
LEBESGUE DIFFERENTIATION

ANUSH TSERUNYAN

Throughout, we work in the Lebesgue measure space
(
R
d ,L(Rd),λ

)
, where L(Rd) is the

σ -algebra of Lebesgue-measurable sets and λ is the Lebesgue measure.
For r > 0 and x ∈Rd , let Br(x) denote the open ball of radius r centered at x.

1. The spaces L0
and L1

loc

The space L0 of measurable functions. By a measurable function we mean an L(Rd)-
measurable function f : Rd →R and we let L0(Rd) (or just L0) denote the vector space of
all measurable functions modulo the usual equivalence relation =a.e. of a.e. equality.

There are two natural notions of convergence (topologies) on L0: a.e. convergence and
convergence in measure. As we know, these two notions are related, but neither implies
the other. However, convergence in measure of a sequence implies a.e. convergence of a
subsequence, which in many situations can be boosted to a.e. convergence of the entire
sequence (recall Problem 3 of Midterm 2).

Convergence in measure is captured by the following family of norm-like maps: for
each α > 0 and f ∈ L0,

‖f ‖∗α ..= α ·λ
(
∆α(f )

)
,

where ∆α(f ) ..=
{
x ∈Rd : |f (x)| > α

}
. Note that ‖f ‖∗α can be infinite.

Observation 1 (Chebyshev’s inequality). For any α > 0 and any f ∈ L0, ‖f ‖∗α 6 ‖f ‖1.

The space L1
loc of locally integrable functions. Differentiation at a point x ∈Rd is a local

notion as it only depends on the values of the function in some open neighborhood of x, so,
in this context, it is natural to work with a class of functions defined via a local property,
as opposed to global (e.g. being in L1(Rd)).

Definition 2. Call a measurable function f locally integrable if it is integrable on every
bounded subset of Rd , i.e. for any r > 0, f 1Br (x) ∈ L1.

Denote by L1
loc(Rd) the vector space of all locally integrable functions modulo the

equivalence relation =a.e.. Obviously, L1 ⊆ L1
loc. Moreover, letting C(Rd) denote the space

of continuous functions on R
d , we have C(Rd) ⊆ L1

loc because each f ∈ C(Rd) is bounded
on every ball.

The natural notion of convergence in L1
loc is the local L1-convergence, namely,

fn→L1
loc
f ..⇔∀r > 0

(
fn1Br (0)

)
→L1

(
f 1Br (0)

)
.

Clearly, fn→L1 fn implies fn→L1
loc
f .
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2. Averaging operators

For r > 0, f ∈ L1
loc, and x ∈Rd , we define

Arf (x) ..=
1

λ
(
Br(x)

) ∫
Br (x)

f dλ =
1

λ
(
B1(0)

) 1
rd

∫
Br (x)

f dλ.

We refer to Arf (x) as the average of f at x within radius r.

Proposition 3. Let r > 0.

(3.a) Ar is a linear transformation from L1
loc to C(Rd). Moreover, for any f ∈ L1

loc, the map
(r,x) 7→ Arf (x) is continuous as a function (0,∞)×Rd →R.

(3.b) Ar is continuous with respect to L1
loc-convergence on L1

loc and pointwise convergence on
C(Rd), i.e. if fn→L1

loc
f , then Arfn→ Arf pointwise.

Proof. Part (3.a) follows by the absolute continuity of f 1B in L1-norm, where B is any ball
(bounded set). Part (3.b) is obvious because fn→L1

loc
f implies

∫
B(x,r)

fndλ→
∫
B(x,r)

f dλ. �

3. Vitali covers

Lemma 4 (Vitali). Any finite collection C of open balls in R
d admits a subcollection C ′ ⊆ C of

pairwise disjoint balls, whose union is a constant proportion of the total union, more precisely:

λ
(⊔

C ′
)
> 3−dλ

(⋃
C
)
.

Proof. Let B0 be a ball in C with maximum radius. If there is no ball in C disjoint from B0,
stop; otherwise let B1 be a ball of maximum radius among those balls in C that are disjoint
from B0. Continue. If there is no ball in C disjoint from B0 tB1, stop. Otherwise, let B2 be
a ball of maximum radius among those balls in C that are disjoint from B0tB1. And so on
and so forth. Because C is finite, this process terminates, i.e. there is n ∈N such that there
is no ball in C disjoint from

⊔
i<nBi and we put C ′ ..= {Bi : i < n}.

To check that C ′ is as desired, it is enough to show that if all balls in C ′ are made 3 times
bigger, than they cover

⋃
C. More precisely, letting B′i be the ball with the same center as

Bi but with radius 3 times bigger than that of Bi , we want to show that
⋃
i<nB

′
i ⊇

⋃
C.

To this end, fix a ball B ∈ C and suppose it is not one of the balls in C ′, so it must
intersect

⊔
i<nBi (otherwise, the above process wouldn’t stop at n). Let i be the least such

that B∩Bi , 0. By the choice of Bi at the step i of the above algorithm, the radius of B is
not bigger than that of Bi , so B′i ⊇ B and we are done. �

Lemma 5 (Vitali Covering). Let a measurable A ⊆ R
d be covered by a (possibly infinite)

collection C of open balls. For every 0 6 a < λ(A), there is a finite subcollection Ca ⊆ C of
pairwise disjoint balls such that

λ
(⊔

Ca
)
> 3−da.

Proof. By the inner regularity of the Lebesgue measure (Problem 4(c) of Midterm 1), there
is a compact set K ⊆ A with λ(K) > a. C is an open cover of K , so there is a finite subcover
CK ⊆ C of K . Apply Lemma 4 to CK to obtain a pairwise disjoint subcollection Ca ⊆ CK as
desired. �

2



The rest of this section is devoted to a proof of a stronger form of the last lemma, which
is not used anywhere in this note, but is very useful in general. We start with an easy
observation.

Lemma 6 (Outer measure via open covers). For A ⊆R
d , λ∗(A) < r if and only if there is an

open set U ⊇ A with λ(U ) < r.

Proof. ⇐: Follows from the fact that any open set U is a countable disjoint union of boxes.
To see the latter, recall that open boxes form a bases for R

d and write U as a countable
union of open boxes U =

⋃
nBn. Make these disjoint by replacing Bn with B′n ..= Bn \

⋃
i<nBi

and observe that B′n itself is a disjoint union of finitely many boxes.
⇒: Let {Bn} be a countable cover of A with boxes witnessing λ∗(A) < r, i.e. s ..=

∑
nλ(Bn) < r.

Replacing each box Bn by an open box B′n ⊇ Bn with λ(B′n) < λ(Bn) + 2−(n+2)(r − s), we see
that U ..=

⋃
nB
′
n is open, contains A, and has measure at most s+

∑
n2−(n+2)(r − s) < r. �

Definition 7. A collection C of open balls in R
d is called a Vitali cover of a set A ⊆ R

d if
for each x ∈ A there are arbitrarily small balls in C containing x.

Lemma 8 (Strong Vitali Covering). Let C be a Vitali cover of a (not necessarily measurable) set
A ⊆R

d with λ∗(A) <∞. For every ε > 0, there is a pairwise disjoint finite subcollection Cε ⊆ C
such that λ∗ (A \

⋃
Cε) < ε. Equivalently (by Lemma 6), there is an open set U ⊇ A \

⋃
Cε with

λ(U ) < ε.

Proof. By Lemma 6, there is an open set V ⊇ A with finite measure. The subcollection of
C ∩P(V ) is still a Vitali cover of A, so replacing C by it, we may assume that C ⊆P(V ).

We recursively define a sequence (Bn)n∈N ∈ C by letting Bn ∈ C be disjoint from
⋃
i<nBi

and of radius at least half of what’s available, i.e.

1
2

sup

raduis(B) : B ∈ C disjoint from
⋃
i<n

Bi

 .
If for some n, such a Bn does not exist, i.e. the above supremum is 0, then we are done
by taking Cε ..= {B0, . . . ,Bn−1}. Thus, suppose that the above procedure defined an infinite
sequence (Bn)n∈N ⊆ C of necessarily pairwise disjoint sets. Because

∑
nλ(Bn) = λ (

⊔
nBn) 6

λ(V ) <∞, there is N ∈N such that
∑
n>N λ(Bn) < ε

5d
. We show that Cε ..= {B0, . . . ,BN−1} is as

desired. Because a boundary of a ball is null, it is enough to show that the outer measure of
A′ ..= A \

⋃
n<N Bn is less than ε, which we do by building an open set U ⊇ A′ with λ(U ) < ε

and using Lemma 6. To this end, let

C ′ ..=

B ∈ C : B∩
⋃
n<N

Bn = ∅


and U ..=

⋃
C ′. Note that U ⊇ A′ since for each x ∈ A′ there is a ball B ∈ C ′ containing x

because
⋃
n<N Bn is closed and C is a Vitali cover.

Claim. U ⊆
⋃
n>N B̃n, where B̃n is the ball with the same center as Bn but with radius 5

times that of Bn.

Proof of Claim. Each B ∈ C ′ must intersect a Bn for some n > N : indeed, because the
measures of the Bn are summable, there is m > N with λ(Bm) < 1

2λ(B), so we had no
good reason to not include B in our sequence unless it intersected one of the Bn for n < m.
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Letting n ∈N be the least such that B∩Bn , ∅, the choice of Bn in the recursive construction
ensures that radius(B) 6 2radius(Bn). Thus, B is contained in B̃n. �

Thus, λ(U ) 6
∑
n>N λ

(
B̃n

)
= 5d

∑
n>N λ(Bn) < ε. �

4. Hardy–Littlewood maximal function

Heuristically speaking, in order to prove the Lebesgue Differentiation Theorem, we need
to approximate an L1

loc-function f with a continuous function g so that |Arf (x)−Arg(x)| is
small uniformly in r. We achieve this below by proving a modified version of (3.b), where
L1

loc is replaced by L1 and pointwise convergence by convergence in measure.

The uniformity in r is captured by the following operator: for f ∈ L1
loc and x ∈Rd , put

Āf (x) ..= sup
r61

Ar |f |(x).

The function Āf is known as the Hardy–Littlewood maximal function. Being a sup of
measurable functions, Āf is measurable, so Ā is a map from L1

loc to L0. We would like to
show that it is a Lipschitz map with respect to the norm-like functions ‖·‖∗α (uniformly in
α).

Theorem 9 (The Maximal Theorem). The map Ā : L1→ L0 is 3d-Lipschitz, i.e. ∀f ∈ L1,

sup
α>0
‖Āf ‖∗α 6 3d ‖f ‖1.

Proof. Fix α > 0 and f ∈ L1, and let S ..= ∆α(|f |) =
{
x ∈Rd : |f (x)| > α

}
. By definition, for

each x ∈ S, there is a ball Bx centered at x of radius 6 1 such that∫
Bx

|f |dλ > α ·λ(Bx). (10)

Thus, the balls Bx form a cover of S, so, for any fixed s < λ(S), the Vitali Covering Lemma
(Lemma 5) gives a finite subcollection Cs of pairwise disjoint balls with

λ
(⊔

Cs
)
> 3−ds.

Hence, we obtain

α · s 6 3d ·α ·λ
(⊔

Cs
)

[
by the disjointness of Cs

]
= 3d ·

∑
B∈Cs

α ·λ(B)

[
by (10)

]
6 3d

∑
B∈Cs

∫
B
|f |dλ

[
by the disjointness of Cs

]
= 3d

∫
⊔
Cs
|f |dλ 6 3d‖f ‖1.

Since s is an arbitrary real less than λ(S), we get ‖Āf ‖∗α ..= αλ(S) 6 3d‖f ‖1. �
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5. Lebesgue differentiation

Lemma 11 (Lebesgue differentiation for continuous functions). For any g ∈ C(Rd),Arg(x)→
g(x) pointwise as r→ 0+.

Proof. For any x ∈ Rd and r 6 1, |Arg(x)− g(x)| 6
∫
Br (x)
|g(y)− g(x)|dλ(y), so the continuity

of g yields the conclusion. �

Theorem 12 (Lebesgue Differentiation Theorem). For any f ∈ L1
loc, Arf → f a.e. as r→ 0+.

Proof. It is enough to show that this holds in every ball BN (0), N ∈N, so, replacing f with
f 1BN (0), we may assume that f ∈ L1.

For each α > 0, put

Dα ..=
{
x ∈Rd : limsup

r→0
|Arf (x)− f (x)| > α

}
.

What we need to show is that D0 is null. But D0 =
⋃
n>1Dn, so it is enough to show Dα is

null for each α > 0, so fix α > 0, as well as ε > 0.
By the density of continuous functions in L1, there is g ∈ C(Rd) with ‖f − g‖1 < ε. For

each x ∈Rd ,

limsup
r→0

|Arf (x)− f (x)| 6 Ā(f − g)(x) + limsup
r→0

|Arg(x)− g(x)|+ |f − g |(x)[
by Lemma 11

]
= Ā(f − g)(x) + |f − g |(x),

so, for each x ∈Dα, Ā(f − g)(x) > α
2 or |f − g |(x) > α

2 , in other words,

Dα ⊆ ∆α
2

(
Ā(f − g)

)
∪∆α

2
(f − g).

By Chebyshev’s inequality λ
(
∆α

2
(f − g)

)
= 2

α ‖f − g‖
∗
α
2
6 2

α ‖f − g‖1 <
2
αε. Furthermore,

by the Maximal Theorem, λ
(
∆α

2

(
Ā(f − g)

))
= 2

α ‖Ā(f − g)‖∗α
2
6 3d ·2

α ‖f − g‖1 <
3d ·2
α ε. Thus,

λ(Dα) 6 3d ·2
α ε+ 2

αε, but ε is arbitrary, so λ(Dα) = 0. �

Corollary 13 (Stronger version). Let f ∈ L1
loc. For a.e. x ∈Rd ,

lim
r→0+

1
λ(Br(x))

∫
Br (x)
|f (y)− f (x)|dλ(y) = 0.

Proof. Follows by applying Theorem 12 to |f − q| for every rational q ∈ Q and using the
density of Q in R. �

6. Lebesgue density

We switch the notation R
d to R

n because the letter d is used for something else.

Definition 14. For a measurable set S ⊆R
n, define its Lebesgue density function dS : Rn→

[0,1] by

dS(x) ..= lim
r→0+

λ
(
S ∩Br(x)

)
λ
(
Br(x)

)
if this limit exists, and leaving it undefined otherwise. Call S ′ ..= {x ∈Rn : dS(x) = 1} the set
of density points of S.
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The Lebesgue Differentiation Theorem applied to characteristic functions gives:

Corollary 15 (Lebesgue Density Theorem). For every measurable set S ⊆R
n, dS = 1S a.e.

For any sets S0,S1 ⊆ R
n, write S0 =λ S1 if S0 4 S1 is λ-null. Let [S0]λ denote the =λ-

equivalence class of S0. The last corollary provides a canonical choice of a measurable set
out of each such class:

Corollary 16 (Selector for =λ). For any measurable S ⊆R
n, S ′ =λ S and S ′′ = S ′. In particular,

the map S 7→ S ′ is a selector for =λ on measurable sets, i.e. for any measurable sets S0,S1 ⊆R
n,

S0 =λ S1 ⇐⇒ S ′0 = S ′1.

A further corollary of Corollary 15 is the following.

Corollary 17 (The 99% Lemma). Let S ⊆ R
n be a measurable set with λ(S) > 0. For every

α ∈ (0,1) (e.g. α = 0.99), there is a nonempty open ball B ⊆R
n such that S occupies at least α

fraction of B, i.e.
λ(S ∩B) > αλ(B).
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