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The question of whether countable compact Hausdorff spaces are Polish came up when
having beer with a group of set theorists at a bar after an AMS meeting. Although the
question perhaps wasn’t terribly interesting, I had fun finding the (positive) answer and the
current note is the write-up of the proof.

To prove that a countable compact Hausdorff space X is Polish, it is enough to show that
it is first-countable: indeed, the countability of X then implies that X is second-countable,
allowing us to apply the Urysohn metrization theorem; thus X is compact metrizable and
hence Polish. The proof below of the first-countability of X (somewhat surprisingly) goes
through showing that X must be zero-dimensional.

Proposition 1. The cardinality of any compact Hausdorff perfect nonempty topological space
X is at least continuum.

Proof. Using the perfectness and the normality of X, construct a Cantor scheme (Us)s∈2<N

such that

(i) Us is nonempty open;

(ii) Usai ⊆ Us, for i ∈ {0, 1}.
For each x ∈ C,

⋂
n Ux|n =

⋂
n Ux|n 6= ∅, by compactness. Hence, the Axiom of Choice gives

an injection of C into X. �

From this we get the following corollary, which also follows from amenability of Z:

Corollary 2. There is no compact Hausdorff topology on Z making the translation action of
Z on itself continuous.

Proof. Assume for contradiction that there is such a topology τ . If there is an isolated point,
then all points are isolated, by the continuity of the translation action, which contradicts
compactness. Thus (Z, τ) is perfect, contradicting the above proposition. �

Recall that a topological space X is called totally disconnected if every maximal connected
component in X is a singleton.

Proposition 3. Any normal T1 topological space X of cardinality less than continuum is
totally disconnected.

Proof. Let Y ⊆ X be connected and assume for contradiction that there are distinct x, y ∈ Y .
Since X is T1, the singletons {x} , {y} are closed. Thus, By Urysohn’s lemma, there is a
continuous function f : X → [0, 1] such that f(x) = 0 and f(y) = 1. But then f(Y ) is
connected and hence must contain [0, 1], contradicting Y being less than continuum. �
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Recall that X is called zero-dimensional if it admits a basis of clopen sets. Clearly, zero-
dimensional implies totally disconnected, for T1 spaces. The converse fails in general (even
for metric spaces), but holds for locally compact Hausdorff spaces. The proof of this is not
hard and can be found, for example, in [AT08] (Proposition 3.1.7). This and Proposition 3
together imply:

Corollary 4. Any locally compact normal T1 space of cardinality less than continuum is
zero-dimensional. In particular, any countable compact Hausdorff space is zero-dimensional.

Lemma 5. Any countable compact Hausdorff space X is first-countable.

Proof. By Corollary 4, X is zero-dimensional. Let U be the collection of all open sets V ⊆ X
such that for all x ∈ V , there is a countable neighborhood base at x. Let U be the union of
all sets in U and put K = U c.

Claim. K is perfect in the relative topology.

Proof of Claim. Assume for contradiction that there is x ∈ K that is isolated in K. Hence
there is a clopen neighborhood V ⊆ X of x such that V ∩K = {x}. Note that x is not an
isolated point in X as otherwise x ∈ U . This implies in particular that V is infinite (X is
Hausdorff). Enumerate V \ {x} = {xn}n∈N and inductively construct a decreasing sequence
(Vn)n∈N of clopen neighborhoods of x such that

(i) V0 = V ;
(ii) Vn ⊆ V ;
(iii) xn /∈ Vn+1.

Let V0 = V and assume Vn is constructed. Note that Vn is not a singleton as x is not
isolated in X, and let k ∈ N be the least such that xk ∈ Vn. Take Vn+1 ⊆ Vn to be a clopen
neighborhood of x not containing xk.

We show that the sets Vn form a neighborhood base at x. First, put Un = Vn \ Vn+1 and
note that for every m ∈ N,

Vm = {x} ∪
⋃
n≥m

Un. (∗)

Now let W ⊆ X be a clopen neighborhood of x. Note that W ⊇ Un, for all but finitely
many n ∈ N, as otherwise, by (i) and (∗), {W ∩ V } ∪ {Un \W : n ∈ N} would be an infinite
pairwise disjoint open cover of V , contradicting the compactness of V . By (∗) again, this
implies that Vm ⊆ W , for some m ∈ N.

Thus x has a countable neighborhood base and hence V ∈ U , contradicting x ∈ K. �

By Proposition 1, K has to be empty and hence X is first-countable. �

Corollary 4 and Lemma 5 imply the following theorem:

Theorem 6. Every countable compact Hausdorff space X is Polish and zero-dimensional.

Proof. We only need to note that if a countable X is first-countable, then it is second-countable.
Hence by the Urysohn metrization theorem, X is metrizable and thus Polish. �
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