CANTOR SETS
ANUSH TSERUNYAN

1. DEFINITION AND TOPOLOGICAL PROPERTIES

Definition 1 (Homeomorphism). For metric (topological) spaces X,Y, a function f : X — Y
is called a homeomorphism if it is a bijection and both f and f~! are continuous. Call X
and Y homeomorphic if there is a homeomorphism X — Y.

Observation 2. Let X,Y be metric (topological) spaces and f: X — Y a homeomorphism.
(a) f and f~1 preserve the open sets, i.e. for sets U C X,V C Y,

U is open (in X) <= f(U) is open (inY)

V is open (inY) <= f~1(V) is open (in X).

(b) X and Y have the same topological properties, i.e. properties that are phrased only
using open sets, e.q. connectedness, compactness, etc.

Definition 3 (Cantor sets). For a metric (topological) space X, call a set C' C X a Cantor
set if C' is homeomorphic to the Cantor space 2.

Observation 4. Cantor sets are compact and have cardinality continuum.

Proposition 5. In a connected metric space X (such as R?), any Cantor set has empty
interior and hence is nowhere dense.

Proof. Let C C X be a Cantor set and let f : C — 2~ be a homeomorphism. Suppose
towards a contradiction that U := Int(C) # (). Then f(U) is nonempty open in 2% and hence
contains a nonempty clopen subset V' C f(U), so V and f(U) \ V are both open. Therefore,
V' := f~'V C U is nonempty clopen in C. It remains to show that V' is clopen in X as well.
But the closedness of C'in X implies that V"’ is closed in X, and the openness of U in X
implies that V" is open in X. O

2. CONSTRUCTING CANTOR SETS IN R

Recall that 2<N denotes the set of all finite binary sequences. For s € 2<N and i € 2 := {0, 1},
let s7i denote the extension of s by appending the symbol i at the end of s.

Definition 6. A sequence (/) eo<n of closed intervals in R is called a Cantor scheme if, for
each s € 2<V,
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iv) for every z € 2V, |I,.| — 0 as n — oo.
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Observation 7. Conditions (i)—(iil) guarantee that the length of each I is positive.

Observation 8. For any x € 2V, condition (iv) and the completeness of R guarantee that
Nnen Lol @5 a singleton (i.e. contains exactly one element).
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In the light of this observation, define f : 2 — R by mapping each x € 2" to the unique
element in (1), oy Ly, Call this f the function induced by the Cantor scheme (Iy)seo<n. Note

that f(2") = C :==(),,cy Cn, where
= J L.

se2n
We refer to C' as the set induced by the Cantor scheme (/5),co<n.

Proposition 9. The function f induced by any Cantor scheme is a homeomorphism 2% —
f(2N). Thus, the set induced by a Cantor scheme is a Cantor set.

Proof. Condition (iii) guarantees that f is injective. Note that for distinct s,t € 2", I and
I; are of positive distance from each other. This, together with (iv), implies that both f and
f~1 are continuous, and we leave the details to the reader. 0J

One way to build Cantor schemes is by iteratively removing open strict subintervals from
the closed intervals. More precisely, say that the set C' is obtained from [a,b], by removing
an open strict subinterval if C' = [a,b] \ (¢, d), where a < ¢ < d < b. Put I := [a, b] for any
a < b. Supposing that I, := [as, bs] is defined for s € 2<N, we take any U, = (cs, d,) with
as < cg < dg < by and put

I = [as, cs] and [~ = [ds, bs].
We can always guarantee that condition (iv) holds by choosing the open intervals Uy appro-
priately; for example, if each U, contains the midpoint of I, then |I,~gl,|l,~1] < 271, so,
by induction, |I,| < 27!|Is| — 0 as |s| — oo. Thus, we have shown the following.

Proposition 10. Any interval |a,b] with a < b contains a Cantor set.

3. CANTOR SETS AND LEBESGUE MEASURE

Corollary 11. For any Cantor set C C R% and any nonempty open U C R, U\ C has
positive Lebesgque measure.

Proof. Because C'is closed nowhere dense, U \ C' is a nonempty open set, so it has positive
Lebesgue measure. O

Let (Is)sea<v be a Cantor scheme obtained by iteratively removing open strict subintervals
(Us)sean as described above. Let C' be the induced Cantor set and let the sets C,, be defined
as above. Let A denote the Lebesgue measure on R.

Lemma 12. If for some o € (0,1), for each s € 2<N, |U,| > al|l,|, then C is null.

Proof. Indeed, it is enough to show that A\(C,) — 0 as n — oco. For each n, because, for

each s € 2", the removal of Uy leaves at most (1 — «)-fraction of the measure of I, it is clear

ACri1) < (1 —a)A(C,), so induction glves )\( ) < (1 —a)"N(Ch) — 0 as n — oo. O
1

Lemma 13. If for each s € 2<N, |U,| < , then A\(C') > |12‘”| > 0.
Proof. For each n € N,
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Corollary 14. Any nonempty open interval contains a Cantor set of positive measure as
well as a null Cantor set.
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