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1 Introduction

In [Kak48], S. Kakutani gives a characterization of when two infinite product measures are
equivalent or orthogonal. We present a modern exposition of Kakutani’s characterization,
including many of the details that were left out of the original publication.
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2 Preliminaries

Every measure we refer to is a probability measure defined on an arbitrary set X. We
assume without loss of generality that the measure is complete. For any two such measures
µ and ν, we say that µ is absolutely continuous with respect to ν, denoted µ ≪ ν, if
ν(A) = 0 implies µ(A) = 0 for all measurable A ⊆ X.

If µ ≪ ν, there exists a unique measurable function dν
dµ : X → R+, called the Radon-

Nikodym derivative, such that

ν(A) =

∫
A

dν

dµ
dµ

for all measurable A ⊆ X.
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µ and ν are called orthogonal, and we write µ ⊥ ν, if there exists a measurable set A
such that µ(A) = 0 and ν(X \ A) = 0. Equivalently, µ ⊥ ν if for all ε > 0 there exists a
measurable set A such that µ(A) < ε and ν(X \A) < ε.

µ and ν are equivalent, denoted µ ∼ ν, if µ≪ ν and ν ≪ µ.

We would like to determine whether two probability measures µ and ν are equivalent
or orthogonal, by comparing their Radon-Nikodym derivatives using inner products. We
consider √

dν

dµ

so it is an element of L2(X,µ). We will also use the L2 norm to obtain a convenient expres-
sion for the Radon-Nikodym derivatives of product measures in terms of the derivatives of
the marginal measures.

Let λ := µ+ ν so that µ≪ λ and ν ≪ λ.

Note that

∥∥∥∥√dµ
dλ

∥∥∥∥
2

=

∥∥∥∥√ dν
dλ

∥∥∥∥
2

= 1. For instance,

〈√
dµ

dλ
,

√
dµ

dλ

〉
=

∫
X

dµ

dλ
dλ = µ(X) = 1,

where ⟨·, ·⟩ denotes the inner product in L2(X,λ).

For ease of notation, we define

ρ(µ, ν) :=

〈√
dµ

dλ
,

√
dν

dλ

〉
=

∫
X

√
dµ

dλ

√
dν

dλ
dλ.

Notice that ρ(µ, ν) = ρ(ν, µ). Also, we have that ρ(µ, ν) = 0 if and only if µ ⊥ ν.

One can view the space of probability measures on X which are absolutely continuous with
respect to λ as an embedding into L2(X,λ), with the corresponding metric

d(µ, ν) :=

∥∥∥∥∥
√
dµ

dλ
−
√
dν

dλ

∥∥∥∥∥
2

=

√√√√∥∥∥∥∥
√
dµ

dλ

∥∥∥∥∥
2

2

− 2

〈√
dµ

dλ
,

√
dν

dλ

〉
+

∥∥∥∥∥
√
dν

dλ

∥∥∥∥∥
2

2

= (2(1− ρ(µ, ν)))1/2.
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It then follows by the Cauchy-Schwartz inequality, for µ ∼ ν, that 0 < ρ(µ, ν) ≤ 1, and
ρ(µ, ν) = 1 if and only if µ = ν. With this, we may view the space of probability measures
on X as a subspace of the unit sphere in L2(X,µ).

In the case where µ ∼ ν, it follows from the chain rule that

ρ(µ, ν) =

∫
X

√
dν

dµ
dµ. (2.1)

Remark 2.2. Let λ′ be another measure such that µ≪ λ′ and ν ≪ λ′. Then clearly λ≪ λ′,
so it follows from the chain rule that∫

X

√
dµ

dλ

√
dν

dλ
dλ =

∫
X

√
dµ

dλ′

√
dν

dλ′
dλ′.

Hence, ρ(µ, ν) does not depend on the choice of measure λ.

Now let {Xn,Bn}n∈N be a countable collection of measurable spaces, and let µn and νn be
equivalent probability measures on Xn for each n ∈ N. We define product measures

µ :=
∏
n∈N

µn and ν :=
∏
n∈N

νn.

Theorem 2.3. For {(Xn,Bn)}n∈N, µn, νn, µ and ν as above, the following are equivalent:

(1) µ and ν are not orthogonal.

(2) µ ∼ ν.

(3)
∏

n∈N ρ(µn, νn) > 0.

(4)
∑

n∈N− log ρ(µn, νn) <∞.

(5)
∑

n∈N d
2(µn, νn) <∞.

Proof. We show that

(3) =⇒ (1) =⇒ (2) =⇒ (3) ⇐⇒ (4) ⇐⇒ (5).

(2) =⇒ (1) and (3) ⇐⇒ (4) are trivial.

(4) ⇐⇒ (5) : Recall that ∑
n∈N

d2(µn, νn) = 2
∑
n∈N

(1− ρ(µn, νn)).

3



We show that for a sequence (an)n∈N with an ∈ (0, 1] for all n ∈ N, the series
∑

n∈N(1−an)
converges if and only if the series

∑
n∈N− log an converges.

Observe that if either
∑

n∈N(an − 1) or
∑

n∈N− log(an) converges then

lim
n→∞

(an − 1) = 0.

For any x > 0, we have that

lim
x→0

log(1 + x)

x
= 1,

so

lim
n→∞

log an
an − 1

= 1.

Whenever one of the sequences converges. Thus we have by the limit comparison test that∑
n∈N(1− an) converges if and only if −

∑
n∈N log an converges.

The result follows since we can take an := ρ(µn, νn) for all n ∈ N.

To prove (3) =⇒ (2) and (1) =⇒ (3), completing the proof, we use the following lemmas.

Lemma 2.4.

Rn :=
dνn
dµn

: Xn → R+

is a real-valued measurable function for each n.

For x := (x1, ..., xk) ∈
∏

n≤kXn, define

Rn(x) := Rn(xn).

Then (Rn)n≤k is a system of real-valued measurable functions defined over
∏

n≤kXn, which
are independent when viewed as random variables over the space of measurable subsets of∏

n≤kXn.

This extends to the infinite case.

Proof. For all n,Rn : Xn → R+ is Bn-measurable by the Radon-Nikodym theorem. Hence,
as a function over

∏
n≤kXn or

∏
n∈NXn, Rn is also measurable.

(Rn)n∈N is a system of independent functions since for all n ∈ N, x ∈ X,Rn(x) depends
only on the n-th coordinate of x.

Lemma 2.5. Let µ≤k := µ1...µk and let ν≤k := ν1...νk.
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If µn ∼ νn for all n ≤ k, then µ≤k ∼ ν≤k. Moreover we have that

dν≤k

dµ≤k
=
∏
n≤k

Rn (2.6)

and
ρ(µ≤k, ν≤k) =

∏
n≤k

ρ(µn, νn).

Proof. Assume µn ∼ νn for all n ≤ k.

Let E :=
∏

n≤k En ⊆
∏

n≤kXn be an elementary set. Then

ν≤k(E) = ν1(E1)...νk(Ek) =
∏
n≤k

∫
En

Rnµn.

By the independence of the Rn’s, and an application of Tonelli’s Theorem,

ν≤k(E) =
∏
n≤k

∫
En

Rnµ≤k =

∫
E1

...

∫
Ek

∏
n≤k

Rnµ≤k

=

∫
E1×...Ek

∏
n≤k

Rnµ≤k.

So for all elementary sets E,

ν≤k(E) =

∫
E

∏
n≤k

Rnµ≤k.

Notice that the function λ defined by

λ(B) :=

∫
B

∏
n≤k

Rnµ≤k,

for all measurable B ⊆
∏

n≤kXn, is a measure on
∏

n≤kXn.

Since λ and ν agree on the elementary subsets of
∏

n≤kXn, they agree on all measurable
sets by the Caratheodory extension theorem.

Hence, ν≤k ≪ µ≤k. One shows that µ≤k ≪ ν≤k by a completely symmetrical argument,
so we have that µ≤k ∼ ν≤k.

(2.6) follows from the uniqueness of the Radon-Nikodym derivative.

5



Moreover, the independence of the Rn’s gives that

ρ(µ≤k, ν≤k) =

∫
X≤k

√
R1...Rkdµ≤k =

∏
n≤k

∫
Xn

√
Rndµn =

∏
n≤k

ρ(µn, νn).

Lemma 2.7. For k ∈ N, define
ψk :=

∏
n≤k

√
Rn.

Then (ψk)k≥1 is a sequence of elements of L2(X,µ) such that ∥ψk∥2 = 1 for all k.

Moreover, for any l > k ≥ 1 with k < l, we have that

∥ψk − ψl∥22 = 2(1−
l∏

n=k+1

∫
Xn

√
Rndµn)

= 2(1−
l∏

n=k+1

ρ(µn, νn)).

Proof.

∥ψk∥22 =
∫
X

∏
n≤k

Rndµ

=

∫
X1×...×Xk

∏
n≤k

Rndµ =

∫
Xk

...

∫
X1

∏
n≤k

Rndµ

by Tonelli’s Theorem.

By the independence of the Rn’s, and since each Rn only depends on the n-th coordinate
of x ∈ X, we have that

∥ψk∥22 =
∏
n≤k

∫
Xn

Rndµ =
∏
n≤k

∫
Xn

Rndµn

=
∏
n≤k

νn(Xn) = 1.

So ψk ∈ L2(X,µ) and ∥ψk∥2 = 1 for all k ∈ N.
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Now let k, l ≥ 1 be such that k < l. Then

⟨ψk, ψl⟩ =
∫
X
ψkψldµ =

∫
X1×...Xl

(
∏
n≤k

Rn)(
l∏

n=k+1

√
Rn)dµ.

So by Tonelli’s Theorem and the independence of the Rn’s,

⟨ψk, ψl⟩ =

∏
n≤k

∫
Xn

Rndµ

( l∏
n=k+1

∫
Xn

√
Rndµ

)

=

l∏
n=k+1

∫
Xn

√
Rn(xn)dµn =

l∏
n=k+1

ρ(µn, νn).

Combining these results, we have that

∥ψk − ψl∥2 = ∥ψk∥22 + ∥ψl∥22 − 2⟨ψk, ψl⟩ = 2(1−
l∏

n=k+1

ρ(µn, νn)).

Lemma 2.8. If
∏

n∈N ρ(µn, νn) > 0, then (ψk)k∈N is a Cauchy sequence in L2(X,µ), and
therefore has a limit ψ.

Proof. Suppose
∏

n∈N ρ(µn, νn) > 0. Recall from Lemma 2.7 that

∥ψk − ψl∥2 = 2(1−
l∏

n=k+1

ρ(µn, νn)).

We show that 1−
∏l

n=k+1 ρ(µn, νn) approaches 0 as l and k approach infinity.

Let (pn)n∈N be the sequence of partial products of
∏

n∈N ρ(µn, νn). Then since the product
is convergent, limn→∞ pn exists and is strictly positive. (pn)n∈N being convergent implies
that (pn)n∈N is Cauchy. Moreover, since the product is convergent, there exists M > 0
such that pn > M for each n ∈ N.

So we have that for all ε > 0, there exists N ∈ N such that for all l > k ≥ N,

|pk − pl| = |
∏
n≤k

ρ(µn, νn)||1−
l∏

n=k+1

ρ(µn, νn)| < εM.

So

|1−
l∏

n=k+1

ρ(µn, νn)| < εM(|
∏
n≤k

ρ(µn, νn)|)−1 ≤ εMM−1 = ε.

7



So for all ε > 0 there exists N such that for all k, l > N, ∥ψk − ψl∥2 < ε, so the sequence
(ψn)n∈N is Cauchy.

For (3) =⇒ (2),

Suppose
∏

n∈N ρ(µn, νn) > 0. We will show that

ν(B) =

∫
B
ψ2dµ,

for any measurable B ⊆ X, and hence that ν ≪ µ and dν
dµ = ψ2.

We first show this for an elementary set E ⊆ X. For some k ∈ N, we have that ν(E) =
ν≤k(E). By the independence of the Rn’s,

ν(E) = ν≤k(E≤k) =

∫
E≤k

∏
n≤k

Rndµ≤k =

∫
E

k∏
n=1

Rndµ =

∫
E

l∏
n=1

Rndµ =

∫
E
ψ2
l dµ

for any l > k.

Using that liml→∞ ∥ψl − ψ∥2 = 0, we get that

ν(E) =

∫
E
ψ2dµ. (2.9)

Recall that E is the ring of elementary subsets of X. Notice that the function λ : B → R+

defined by

λ(B) :=

∫
B
ψ2dµ,

for measurable B ⊆ X, is a measure on B. Also, λ agrees with ν on E , by (2.9). By the
Caratheodory Extension Theorem, λ and ν will also agree on B.

Hence,

ν(B) =

∫
B
ψ2dµ,

for any measurable B ⊆ X.

So ν ≪ µ and dν
dµ = ψ2. One shows that µ≪ ν by a completely symmetrical argument, so

µ and ν are equivalent.

(1) =⇒ (3) is proven by contrapositive: assuming
∏

n∈N ρ(µn, νn) = 0, we will show that
µ ⊥ ν.
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Fix ε > 0 and k ∈ N+ such that ∏
n≤k

ρ(µn, νn) < ε.

Let B≤k be the set of all x = (x1, ..., xk) ∈
∏

n≤kXn such that∏
n≤k

Rn(x) > 1.

Note that B≤k is measurable since the Rn’s are measurable functions.

Then

µ≤k(B≤k) =

∫
B≤k

dµ≤k ≤
∫
B≤k

∏
n≤k

√
Rndµ≤k ≤ ρ(µ≤k, ν≤k) < ε.

Also,

ν≤k(X≤k \B≤k) =

∫
X≤k\B≤k

∏
n≤k

Rndµ≤k.

Since the Rn’s are less than or equal to 1 on X≤k \B≤k,

ν≤k(X≤k \B≤k) ≤
∫
X≤k\B≤k

∏
n≤k

√
Rndµ≤k

≤ ρ(µ≤k, ν≤k) < ε.

So if we let B := B≤k ×
∏∞

n=k+1Xn, then

µ(B) = µ≤k(B≤k) < ε

and
ν(X \B) = ν≤k(X \B≤k) < ε.

So for any ε > 0, there exists a measurable B ⊆ X such that µ(B) < ε and ν(X \B) < ε.
Hence, µ and ν are orthogonal.

Corollary 2.10. For µ and ν defined as above, we have a dichotomy: µ and ν are either
equivalent or perpendicular.

Corollary 2.11. For µ and ν defined as above,

ρ(µ, ν) =
∏
n∈N

ρ(µn, νn).
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Proof. By Theorem 2.3, µ and ν are either equivalent or orthogonal, and if they are or-
thogonal then ∏

n∈N
ρ(µn, νn) = ρ(µ, ν) = 0.

If µ and ν are equivalent, recall that

ψk =
∏
n≤k

√
Rn

for all k. It follows from the proof of Theorem 2.3 (specifically (3)⇒(2)) that

ρ(µ, ν) =

∫
X
ψdµ = lim

n→∞

∫
X
ψndµ

= lim
n→∞

ρ(µ≤n, ν≤n) = lim
n→∞

n∏
k=1

ρ(µn, νn).

Lemma 2.8 stated that (ψk)k∈N converges in L2(X,µ). The next corollary gives a stronger
convergence which will allow us to express the Radon-Nikodym derivative of the product
measure in terms of the derivatives of the marginal measures:

Corollary 2.12. In the context of Theorem 2.3, (ψk)k∈N converges to ψ µ-almost every-
where on X, and so

dµ

dν
=
∏
n∈N

dµn
dνn

µ-almost everywhere on X.

Proof. (ψk)k∈N converges to ψ in L2(X,µ), so for any ε > 0, we have that

lim
k→∞

µ({x : |ψk(x)− ψ(x)| > ε}) = 0. (2.13)

Also, ψ > 0 µ-a.e. Hence, the sequence

(logψk)k∈N = (
1

2

∑
n≤k

Rn)k∈N

satisfies
lim
k→∞

µ({x : | logψk(x)− logψ(x)| > ε}) = 0. (2.14)

Since (logRn)n∈N is a system of independent functions, (2.14) implies that (logψk)k∈N
converges to logψ µ-almost everywhere. This is a general fact from [Kam40] which states
that any series of independent functions on an infinite product space that are converging
in measure also converge µ almost-everywhere.

Consequently, (ψk)k∈N converges to ψ µ-almost everywhere on X.
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3 Application to the Cantor Space

Setting X := 2N, we show how the sum convergence can be simplified. We consider families
of measures (µn)n∈N and (νn)n∈N, and set µn(0) =: αn and νn(0) =: βn for all n. Then, a
quick calculation yields

ρ(µn, νn) =
√
αnβn −

√
(1− αn)(1− βn).

We now show a convenient formulation of d2(µn, νn).

d2(µn, νn) = 2(1− ρ(µn, νn))

= 2(1− (
√
αnβn −

√
(1− αn)(1− βn)))

= αn − 2
√
αnβn + βn + (1− αn)− 2

√
1− αn

√
1− βn + (1− βn)

= (
√
αn −

√
βn)

2 + (
√
1− αn −

√
1− βn)

2.

Thus, the equivalence or orthogonality of the product measure is determined by the con-
vergence or divergence respectively of the sum∑

n∈N
(
√
αn −

√
βn)

2 + (
√
1− αn −

√
1− βn)

2. (3.1)

Proposition 3.2. If there exists a γ ∈ (0, 1) such that

γ ≤ αn, βn ≤ 1− γ, (3.3)

it is sufficient to check the convergence or divergence of the sum∑
n∈N

(αn − βn)
2 (3.4)

to determine whether µ and ν are equivalent or orthogonal.

Proof. Suppose (3.3) holds. We show that
∑

n∈N d
2(µn, νn) converges if and only if (3.4)

converges via the limit comparison test on the individual summands of (3.1).

lim
n→∞

(αn − βn)
2

(
√
αn −

√
βn)2

= lim
n→∞

(αn − βn)
2

(
√
αn −

√
βn)2

·
(
√
αn +

√
βn)

2

(
√
αn +

√
βn)2

= lim
n→∞

(αn − βn)
2 · (√αn +

√
βn)

2

(αn − βn)2
= lim

n→∞
(
√
αn +

√
βn)

2 ≤ (1 + 1)2 = 4.

Thus since the limit exists and is positive, the two series both converge or both diverge.
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We now apply the limit comparison test to the other summand.

lim
n→∞

(αn − βn)
2

(
√
1− αn −

√
1− βn)2

= lim
n→∞

(αn − βn)
2

(
√
1− αn −

√
1− βn)2

· (
√
1− αn +

√
1− βn)

2

(
√
1− αn +

√
1− βn)2

= lim
n→∞

(αn − βn)
2(
√
1− αn −

√
1− βn)

2

(αn − βn)2
= lim

n→∞
(
√
1− αn −

√
1− βn)

2.

Now by (3.3), this limit is a finite positive number, so both series converge or diverge.
Thus, since both summands convergence is governed by (3.4), we have that the whole of
(3.1) is as well.

Proposition 3.5. If µ ∼ ν, then

dν

dµ
(x) = lim

n→∞

∏
k≤n

νn(x)

µn(x)
.

Proof. Fix n ∈ N. Then ∫
{x}

νn
µn
dµn =

νn(x)

µn(x)
µn(x) = νn(x)

for x ∈ {0, 1}, so by the uniqueness of the Radon-Nikodym derivative,

dνn
dµn

=
νn
µn

for all n ∈ N. The result then follows from Corollary 2.12.

References

[Kak48] Shizuo Kakutani. On equivalence of infinite product measures. Annals of Math-
ematics, 49(1):214–224, 1948.

[Kam40] E. R. Van Kampen. Infinite product measures and infinite convolutions. American
Journal of Mathematics, 62(1):417–448, 1940.

12


	Introduction
	Preliminaries
	Application to the Cantor Space

