, f) \leqslant \delta_{\bar{\alpha}_K}(g_K, f) \leqslant \mu\left(\bigcup_{k \geqslant K} B_k\right) < \sum_{k \geqslant K} \varepsilon_k = \bar{\varepsilon}_K \to 0 \text{ as } K \to \infty.$$

Lastly, (9.b) implies that $f_n \to_{\mu} f$.

4. Relationship with other modes of convergence

Corollary 15. For measurable functions f and $(f_n)_n$, if $f_n \to_{\mu} f$ then there is a subsequence $(f_{n_k})_k$ with $f_{n_k} \to f$ a.e.

Proof. Follows from Proposition 8 and Theorem 11.

Proposition 16. If $f_n \to_{L^1} f$ then $f_n \to_{\mu} f$.

Proof. For each $\alpha > 0$, $\alpha \cdot \mathbb{1}_{\Delta_{\alpha}(f_{n},f)} < |f_{n} - f| \cdot \mathbb{1}_{\Delta_{\alpha}(f_{n},f)}$, so

$$\alpha \cdot \delta_{\alpha}(f_n, f) = \int \alpha \cdot \mathbb{1}_{\Delta_{\alpha}(f_n, f)} \leqslant \int |f_n - f| \cdot \mathbb{1}_{\Delta_{\alpha}(f_n, f)} \leqslant ||f_n - f||_1,$$

whence $\delta_{\alpha}(f_n, f) \leq \frac{1}{\alpha} ||f_n - f||_1 \to 0$ as $n \to \infty$.

Corollary 17 (Summary). $f_n \to_{L^1} f \implies f_n \to_{\mu} f \implies \exists (f_{n_k})_k, f_{n_k} \to f a.e.$

The following examples show that all of the other possible implications are false in general. **Examples.**

(18.a) $\mathbb{1}_{[n,n+1)} \to 0$ pointwise, but not in measure, and hence also not in L^1 .

- (18.b) $n\mathbb{1}_{(0,\frac{1}{2})} \to 0$ both pointwise and in measure, but not in L^1 .
- (18.c) Let $(g_m)_{m \in \mathbb{N}} := (f_n^{(k)})_{n \geq 1}^{k < n}$ be the typewritter sequence, i.e. $f_n^{(k)} := \mathbb{1}_{\left(\left[\frac{k}{n}, \frac{k+1}{n}\right]\right)}$. Then $g_m \to 0$ in L^1 , hence also in measure, but the sequence $(g_m(x))_{m \in \mathbb{N}}$ diverges for every $x \in [0, 1]$.