
CANTOR SETS

ANUSH TSERUNYAN

1. Definition and topological properties

Definition 1 (Homeomorphism). For metric (topological) spaces X, Y , a function f : X → Y
is called a homeomorphism if it is a bijection and both f and f−1 are continuous. Call X
and Y homeomorphic if there is a homeomorphism X → Y .

Observation 2. Let X, Y be metric (topological) spaces and f : X → Y a homeomorphism.

(a) f and f−1 preserve the open sets, i.e. for sets U ⊆ X, V ⊆ Y ,

U is open (in X) ⇐⇒ f(U) is open (in Y )

V is open (in Y ) ⇐⇒ f−1(V ) is open (in X).

(b) X and Y have the same topological properties, i.e. properties that are phrased only
using open sets, e.g. connectedness, compactness, etc.

Definition 3 (Cantor sets). For a metric (topological) space X, call a set C ⊆ X a Cantor
set if C is homeomorphic to the Cantor space 2N.

Observation 4. Cantor sets are compact and have cardinality continuum.

Proposition 5. In a connected metric space X (such as Rd), any Cantor set has empty
interior and hence is nowhere dense.

Proof. Let C ⊆ X be a Cantor set and let f : C → 2N be a homeomorphism. Suppose
towards a contradiction that U ..= Int(C) 6= ∅. Then f(U) is nonempty open in 2N and hence
contains a nonempty clopen subset V ⊆ f(U), so V and f(U) \ V are both open. Therefore,
V ′ ..= f−1V ⊆ U is nonempty clopen in C. It remains to show that V ′ is clopen in X as well.
But the closedness of C in X implies that V ′ is closed in X, and the openness of U in X
implies that V ′ is open in X. �

2. Constructing Cantor sets in R

Recall that 2<N denotes the set of all finite binary sequences. For s ∈ 2<N and i ∈ 2 ..= {0, 1},
let sai denote the extension of s by appending the symbol i at the end of s.

Definition 6. A sequence (Is)s∈2<N of closed intervals in R is called a Cantor scheme if, for
each s ∈ 2<N,

(i) Is 6= ∅
(ii) Isa0, Isa1 ⊆ Is

(iii) Isa0 ∩ Isa1 = ∅
(iv) for every x ∈ 2N, |Ix|n| → 0 as n→∞.

Observation 7. Conditions (i)–(iii) guarantee that the length of each Is is positive.

Observation 8. For any x ∈ 2N, condition (iv) and the completeness of R guarantee that⋂
n∈N Ix|n is a singleton (i.e. contains exactly one element).
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In the light of this observation, define f : 2N → R by mapping each x ∈ 2N to the unique
element in

⋂
n∈N Ix|n . Call this f the function induced by the Cantor scheme (Is)s∈2<N . Note

that f(2N) = C ..=
⋂

n∈NCn, where

Cn
..=

⋃
s∈2n

Is.

We refer to C as the set induced by the Cantor scheme (Is)s∈2<N .

Proposition 9. The function f induced by any Cantor scheme is a homeomorphism 2N →
f(2N). Thus, the set induced by a Cantor scheme is a Cantor set.

Proof. Condition (iii) guarantees that f is injective. Note that for distinct s, t ∈ 2n, Is and
It are of positive distance from each other. This, together with (iv), implies that both f and
f−1 are continuous, and we leave the details to the reader. �

One way to build Cantor schemes is by iteratively removing open strict subintervals from
the closed intervals. More precisely, say that the set C is obtained from [a, b], by removing
an open strict subinterval if C = [a, b] \ (c, d), where a < c < d < b. Put I∅ ..= [a, b] for any
a < b. Supposing that Is ..= [as, bs] is defined for s ∈ 2<N, we take any Us

..= (cs, ds) with
as < cs < ds < bs and put

Isa0
..= [as, cs] and Isa1

..= [ds, bs].

We can always guarantee that condition (iv) holds by choosing the open intervals Us appro-
priately; for example, if each Us contains the midpoint of Is, then |Isa0|, |Isa1| 6 2−1|Is|, so,
by induction, |Is| 6 2−|s||I∅| → 0 as |s| → ∞. Thus, we have shown the following.

Proposition 10. Any interval [a, b] with a < b contains a Cantor set.

3. Cantor sets and Lebesgue measure

Corollary 11. For any Cantor set C ⊆ Rd and any nonempty open U ⊆ Rd, U \ C has
positive Lebesgue measure.

Proof. Because C is closed nowhere dense, U \ C is a nonempty open set, so it has positive
Lebesgue measure. �

Let (Is)s∈2<N be a Cantor scheme obtained by iteratively removing open strict subintervals
(Us)s∈2N as described above. Let C be the induced Cantor set and let the sets Cn be defined
as above. Let λ denote the Lebesgue measure on R.

Lemma 12. If for some α ∈ (0, 1), for each s ∈ 2<N, |Us| > α|Is|, then C is null.

Proof. Indeed, it is enough to show that λ(Cn) → 0 as n → ∞. For each n, because, for
each s ∈ 2n, the removal of Us leaves at most (1− α)-fraction of the measure of Is, it is clear
λ(Cn+1) 6 (1− α)λ(Cn), so induction gives λ(Cn) 6 (1− α)nλ(C0)→ 0 as n→∞. �

Lemma 13. If for each s ∈ 2<N, |Us| 6 4−|s| |I∅|
4
, then λ(C) > |I∅|

2
> 0.

Proof. For each n ∈ N,

λ(
⊔
s∈2n

Us) 6 2n · 4−n |I∅|
4

= 2−n
|I∅|
4
.

Thus,

λ(I∅ \ C) = λ(
⋃

s∈2<N

Us) 6
∑
n∈N

2−n
|I∅|
4

=
|I∅|
2
,

so λ(C) > |I∅|
2

. �

Corollary 14. Any nonempty open interval contains a Cantor set of positive measure as
well as a null Cantor set.
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